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Abstract

We study serial distributed detection and fusion over noisy channels in wireless sensor networks (WSNs) with bathtub-
shaped failure (BSF) rate of the sensors in this paper. In the previous work, we applied BSF rate to parallel topology and
derived the Extension Log-likelihood Ration Test (ELRT) rule. Although ELRT is superior to traditional fusion rule
without considering failed sensors, the detection performance decreases noticeably in the presence of a large number
of failed sensors. In this paper, we construct a serial topology based on the target radiation energy attenuation model,
apply BSF rate to serial topology, and derive the corresponding fusion rule. Unlike the parallel fusion, where the local

sensors send their decisions to the Global Fusion Center (GFC) in the region of interest (ROI) directly, sensors in the
serial topology transmit local decisions through multi-hop, short-range communications. At the same time, we
extend ELRT to noisy channels. Finally, simulation results prove the effectiveness of the proposed fusion rules.

Keywords: Serial distributed detection, bathtub-shaped failure rate, failed sensors

1 Introduction
WSNs have attracted many researchers in various disci-
plines due to their flexibility, robustness, mobility, and
cost-effectiveness. A major application of WSNs is tar-
get detection. WSN typically consists of a vast number
of small, inexpensive, and low-powered sensors, which
are deployed in the ROI to obtain and preprocess the
received observation. The GFC is making a final decision
about whether the target is present or not. There are two
popular detection methods: centralized detection and dis-
tributed detection. In the centralized detection, the local
sensor sends the received observation to the GFC directly
without any processing. In the distributed detection, each
sensor quantifies its observation into a local decision (“0”
or “1”) and sends it to the GFC. Although centralized
detection achieves the highest performance, it is at the
cost of more bandwidth and communication energy to
obtain real-time results. Thus, the distributed detection is
often preferable in these situations.

Distributed target detection has been extensively stud-
ied in many kinds of literature. In [1, 2], each sensor
made a local decision by conducting likelihood ratio test
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and sent the local decision to the GFC to perform global
log-likelihood ratio test, and then the GFC made a final
decision. In [3], a uniformly most powerful (UMP) detec-
tor based on likelihood ratio test was developed, and
an elegant test for target presence or absence was also
derived. Typically, the performance of local sensors is
hard to calculate. Therefore, in [4], a suboptimal fusion
rule requiring less prior information was proposed, which
we refer to as the counting rule (CR). CR employed the
total number of decisions transmitted from local sen-
sors for hypothesis testing at the GFC. In [5], CR was
extended to the case where the total number of sensors
was uncertain. Authors in [6-9] took into account imper-
fect communication channels between the sensors and
the GFC, such as additive white Gaussian noise (AWGN)
channels and fading channels. In [6], noisy communica-
tion links were considered and a Bayesian framework for
distributed detection was presented, where noisy links
were modeled as binary symmetric channels (BSC). In
[7], distributed detection fusion in hierarchical WSNs
was investigated in the presence of fading and noise, two
fusion rules were derived accordingly, one utilized the
complete fading channel state information (CSI), the other
utilized the channel envelope statistics (CS). For resource-
constrained sensor networks, a fusion rule using CSI was
more preferable. Typically, local sensors communicated
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with the GFC directly. In [10], authors considered the
case where local decisions need to be relayed through the
multi-hop transmission to reach the GFC and also took
fading into account. In [11], based on various decisions
from local sensors, a decision rule was derived in the case
of unknown probability distributions. In [12, 13], deci-
sion fusion rules with unknown detection probability were
investigated. Clustering-based decision fusion algorithms
and fusion rules for distributed target detection in WSNs
were studied in [14—16].

The structure of the WSNs can be classified into three
categories: parallel topology, serial topology, and tree
topology. Most researchers focus on parallel distributed
detection. However, sensors are usually powered by a bat-
tery, so the energy and the communication range are
limited. When sensors are far away from the GFC, the
power consumption increases dramatically and the life-
time of the WSN has shortened accordingly. In [17, 18],
serial distributed detection was investigated, where local
decisions are transmitted to the GFC through short-range
and multi-hop communication. The channel between two
adjacent sensors was modeled as BSC. However, authors
in [17] assumed the received energy emitted by the tar-
get at the local sensors was a deterministic value. In this
case, the detection performances of the local sensors were
similar.

The most common practice of traditional fusion rules,
such as CR and Chair-Varshney fusion rules, is to employ
all sensors in the ROI to derive a final decision. How-
ever, the signal emitted by the target often decays as the
distance from the target increases. Sensors far away from
the target make little contribution to the final decision at
the GFC or are more likely to make a false judgment in
the presence of background noise. In this paper, we sim-
ply employ sensors around the target to make the final
decision.

We propose a new serial topology reconstruction
method, where decisions are transmitted from sensors
with lower credibility to sensors with higher credibil-
ity. Assuming the transmission channels were ideal, we
applied a BSF rate of the sensor into the parallel struc-
ture and proposed ELRT in [19]. In this paper, we solve
the problem when there are failed sensors in the serial
structure and propose the corresponding fusion rule over
noisy channels which we call serial rule (SR). In order
to demonstrate the more stable detection performance of
the serial structure, we also extend ELRT to noisy chan-
nels and derive the corresponding fusion rule in the same
scenario which we call parallel rule (PR).

The remainder of this paper is organized as follows.
In Section 2, the BSF rate of the sensor is described.
In Section 3, a sensor deployment model is described.
In Section 4, a detection system model is described.
In Section 5, the fusion rules of the serial and parallel
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structure are derived. In Section 5, the performance of the
proposed fusion rules is provided through simulation. In
Section 6, conclusions are drawn.

2 BSFrate

One can characterize a lifetime distribution through three
functions: reliability function, failure rate function, and
mean residual life [20]. The lifetime typically means the
time the product can operate regularly before it fails and
can be measured in hours, miles, cycles, etc. In our orig-
inal research work [19], we used failure rate function to
characterize the lifetime distribution of electronic compo-
nents. The failure rate function is shown in Fig. 1, which
we call BSE. We can see that the failure rate function has
a bathtub shape and can be visually subdivided into three
stages: initial failure period, random failure period, and
wear-out failure period. The initial failure period starts at
zero and decreases noticeably due to early failures caused
by design faults or initial implementation problems. The
random failure period is relatively flat (approximately con-
stant), which is denoted as the “useful life” phase. The
failure is noticeably increasing due to material fatigue or
component aging during wear-out failure period [21]. We
also gave the modified failure rate function r(¢) as follows
in [19]

r(t) = ab (at)>! + (%) (at)b Y +hy, toahy>0b> 1

(1)

where a and b are related with life data of the products and
ho is a worthy constant adding to the failure rate function.

Thus, sensors in this paper can be classified into four
categories

e Normal sensors, sensors that can detect and transmit
decision reliably

6 4
7/
7 initial failure period
- — — = random failure period

wear-out failure period |

0 1 2 3 4 5 6 7
t(hours, miles, cycles, etc)

Fig. 1 BSF rate function according to Eq. (1)
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e Partially disable sensors, sensors that are still
operable, but have poor detection capability

¢ Inoperable sensors, sensors which no longer function
at all

e Failed sensors, the group of sensors consisting of the
combination of the partially disable and the
inoperable sensors

Let N denote the initial number of the sensors, M be the
number of the sensors excluding the inoperable sensors, n
be the number of normal sensors, and 7 be the number of
failed sensors at time ¢, respectively. We can easily get that
n = N — m. m can be written as

m = ceil (/()t r(t) dt) (2)

where ceil (-) denotes the ceiling function.

Irrespective of the inoperable sensors at time ¢, the
remaining sensor is either a normal sensor or a partially
disable sensor. R; = 1 which represents sensor s; is a nor-
mal sensor, and R; = 0 which represents sensor s; is a
partially disable sensor. The probability that sensor s; is a
partially disable sensor is given as follows

pi =Pr(R;=0)
= Pr (sensor s; is a partially disable sensor)
S
= 5 3
M 3)

:% (0<s<m0<M<N)

where s is the number of the partially disable sensors at
time ¢, it is easy to note that p; is constant at time ¢ and
Pr(R; = 1) = 1 — p;. We use p which denotes Pr (R; = 0)
in the latter sections.

3 Sensor deployment model
A sensor deployment example in the presence of failed
sensors is shown in Fig. 2. N sensors follow the grid
deployment, and a target is deployed randomly in the ROL
The target and different types of sensors are labeled by dif-
ferent symbols. The received signal power emitted by the
target m;, i = 1,2,..., N of sensor s; decays as the distance
from the target increases. An isotropic attenuation power
model adopted in this paper is defined as follows
> _ PoDy

m; (4)
L Dz/
where Py is the signal power from the target at a refer-
ence distance Dy and D; represents the Euclidean distance
between the target and sensor s;. The signal attenuation
exponent y ranges from 2 to 3.

Signal power versus distance from the target is shown
in Fig. 3. We can see that target radiation energy decays
rapidly as the distance from the target increases. Sensors
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Fig. 2 A deployment example in the presence of failed sensors. Area
of the ROI:A? : black dot: the normal sensors; black star: the inoperable
sensors; black +: the partially disable sensors; and blue star: the target

far away from the target are prone to make wrong deci-
sions influenced by background noise. Authors in [14]
establish the precursor-successor relationship among the
clusters based on tree topology. The cluster the target
located in serves as the root cluster and the other clusters
serve as the branch or leaf clusters, in this way, the root
cluster can achieve the highest detection performance.
Authors in [22] study a binary tree topology, where the
sensor nearest the target serves as the root. Authors in
[23, 24] think there are several “target spots” in the ROI
where the target often appears, then analyze the area cen-
tered at the “target spot” and propose a target detection

——-m
1

— mi+Gaussian noise

signal power

0 10 20 30 40 50 60 70 80 90 100
distance from target

Fig. 3 Signal power versus distance from target, where
Po = W8O,DO = W,}/ =2
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algorithm based on a probabilistic decision model. So, it
is reasonable for us to investigate the area centered at the
target in this paper.

The radiation energy of the target can be assumed as a
series of concentric circles centered at the target. In this
paper, we set the interval between two adjacent circles
identical. Sensors lying in the same circular ring possess
similar signal-to-noise ratio (SNR) and decision credibil-
ity, and the circular ring interval is 10. Due to the fast
attenuation of the target radiation energy, we consider
the circular area of the radius of 40 centered at the tar-
get in this paper. Firstly, sensors in the same circular ring
form a serial fragment, then all fragments form the whole
serial topology from the outside to the inside. We can see
that decisions are transmitted from sensors with lower
credibility to sensors with higher credibility in this serial
structure, so the final decision at the last sensor of the
serial structure possesses the highest credibility.

4 System model description

Figure 4 describes the serial detection system model. We
leave out the inoperable sensors and form a new serial
topology at time ¢. So the serial topology is dynamic. The
wireless transmission channel between two adjacent sen-
sors is modeled as BSC with transmission error probabil-
ity pe. The observation of sensor s; under each hypothesis
is respectively given by

Hi:yi=mi+n;i=1,..,M

;i=1,...,M’(M’<N) ®)

Hop :y; = n;

Hy and H; denote the absence and the presence of the
target to be detected respectively. M is the number of sen-
sors in the serial topology at time ¢. y; is the signal received
by sensor s;, and #; is the noise observed by sensor s;. In
this paper, we assume that noises at the local sensors are
independent identically distributed (i.i.d.) and follow the
standard Gaussian distribution, i.e, n; ~ N (0, 1).

In Fig. 4, v; denotes the decision made by sensor s;, and
u; denotes the bit received by sensor s;; which may differ
from v;. Sensor 51 to s, cooperatively determine whether
the target is present or not in the ROL Sensor s, is the
fusion center (FC) of the serial structure at time ¢. Because

Page 4 of 9

we apply BSF to the serial structure, s, may be a par-
tially disable sensor. If s, is a partially disable sensor, the
final decision is not reliable. In this paper, we let sensor
s,y transmits its observation to the GFC, then the GFC
replaces sensor s 194 and serves as the FC of the serial struc-
ture. In this way, the M th sensor of the serial structure in
Fig. 4 is actually the GFC at time ¢.

In Fig. 5, a and b give the local decision-making
and transmission process at sensor s; under the situa-
tion of R; = 1 and R; = 0, respectively. Under Hy, when
R; = 1, sensor s; makes a correct decision with proba-
bility 1 — py;, and an error decision with probability py,;,
while when R; = 0, sensor s; makes a correct decision with
probability 1 — p}’ » and an error decision with probabil-

ity p},i. During the decision transmission process, the bit
u; received by sensor s; 1 may differ from the decision v;
made by sensor s; due to the noisy channel. The situation
under H is similar to that under Hy, except that the detec-
tion performance is denoted by p,;; and p;,i. Normally,

Py < Paisbfi < Ppp

5 SRand PR

5.1 SR

Let p (y;|H1) and p (y;|Ho) represent the conditional prob-
ability density function of the observation y; at sensor s;
under H; and Hy, respectively. Except that sensor s; makes
the local decision simply according to its observation y1,
the other sensors make decision according to their obser-
vations and the bit transmitted from the previous sensor.
For example, sensor s; makes a decision v; according to its
observation y1, while sensor s, makes a decision accord-
ing to its observation y, and the bit #; transmitted from
sensor s1, where #; may be different from v;. For sensor

S; <1 <i< M < N), the decision-making process is sim-
ilar to sensor sy. The likelihood ratio test at sensor s; can
be expressed as

H
_pOrlHY) >1

A = 6
o (1) P(Y1|H0)]jot (6)

Given the local threshold t and according to Neyman-
Pearson criterion, the detection probability and false

B2 Vigsel 4 YV, Bl

v, (M <N)

Fig. 4 Serial detection system model
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(1 - pd,i )/pd,i

Fig. 5 Model of serial distributed detection under noisy channel.
a and b describe the situation of R; = 1 and R; = 0, respectively

alarm probability at sensor s; can be evaluated easily. The
likelihood ratio test at sensor s; (1 <i< M < N) can be

expressed as

H
p i, wi—1|Hy) >1

Ao (i) =
O p i, ui—1|Ho) 1_70

(7)

Because of the independence between y; and u;_j,
Ao (¥;) can be further expressed as follows

i Hyp) - i—1|H
Ao(yi)ZP(YI 1) - p (ui—1|Hy)
p (¥ilHo) - p (ui—11Hop)

(8)

Let us discuss p (u;—1|H;) firstly. Due to BSC, the
received bit ;1 at sensor s; depends on the decision v;_;
made at sensor s;_1, thus we can get
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pwi—1lH) =3, p(ui—1,vi-11H1)
= p (ui-1,vi-1 = 1|Hy)
+p (uj-1,vi-1 = O0|H1)
=pWi-1lvi-1 =1L H)p(vi-1 =1|1H) (9)
+p (ui-1|vi-1 = 0, H1) p (vi-1 = O|H1)
=p Wi-1lvi-1 = D p (vi-1 = 1|Hy)
+p (wi-1|vi-1 = 0) p (vi-1 = O|H1)

In the above equation, we use the Markov property
that u;_; is only dependent on v;_;. This property will
be exploited in the following derivations. Note that the
decision v;_; at sensor s;_; depends on whether s;_; is a
partially disable sensor or not. Furthermore, we can easily
get

ai-1 =p (vi-1 = 1|Hy)
=D g, P (Vie1 = LRi—1|Hy)
=pWi-1=1,Ri—1 = 1|H})
+p (Vi-1 = 1,R;—1 = 0|H})
=p Vi1 =1|Ri—1 = 1,H1) p (Ri—1 = 1|H1)
+p (vi-1 = 1R = 0,H1) p (Ri—1 = O|H1)
(1 —=p)pai-1 tPPyi

(10)

and
bi1 =p(vi-1 = 0|Hy)
= p._, P (i-1 =0,R;_1|Hy)
=pWi-1 =0,R;i—1 = 1|Hy)
+p (vi-1 = 0,R;—1 = O|H1) (11)
=pi-1 =0|Ri—1 = 1,H1) p (Ri—1 = 1|H1)
+p (vii1 =0|R;—1 = 0,H1) p (Ri—1 = O|H1)

=1 -p) (1 —paim1)+p (1 —P/d,,-_1>

when u;_1 =1,

o1 = (walp(ui—l;Vi—HHl)) | (i-1 =1) (12)
= (1 = pe)ai—1 + pebi—1

Similarly, when u;_; = 0,

Bi-1 = (Zvl‘_lp (”i—l;Vi—l|H1)> | (ui—1 =0) (13)
= peai—1 + (1 — pe) bi_1

So, p (u;—1|H1) can be expressed as

P (wi—1|Hy) = (@i—1)"1 - (Bi—q) 71 (14)

Next, let us discuss p (#;—1|Hp)

pwi—1|Ho) =), | p (ui-1,vi-1|Ho)
= p (ui-1,vi—1 = 1|Hp)
+p (4i-1,vi-1 = 0|Hp)
= p (ui—1lvi-1 = 1,Ho) p (vi—1 = 1|Hp) (15)
+p (ui—1|vi-1 = 0,Hp) p (vi—1 = 0|Hp)
=p Wi-1lvi-1 = 1) p (vi—1 = 1|Hp)
+p (4i-1lvi-1 = 0) p (vi—1 = O|Hp)
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We can get

¢i-1 = p (vi-1 = 1|Hp)
= g, P (Vi-1 = L, Ri—1|Ho)
=p(vi-1 =1,R;1 = 1|Hp)
+p (vi-1 = 1,R;—1 = O|Hp)
=pi-1 =1|Ri1 = 1,Hp) p (Ri—1 = 1|Hp)
+p (vie1 = 1|R;—1 = 0, Ho) p (R;—1 = O|Hp)
=0 =p)pri-1+PPs; 4

(16)

and

di—1 = p (vi-1 = 0|Hp)
= r_ P Vi-1 = 0,R;_1|Hp)
=p (vi-1 = 0,R;1 = 1|Hp)
+p (vi-1 = 0,Ri—1 = 0|H)) (17)
= p (vi-1 = O0|R;—1 = 1,Hp) p (Ri—1 = 1|Hp)
+p (vi-1 = O|R;—1 = 0, Hp) p (R;—1 = 0|Hp)

=1-p (1=ppi1) +p (1 —p},i_1>

whenuy;_1 =1,

Vi1 = (Zviflp(uifl»vifﬂHO)) | (i1 =1)

(18)
=q _pe) Ci—1 +Pedi—1
Similarly, when u;_; = 0,
ni-1 = (Zvi,lp(ui—l,w—ﬂHo)) | (i1 = 0) (19)
=peci-1+ (1 —pe)di1
So, p (u;—1|Hp) can be expressed as
p (wialHo) = (yic1)™' - (nimp)! 7 (20)

After a series of derivation, the likelihood ratio test at
sensor s; in Eq. (7) can be formulated as

: cwiy H
_ pUilHy) (%’—1)”’_l (ﬂi—l)l Ui-1 %1 .
Yi-1

Ao (9:) » (3ilHo) —_ =
(21)
Now, the decision rule of sensor s; can be given by
H;
%'ﬁ: 27T, if ui1=1
H(l) (22)
PO Bl > 1, if w1 =0
0

Furthermore, the decision fusion rule in Eq. (22) can be
transformed into

(23)

A (yl) = M { Ti1, {f U1 = 1

p (ilHo) H Ti0, if ui-1 =0
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We should note that A (y;) is another metric we defined
and is different from Ag (y;), where

T =T g (24)

T,1=T"

The corresponding log—hkehhood ratio form of Eq. (23)
can be formulated as
Hy

A*(y)=InA @) = zl—lnle, zfu,l_l(

25)
Hy L()—lnfzm if ui_1 =0

The false alarm probability and the detection probability
at sensor s; are evaluated as follows

Pri
= Pr (A" = 7y |Hov i1 = 1) Pr (i1 = 1|Ho)
+Pr (A% 00) = TiglHo, i1 = 0) Pr (i1 = 0}Ho)
= Pr (A" 00) = 7, 1Ho) vie1 + Pr (A% 00) = 7i0lHo) 11
(26)
Pa,i

—Pr (A*(yi) > 7, [Hy, 11 = 1) Pr (w1 = 1|H})
+Pr (A% 00) = TiglH, i1 = 0) Pr (i1 = OJH1)

= Pr (A" 00) = 7y, |H1) @icy + Pr (A% 00) = TyolH1) Bt
(27)

pri and pg; are recursive equations. If we get the values of
priand pg, Prat and p,; , can be evaluated recursively.
Let P, and Py represent the global detection probability
and false probability, respectively, we note that Py = p; ,
and Py = Pr Given 7, py1 and pg,; at sensor s3 can be
easily derived according to Eq. (6).

* 1

5 dx = Q (1)

pr1= o e (28)
® 1 (= a1>2 Pod,
= dx =
par= | = Q( 7 )
(29)

where Q (-) is the complementary distribution function of
the standard Gaussian, i.e,

Q) = dz (30)

[ ae*

5.2 PR

To demonstrate the better detection performance of SR,
we extend ELRT [19] to noisy channels and propose PR in
the same scenario. In the parallel structure, the local sen-
sor s; makes a local decision v,; (1 < i < M) and transmits
it to the GFC in the ROI We denote uy; as the bit received
by the GFC. Due to the BSC, u,; may be different from vj;
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with transmission error probability p,. Furthermore, we
—

let v, = (vpl, Vp2s - e o5 va) and ﬁ; = (upl, Upds .- s upM).

Due to the mutual independence among the received bits,

the fusion rule at the GFC is given as follows

H
p(@IH) _ it p (wilfh) "

1= pg(ﬁ;IHo) =1 p (upilHo) 50 T (31)
According to SR, Aj can be further represented as
Ap— l—[M va,-,RiP (vpis Vpir Ril H1 )
i=1 vai,Rip (upi, Vpl',Ri|H0) (32)

)
=1\ Ypi Npi

api = (1 — pe) ap; +Pebpi
Bpi = Petpi + (1 — pe) by;
Ypi = (1 — pe) Cpi + Pedpi
Npi = PeCpi + (1 — pe) dp;

api = (1 — p) Ppai +PP;7,di

bpl’ =1-p (1 _pp’di) tp (1 _p;’di)
i = (1= P) s+ Py
dpi=Q1—=p)(L—ppp)+p <1 _p;?ﬁ)

where T denotes the detection threshold at the GFC, p,
and p are given in the previous section. p, 4 and p;, i
denote the local detection probability when sensor s; is a
normal sensor and a partially disable sensor, respectively.
Similarly, p, ; and p;, /i denote the local false probability.
Given the local threshold, according to Neyman-Pearson
criterion, we can get the local detection probability and
false probability easily. The log-likelihood ratio form is
given as follows

M
, Apipi Bpi
A;=InA; = (u'ln( L )—l—ln())
! ; Pt VpiBpi Npi
(33)
The final fusion rule at the GFC is as follows
H,
Aq z T (34)
Hy

where T1 =InT. We use P,y and Py to represent the
global detection probability and false probability of the
parallel structure respectively. P,y and P,s can be evalu-
ated as

Pyg = Pr (A/1 - T |H1)

Py =Dr (A/1 - T |H0) (35)
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6 Performance analysis

We use the Matlab simulator to evaluate the performance
of the proposed fusion rules in this paper, and 10* Monte
Carlo runs are used in each simulation. The objective
is to demonstrate that serial structure has more stable
detection performance than the parallel structure in the
presence of a vast number of failed sensors. In [19], we
studied the parallel distributed detection applying BSF
rate of the sensor over ideal channels and proposed ELRT
rule. Simulations demonstrated that ELRT outperformed
Chair-Varshney rule in the presence of failed sensors. In
this paper, we apply BSF to the serial structure over noisy
channels and also extend ELRT to noisy channels, because
sensors far away from the target make little contribu-
tions to the final decision at the GFC and are more likely
to make wrong decisions in the presence of background
noise. Thus, we consider sensors within the circular area
centered at the target in this paper, the deployment in the
presence of failed sensors is presented in Fig. 2. The fusion
rules of the serial and parallel are given in the previous
sections.

In Fig. 6, according to Eq. (2), the number of
failed sensors including the partially disable sensors
and the inoperable sensors is plotted as a function of
t(hours, miles, cycles, etc) and the corresponding parame-
ters are given at the bottom. We can see that the number
of failed sensors during the initial failure period is negli-
gible, such as £ = 0.5. The number increases slowly at the
low time, while the number grows noticeably after time 5.
The curve of the number of failed sensors over time also
reflects the feature of BSF.

We leave out the inoperable sensors at each time, the
partially disable sensors are selected from the remaining
sensors randomly. In Fig. 7, a and b show the receiver

Number of failed sensors

0 1 2 3 4 5 6 7
t(hours, miles, cycles, etc)

Fig. 6 The number of failed sensors obtained by Eq. (2) at a different
time:a = 0.25,b =8,and hg = 4
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Pf
Fig. 7 The ROC curses of SR and PR at a different time: y = 2,
— — — _ N-M _ 1 ) __ Ppdi
A/_ 200m, Dg = 1m,N=220,P, =180, M = 1 p, =2,
ps; = 0.5,a =025, b =8,and hy = 4.a, b correspond to the ROC
curses of SR and PR, respectively

operating characteristic (ROC) curves for SR and PR,
respectively. The simulation parameters for these two
rules are set to be identical and given at the bottom. We
uset=1,t=3,t=5,t =6,t = 6.5,and t = 7 to conduct
the experiment and choose p/d,l. = pa;/5and p}yi = 0.5 for
the partially disable sensor due to their poor performance.
In Fig. 7a, we see that the performance of SR decreases
slightly all the time. In Fig. 7b, we observe that the perfor-
mance of PR decreases slowly before time 5 and noticeably
after time 5. For PR, sensors in the parallel structure make
local decisions and transmit the decisions to the GFC
directly. At the low time, a small number of failed sensors
have a negative but not big effect on the system perfor-
mance. Meanwhile, at the high time, a large number of
failed sensors have a major negative effect on the system
performance. For SR, each sensor in the serial structure
makes a decision according to the bit transmitted from the
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previous sensor and the state (partially disable or normal)
of the previous sensor, and due to this cooperative detec-
tion, SR has more stable detection performance even in
the presence of a large number of failed sensors at high
time. We should note that BSF influences the detection
performances of both serial and parallel structures.

The above analysis demonstrates the effectiveness of SR.
In order to investigate the impact of SNR on the detec-
tion performance of SR, Fig. 8 shows the global detection
probability P; versus SNR over time. SNR is defined as the
ratio of source energy to the standard deviation of noise,
namely SNR = 10log (%), where S = Py, N =1 in this
paper. We can see that higher SNR leads to higher global
detection probability. Comparing the curves at a different
time, it is easy to note that when SNR is fixed, detection
probability at a lower time is superior to higher time, and
this is in accordance with the results of ROC.

7 Conclusions

This paper investigates distributed decision fusion of
serial structure in the presence of failed sensors over noisy
channels. Previous literature focus on serial structure usu-
ally assumes the signal received by the local sensor is
identical. While in this paper we construct a serial topol-
ogy based on isotropic attenuation power model, the local
decision in this topology is transmitted from sensors with
lower credibility to sensors with higher credibility. We also
derive the corresponding fusion rule. For comparison, we
extend ELRT to noisy channels in the same scenario. Sim-
ulations show that serial is more robust than parallel in
the presence of a large number of failed sensor over noisy
channels. The deployment we considered in this paper is
relatively ideal, we will study different deployment in the
future.

SNR/dB
Fig. 8 Global detection probability of SR versus SNR
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