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Abstract

We propose a line-of-sight (LOS)/non-line-of-sight (NLOS) mixture source localization algorithms that utilize the
weighted block Newton (WBN) and variable step size WBN (VSSWBN) method, in which the weighting matrix is
determined in the form of the inverse of the squared error or as an exponential function with a negative exponent.
The proposed WBN and VSSWBN algorithms converge in two iterations; thus, the required number of extra samples in
the transient period is negligible. Also, we perform an analysis of the mean square error (MSE) of the weighted block
Newton method. To verify the superiority of the proposed methods, the MSE performances are compared via
extensive simulation.
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1 Introduction
The aim of the source localization system is to find
a geometrical point of intersection using the measure-
ments from each receiver, such as the time difference of
arrival (TDOA), time of arrival (TOA), or received sig-
nal strength (RSS). Localizing a point source in which
passive and stationary sensors are used has been a pop-
ular research issue in the areas of radar, sonar, global
positioning system, video conferencing, and telecommu-
nication. Two key issues need to be resolved in source
localization. The first is that the wireless localization sys-
tems must be able to cope with rapidly varying channel
conditions. To do this, adaptive filters have been impor-
tant in adaptive source localization methods to stabilize
localization performance under varying channel condi-
tions [1–3]. However, these adaptive source localization
algorithms were designed for the Gaussian noise situation
and their localization performance is severely degraded
in impulsive noise environments, such as Gaussian mix-
ture and Student’s t distribution. Also, the convergence
rate of the least mean square (LMS) algorithm adopted in
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[1–3] may be much slower in some adverse environments.
The second key issue is the challenge of localization
in environments of line-of-sight (LOS)/non-line-of-sight
(NLOS) mixture. LOS/NLOS mixture scenarios occur
when there are obstructions between transmitters and
receivers located in indoor environments and outdoor sit-
uations such as urban areas. The localization performance
of traditional approaches, which assume only LOS condi-
tions, is severely degraded under NLOS conditions; thus,
mitigation of NLOS errors has become an urgent task
and has been extensively investigated in the last decade.
In general, research of the LOS/NLOS mixture prob-
lem for localization takes one of two approaches: (1) the
constrained least squares (LS) method using optimiza-
tion, such as semidefinite relaxation and second-order
cone relaxation [4–9] and (2) localization based on the
“NLOS identify and discard” [10–14]. Although localiza-
tion using the optimization method has relatively high
accuracy, the computational load is intensive. Localiza-
tion using the “NLOS identify and discard” method also
has relatively high accuracy when the LOS/NLOS mix-
ture sensors are perfectly separated from the LOS sensors.
However, the complete classification of LOS sensors and
LOS/NLOS mixture sensors is nearly impossible, making
it evident that classification error exists and the resulting
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false classification incurs drastically increased localiza-
tion error. Furthermore, when the number of sensors is
large, the number of cases to be calculated is increased;
thus, the computational burden is much high. Although
our research results deal with the case in which the posi-
tions of sensors are accurately known, some recent works
assume the unknown coordinates of sensors [15–18].
The motivation for this paper is as follows. Adaptive

localization methods have been proposed for position-
ing in changing environments [1–3]. However, conven-
tional adaptive localization algorithms, which minimize
the squared error sum, are not robust to non-Gaussian
noise (impulsive noise) situations, so theymust be adapted
to impulsive noise conditions. Our proposed algorithm
minimizes the weighted squared error sum instead of the
squared error sum, and the weighting matrix in the pro-
posed algorithm counteracts the adverse effects of the
LOS/NLOS mixture sensor. Namely, the weight is small
when the sample is an outlier, which means an outlier-
corrupted measurement is prevented from entering into
the minimization of the cost function. Also, the conver-
gence rate of the LMS method is slower than that of the
Newton method and this slow convergence rate increases
the number of samples in the transient period of the adap-
tive filter and this is clearly a waste of resources. Thus,
we propose a robust weighted block Newton (WBN) and
variable step size WBN (VSSWBN) algorithms that use
the Newton method instead of the LMS method. As can
be seen from simulation results, the proposed WBN and
VSSWBN methods converge in two iterations. Therefore,
it is possible to neglect the number of additional sam-
ples in the transient period of the adaptive localization
algorithm.
The organization of this paper is as follows. Section 2

explains the LOS/NLOSmixture source localization prob-
lem to be solved in this paper. In Section 3, the details of
the existing localization methods are addressed. The pro-
posed adaptive localization methods using the weighting
matrix and variable step size are addressed in Section 4.
The MSE analysis of the proposed WBN algorithm is per-
formed in Section 5. The estimation performances of the
proposed methods are evaluated via simulation results in
Section 6, comparing themwith those of the existing algo-
rithms. Finally, the conclusion is presented in Section 7.

2 Problem formulation
The main goal of the TOA-based source localization
method is to accurately determine the position of a source
using multiple circles whose centers are the locations of
sensors. In the LOS/NLOS mixture source localization
context, the measurement equation is represented as

ri = di + ni =
√

(x − xi)2 + (y − yi)2 + ni, (1)

where ni ∼ (1 − ε)N(0, σ 2
1 ) + εN(μ2, σ 2

2 ), σ 2
1 � σ 2

2 , i =
1, 2, . . .,M, with M denoting the number of sen-
sors [7, 19–21]. Also, ri is the measured distance between
the source and the ith sensor and di is the range (dis-
tance) model between the source and the ith sensor. The
measurement noise ni is modeled as a Gaussian mixture
distribution, where the LOS noise is distributed accord-
ing to N

(
0, σ 2

1
)
with a probability (1 − ε) and the NLOS

noise distributed by N
(
μ2, σ 2

2
)
with a probability of ε. It

is assumed that while the statistics of the inlier can be
obtained, themean and variance of the outlier distribution
are unknown. In practice, σ 2

1 can be estimated by observ-
ing the energy bins in an absence of the transmitted signal
and indeed the sample variance is usually adopted. Here,
ε (0 ≤ ε ≤ 1) is the contamination ratio (i.e., fraction of
contamination) which is a small number (typically smaller
than 0.1) [7, 19–21]. Also, [ x y]T is the true source posi-
tion and [ xi yi]T is the position of the ith sensor. Note
that, throughout this paper, a lowercase boldface letter
denotes a vector, an uppercase boldface letter indicates a
matrix and the superscript T signifies the vector/matrix
transpose. The purpose of this paper is to determine the
source position that minimizes the MSE of the position
estimate.

3 Review of the existing TOA localization
methods

In this section, we briefly discuss the block LMS algo-
rithm,M, and LMedS estimators in terms of the formula-
tion of the source localization.

3.1 Block LMS source localization [1]
Squaring (1) and rearranging yield the following equation:

xix + yiy − 0.5R + mi = 0.5
(
xi2 + yi2 − r2i

)
,

i = 1, 2, . . .,M,
(2)

where R = x2 + y2,mi = −dini − 1
2n

2
i . For convenience,

(2) can be simply represented in a matrix form as

Ax + q = b, (3)

where q =[m1, · · · ,mM]T , x =[ x y R ]T ,

A =
⎛
⎜⎝

x1 y1 −0.5
...

...
...

xM yM −0.5

⎞
⎟⎠ and b = 1

2

⎛
⎜⎝

x21 + y21 − r21
...

x2M + y2M − r2M

⎞
⎟⎠ .

The block LMS location estimate is obtained iteratively
as follows:

x(k+1) = x(k) + μATe(k) (4)

where e(k) = bk −Ax(k), superscript is the iteration num-
ber, and μ is a positive step size (see [1] for details). Note
that the input signal in the conventional LMS algorithm
was substituted with AT in the block LMS method.
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3.2 LMedS estimator
Classical LS regression consists of minimizing the sum of
the squared residuals. In the LMedS algorithm, the sum
is replaced by the median [22] of the squared residuals.
The LMedS estimator can resist the effect of nearly 50%
of the contamination in the data. The algorithm used to
obtain a solution with this method can be summarized as
follows [23]:

(1) Calculate the m subsets of three measurements.
(2) For each subset S, compute a location by trilateration

PS.
(3) For each solution PS, the residues RS are obtained as

RS =
[
(r1 − d̂1)2, (r2 − d̂2)2, · · · , (rM − d̂M)2

]
(5)

where ri is the same with (1),
d̂i =

√(
xps − xi

)2 + (
yps − yi

)2 and the median of
the residuals RS is computed.

(4) The solution PS, which gives the minimum median,
is determined as the source location.

3.3 M-estimator
The M-estimator is a class of robust estimator that has
been considered for NLOSmitigation purposes. The loca-
tion estimate using the M-estimator is obtained in the
following:

x̂M = min
x

M∑
i=1

ρ

{
bi − aTi x

s

}
(6)

where aTi is the ith row vector of A, x is the position
parameter to be estimated, and bi is the sample in the ith
sensor. The standard deviation in (6) is an unknown value,
so it should be estimated. The median absolute deviation
(MAD), represented as s, is used as the estimate of the
standard deviation and it is defined as

s = 1.483 medi
[∣∣∣
{
bi − aTi x

}
− medk

{
bk − aTk x

}∣∣∣
]

(7)

where med is the abbreviation of the median. Also, ρ(·) is
defined as follows:

ρ(ν) =
{

ν2/2 |ν| ≤ η

η|ν| − η2/2 |ν| > η. (8)

Then, the position estimate using the M-estimator is
obtained by using the Newton method as follows:

x̂(k+1) = x̂(k) + s(ATA)−1ATψ

{
b − Âx(k)

s

}
(9)

where

ψ(ν) =
{

ν |ν| ≤ η

η · sign(ν) |ν| > η, (10)

and sign(·) is the sign function defined as sign(ν) =⎧
⎨
⎩
1, if ν > 0
0, if ν = 0
−1, if ν < 0.

4 Proposed adaptive robust localizationmethods
In this paper, the LOS/NLOS mixture state is divided into
the LOS and LOS/NLOS states. The LOS state denotes the
case where the contamination ratio is zero (ε=0) and the
LOS/NLOS state is the condition in which 0 < ε ≤ 1. The
adaptive robust localization algorithms in this paper can
be represented as follows.

4.1 WBNmethod
This proposed algorithm modifies the block LMS source
localization algorithm [1] to robustify the block LMS algo-
rithm against outliers by using a weighting matrix which
is given as the inverse of the square error or an exponen-
tial function with a negative exponent. Also, we adopt the
block Newtonmethod instead of the block LMS algorithm
because the convergence rate of the Newton method is
known to be much faster than that of the LMS algorithm
[24]. The simulation results show that the MSE perfor-
mance of theWBN algorithm converged in two iterations.
The cost function to be minimized is defined as follows:

(b − Ax)TQ−1(b − Ax). (11)

The solution of the WBN method is represented as
follows:

x(k+1) = x(k) − μH(k)−1g(k)

= x(k) + μ(ATQ(k)A)−1ATQ(k)e(k) (12)

where H(k) is the Hessian matrix, g(k) is the gradient vec-
tor of the cost function in the kth iteration, Q(k) = diag[

1
(b1,k−aT1 x(k))2

· · · 1
(bM,k−aTMx(k))2

]
or diag

[
e−

(b1,k−aT1 x(k))2
2ζ · · ·

e−
(bM,k−aTMx(k))2

2ζ

]
, ζ is a tuning parameter to be deter-

mined through offline work, e(k) = bk − Ax(k), bk =[
b1,k · · · bM,k

]T , and bi,k denotes the sample of the ith sen-
sor at the kth iteration. We use the weighting matrix Q(k)

to alleviate the adverse effect of the LOS/NLOS mixture
components. Note that the weights are small for samples
contaminated by outliers because the squared residuals
are large and they are large for samples in the LOS state
because the squared residuals are small. The advantage of
using the weighting matrix (Q(k)) is that it alleviates the
adverse effects of outliers. Meanwhile, the disadvantages
are that the estimation performance may be inferior to the
LOS-based algorithm in the LOS situation and the weight
can diverge to infinity when the squared residual is close



Park and Chang EURASIP Journal onWireless Communications and Networking  (2017) 2017:121 Page 4 of 10

to zero. In this case, the small positive value can be added
to the squared residual for the stability of the algorithm.

4.2 WCBNmethod
The clipped LMS method has been widely used to reduce
the complexity of the LMS algorithm [25]. The computa-
tional complexity is reduced by clipping the input data to
their polarity bits because the clipped LMS algorithm is a
multiplication-free method. Following this algorithm, the
matrix A is quantized by a sign function because AT in
the block Newton method corresponds to the input signal
in the conventional LMS algorithm. Then, the proposed
WCBN algorithm is obtained as follows:

x(k+1) = x(k) + μ
(
sign

(
AT

)
Q(k)sign(A)

)−1

sign
(
AT

)
Q(k)e(k). (13)

4.3 VSSWBN algorithm
The variable step size adaptive algorithm has been used
to improve the MSE performance of the fixed step size
adaptive method [26–28]. This algorithm updates the step
size by minimizing the MSE cost function and adopting
this technique to the WBN method yields the following
iterative equation:

μ(k) = μ(k−1) − ρ

2
∂J(k)

∂x(k)T
· ∂x(k)

∂μ(k−1)

= μ(k−1) + ρ
(
e(k)TQ(k)A

) (
ATQ(k−1)A

)−1

×
(
ATQ(k−1)e(k−1)

)
(14)

μ(k) =
⎧
⎨
⎩

μmax, μ(k) ≥ μmax
μmin, μ(k) < μmin
μ(k), othewise

(15)

x(k+1) = x(k) + μ(k)
(
ATQ(k)A

)−1
ATQ(k)e(k) (16)

where J(k) = e(k)TQ(k)e(k), e(k) = bk −Ax(k), and μmax, ρ
are generally selected through experiments to provide the
maximum convergence rate preserving steady state mis-
adjustment error small. The value ofμmin is determined as
the level of steady-state misadjustment and the required
tracking capabilities. The length of the transient period
of the adaptive source localization method is desired to
be short because the extra samples are consumed until
the algorithm converges compared to the existing robust
localization algorithm. Therefore, the step size is deter-
mined as large as possible in the proposed method to aid
fast convergence. In our simulation results, the VSSWBN
algorithm showed a superiorMSE performance and a sim-
ilar convergence rate compared to the WBN method for
large step sizes (both algorithms converged in two itera-
tions). However, the MSE performances of the VSSWBN

and WBN algorithms were similar for small or medium
step sizes.

5 Performance analysis
5.1 MSE performance analysis
This section presents the MSE analysis of the proposed
algorithm. We derive the MSE of the WBN algorithm
instead of the VSSWBN method for convenience of anal-
ysis. The state error vector is represented as

x(k+1) − xo = x(k) − xo + μ
(
ATQ(k)A

)−1
ATQ(k)

×
(
bk − Ax(k)

)

= (1 − μ)
(
x(k) − xo

)
+ μ

(
ATQ(k)A

)−1

ATQ(k) (bk − Axo
)

(17)

where xo is the true source position. The steady-state error
vector (v(∞)) can be attained as

v(k+1)

= (1 − μ)v(k) + μ(ATQ(k)A)−1ATQ(k)(bk − Axo)

= (1 − μ)kv(0) + μ

k−1∑
j=0

{
(1 − μ)(k−j−1)(ATQ(j)A)−1AT

Q(j)(bj − Axo)
}

v(∞) � lim
k→∞

μ

k−1∑
j=0

{
(1 − μ)(k−j−1)(ATQ(j)A)−1ATQ(j)

(bj − Axo)
}
.

(18)

The MSE is the same with the trace of the steady-state
error covariance matrix. Therefore, the MSE is repre-
sented as follows:
tr
{
E
[
v(∞)v(∞)T

]}

� lim
k→∞

tr

⎧
⎨
⎩μ2

k−1∑
j=0

k−1∑
q=0

⎡
⎣(1 − μ)(k−q−1)(ATQ(q)A)−1ATQ(q)

× E
[(
bq − Axo

) (
bj − Axo

)T]Q(j)A
(
ATQ(j)A

)

× (1 − μ)(k−j−1)

⎤
⎦
⎫
⎬
⎭

= lim
k→∞

tr

⎡
⎣μ2

k−1∑
l=0

{
(1 − μ)2(k−l−1)

(
ATQ(l)A

)−1

×ATQ(l)RlQ(l)A(ATQ(l)A)−1
}⎤
⎦

� tr
[
μ2

{(
ATQ(k−1)A

)−1
ATQ(k−1)Rk−1Q(k−1)

×A
(
ATQ(k−1)A

)−1
}]

� tr
[
μ2(ATQ(k−1)A)−1

]

(19)
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where

Rl = E
[(
bl − Axo

) (
bl − Axo

)T]

= diag
[
Rl
1,1 · · ·Rl

i,i · · ·Rl
M,M

]

Rl
i,i =

{
d2i σ

2
1 , if i∈ LOS sensor;

(1 − ε)d2i σ
2
1 + ε(d2i σ

2
2 + 1

2σ
4
2 + μ2

2σ
2
2 ), if i∈ LOS/NLOS mixture sensor; (20)

and Q(l) was treated as the constant matrix for the
ease of derivation. The WBN algorithm converges when
0 < μ < 1 from (18). In the derivation of the
last term of (19), it is assumed that Q(k−1) � R−1

k−1
(Q is the instantaneous form of R−1) and the summa-
tion is approximately equal to μ2

{
(ATQ(k−1)A)−1AT

Q(k−1)Rk−1Q(k−1)A(ATQ(k−1)A)−1
}
because 0 < 1 −

μ < 1. Note that the inverse of the squared error is rel-
atively large in the LOS sensor and is small when the
outliers exist. Then, although σ2 is much larger than σ1,
the MSE is nearly constant with respect to the standard
deviation of NLOS noise and bias because the effect of
large error standard deviation of LOS/NLOSmixture sen-
sor in Rl is attenuated by the weighting matrix Q(l) (see
(19) and (20)).

5.2 Computational complexity analysis
We compared the computational complexity for the local-
ization algorithms. The computational complexities of
localization methods are represented in the Table 1, and
M is the number of sensors, and N is the number of
unknown variables to be estimated. The inverse and mul-
tiplication operations for the matrix were mainly con-
sidered because they are computationally intensive. The
computational complexity of the VSSWBN method was
higher than that of theWBN algorithm because it requires
the additional computation of the step size. Also, the com-
putational complexity of the WCBN method was lower
than those of WBN and VSSWBN algorithms.

6 Simulation results
In this section, we compare the MSE performances of the
proposed LOS/NLOS mixture source localization meth-
ods with those of the M-estimator [22, 29] and LMedS
estimator [23]. In these simulation settings, the source was
assumed to be located within a 400-m2 region to deter-
mine the performance over the entire area. Note that the

Table 1 Comparison of the computational complexity

Algorithm Computational complexity

Block Newton O
(
M2N

)

WBN O
(
2M2N

)

VSSWBN O
(
2M2N + M2

)

WCBN O
(
M2
)

number of sensors used in this experiment was seven.
Next, 30 different source locations were generated with
a uniform distribution and sensors fixed. Five hundred
Monte-Carlo simulations were performed for each given
standard deviation of the NLOS noise. The standard devi-
ation of the LOS noise of all of the sensors was assumed to
be identical. In addition, the single and omni-directional
source was assumed to be in the stationary state. TheMSE
average was calculated as follows:

MSE average =
∑30

i=1
∑500

k=1

[(̂
xk(i) − x(i)

)2 + (̂
yk(i) − y(i)

)2]

30 × 500
(21)

where x̂k(i), ŷk(i) is the estimated position of the source
in the ith position set and kth iteration and x(i) and y(i)
indicate the ith true position of the source. Figure 1 illus-
trates a deployment of sensors, in which the radius of the
sensor network was set to 10 m. The localization accuracy
as a function of the standard deviation of the NLOS noise
is shown in Fig. 2. In Fig. 2a, the contamination ratio (ε)
was 20%, the standard deviation of the LOS noise (σ1) was
0.01 m, the bias of the NLOS noise (μ2) was 4 m, sensors
5, 6, and 7 were the LOS/NLOS sensors, and the remain-
ing sensors were LOS sensors. The step size (μ) was set to
0.99 in theWBN algorithm. Also, the initial step size (μ(0))
was 0.99, ρ was 0.1, and μmax and μmin were one and 0.01
in the VSSWBN algorithm. It is clear that the MSE aver-
ages of the VSSWBNmethod are lower than those of other

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x−axis

y−
ax

is

2

3

5

4

6

7

1

Fig. 1 Deployment of sensors
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a

b

Fig. 2 Comparison of MSE averages of the proposed estimators with those of the existing methods when the sensors 5, 6, and 7 are the LOS/NLOS
mixture sensors and the remaining sensors are the LOS sensors. a Contamination ratio (ε): 20%, the bias of NLOS noise (μ2): 4 m, standard deviation
of LOS noise (σ1): 0.01 m. b ε : 30%, σ1: 0.01 m, μ2: 4 m

methods and nearly constant with respect to the stan-
dard deviation of NLOS error. This observation is caused
because the weighting matrix attenuates the effect of the
large variance of LOS/NLOS mixture sensor. In Fig. 2b,
the contamination ratio was 30% and the remaining condi-
tions are the same as those in Fig. 2a. Figure 2b shows that
the MSE average performances of the VSSWBN method
are much superior to those of the other methods. Figure 3
assumes the same condition as that in Fig. 2, with the
exception that sensors 4, 5, 6, and 7 are the LOS/NLOS
sensors in Fig. 3. Again, the proposed VSSWBN method

outperformed the other methods, as shown in Fig. 3.
Figure 4 shows the variation of the MSE averages as a
function of the contamination ratio. The MSE averages
gradually increase as the contamination ratio becomes
larger, and the VSSWBNmethodwas superior to the other
methods. Figure 5 shows the MSE averages with respect
to the standard deviation of LOS noise. TheMSE averages
of all robust methods increase as the LOS noise increases.
Figure 6 illustrates MSE averages as a function of bias. As
can be seen from Fig. 6, MSE averages do not change as
the bias is varied and this is due to the weighting matrix
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Fig. 3 Comparison of MSE averages of the proposed estimators with those of the existing methods when the sensor 4, 5, 6 and 7 are the LOS/NLOS
mixture sensors and the remaining sensors are the LOS sensors. a Contamination ratio (ε): 20%, the bias of NLOS noise (μ2): 4 m, standard deviation
of LOS noise (σ1): 0.01 m. b ε : 30%, σ1: 0.01 m, μ2: 4 m

which attenuates the effect of large variance caused by the
bias (μ2

2σ
2
2 in (20)) because the corresponding weight is

far small (squared residual is much large). Figure 7 shows
the adaptation error as a function of the iteration num-
ber when the impulsive noise exists in the 10th iteration.
The WBN and VSSWBN methods converged in two iter-
ations; thus, the additional samples which are required in
the transient period are negligible. Additionally, the pro-
posed WBN and VSSWBN algorithm accurately tracked
the abrupt change caused by the impulsive noise. Figure 8
shows the MSE average of the proposed algorithms as a

function of the number of sensors. In this case, the num-
ber of sensors increases from 5 to 9 and the number of
LOS/NLOS sensors is fixed to two and the number of
LOS sensors is increased. The standard deviation of the
LOS noise was 0.01 m, that of the NLOS noise was 10 m,
the bias was 4 m, and the contamination ratio was 30%.
We can see that the MSE averages of the localization
decrease as the number of sensors increases. Meanwhile,
Fig. 9 shows the MSE averages of the proposed methods
as a function of the number of sensors when the number
of the LOS/NLOS sensors increases. The number of the
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Fig. 8 Comparison of MSE averages of the proposed estimators as a function of the number of sensors (when the number of LOS sensors increases)
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LOS/NLOS sensors is one when the number of sensors is
five and then increases in parallel with the number of sen-
sors. TheMSE averages of the proposedmethods decrease
as the number of LOS/NLOS sensors increases, and the
decreasing rate of the MSE averages is lower compared to
the case in which the number of LOS sensors increases.

7 Conclusions
The WBN algorithm was developed by modifying the
block LMS algorithm to make it robust to outliers and
the proposed method employed a weighting matrix. Fur-
thermore, the VSSWBNmethodwas proposed to improve
the MSE performances of the WBN algorithm. We also
analyzed the MSE of the WBN algorithm. In the simula-
tion results, the MSE averages of the proposed methods
were smaller than that of the other adaptive localization
methods and robust positioning algorithms.
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