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Abstract

Mobile operators are deploying energy-harvesting heterogeneous networks due to their foreseen advantages such
as self-sustainable capability and reduced operating expenditure, which cannot be offered by conventional grid
powered communications. However, the used energy storage is subject to irreversible aging mechanisms, requiring
intelligent management that considers both the energy cost and battery life cycle. In this paper, we propose a
cognitive energy management strategy for small cell base stations powered by local renewable energy, a battery, and
the smart grid to simultaneously minimize electricity expenditures of the mobile operators and enhance the life span
of the storage device. Non-linear battery models and aging processes are considered to formulate the energy cost
optimization problem. Simulation results in different configurations show that a degradation-aware policy
significantly improves the battery lifetime, while achieving considerable cost savings.
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1 Introduction
In the last decades, mobile user density and data traffic
volume have exponentially increased all over the world.
To respond to this trend, the mobile network operators
(MNOs) have deployed small cell base stations (SBSs) to
enhance their network service capabilities [1]. Accord-
ing to [2], this solution results in a significant energy
demand augmentation essentially generated by the base
station power consumption that represents 75 to 80% of
the entire mobile network. Based on this, the deployment
of heterogeneous cellular networks (HetNets) requires an
efficient energy management to ensure their economic
and environmental sustainability.
A multitude of concepts have recently been pro-

posed to improve the energy efficiency in wireless
communications, addressing network planning, proto-
cols, and equipments [3]. In addition, renewable energy
(RE) usage in cellular networks has drawn attention for
its numerous benefits such as decreasing carbon emis-
sions, enabling long-term cost savings thanks to reduced
operating expenditure (opex) [4], and feeding off-grid base
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stations where the connection to the power grid is expen-
sive or impossible [5]. In this context, cognitive techniques
have been explored to improve energy-harvesting com-
munications [6]. More specifically, the cognitive radio
offers the ability to sense the conditions of the wireless
communication networks and interact with the environ-
ment to adjust some parameters such as the transmission
power, frequency band, and modulation mode [7].
The current energy-harvesting technologies require

local energy storage to absorb the production fluctua-
tion and ensure a continuous equilibrium between energy
offer and demand. However, the typical used energy stor-
age, i.e., electric battery, generates expensive investment
cost and is subject to irreversible degradations. Such phe-
nomenon, called battery aging, has been intensively stud-
ied and been classified into two categories: cycle aging,
which is due to the energy exchanges with the battery, and
calendar aging that appears when the battery is on rest
[8]. In this context, Barre et al. [9] have presented a com-
prehensive review of techniques, models, and algorithms
used for Li-ion battery aging estimation.
The presence of energy storage requires intelligent

energy management policies to optimize the energy cost
of grid-connected base stations (BSs) with energy har-
vesting. Some studies in the literature have addressed this
problem by using either offline or online optimization
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approaches. The first category assumes perfect knowl-
edge of the stochastic energy variables [10–12]. In [11] for
example, the power consumption of a HetNet powered
by RE and equipped with an infinite-capacity battery has
been optimized by supervising the BS transmit power and
the battery usage. In particular, non-linear model predic-
tive control theory has been used to manage the stored
energy considering the average electricity price and power
production. Zhang et al. [12] have proposed an energy-
aware traffic offloading for a HetNet with multiple SBSs.
They have used queuing theory to model the energy pro-
duction and consumption and deduced an efficient power
control according to the statistical information of energy
arrival and traffic load. Online policies have also been
proposed by assuming a casual knowledge of the environ-
ment. In this context, stochastic optimization has been
implemented by assuming that the statistics of the energy
processes are known and that past observations can cor-
rect the energy forecasts [13–15]. The authors in [13]
have investigated an online stochastic approach based on
multi-period recourse. Mao et al. [15] have considered a
hybrid energy supply for the HetNet and formulated the
energy cost minimization problem as a discrete Markov
decision process. The monotony properties of the opti-
mal policy have been inferred to simplify and solve the
optimization problem using the backward induction algo-
rithm. In [16], we have proposed an energy controller that
uses reinforcement learning techniques to elaborate an
optimal energy flow policy without prior knowledge of the
environment stochastic behavior.
These works have focused on maximizing the energy

saving, and none has integrated both calendar and cycle
battery agings in the energy management framework. As
a matter of fact, the maximal use of the battery flex-
ibility enables large cost savings but can lead to rapid
battery life loss. However, the battery is an expensive
investment of the system, and enhancing its life span is
vital for an efficient return on investment. Consequently,
there is a trade-off between pure cost-efficient and battery
aging-aware strategies that has not been evaluated so far.
This motivated us to investigate the design of a cognitive
energy controller that optimizes the operating energy cost
while using the battery in the most effective way to avoid
accelerated cycle and calendar agings. The current study
extends our work [17] by introducing the battery aging
models and formulating the energy cost problem such
that the battery degradation factors are reduced while the
optimal cost saving is still achieved. Additionally, the bat-
tery life evolution is studied to show the impact of the
proposed energy strategies on the aging process.

1.1 Contributions and organization
The contributions of this paper are summarized as fol-
lows:

• Different from existing works, we propose a cognitive
energy flow management framework for
grid-connected energy-harvesting SBSs to jointly
optimize the energy opex and the battery life cycle.
The cognitive decision architecture is centered
around the battery and uses realistic models to
capture the non-linear battery behavior and aging
mechanisms. Without loss of generality, the present
framework is implemented in the offline case, in
which we consider non-casual information about the
environment variables. System simulations show that
the proposed controller achieves considerable cost
reduction compared to simpler strategies.

• The trade-off between pure energy cost optimization
and battery aging-aware policies is explored. The
energy cost and battery aging are evaluated in
different configurations. Simulation results show that
the proposed energy management allows
considerable battery life extension such that the
battery lasts five times longer compared to a pure
energy cost optimization strategy. In exchange, the
opex is slightly increased but this additional expense
remains negligible with respect to the current battery
replacement cost.

The paper is structured as follows. Section 2 intro-
duces our proposed architecture and the associated sys-
tem models. Section 3 provides a formulation of the joint
cost minimization and battery life preservation problem
for a green small cell. Section 4 presents the simula-
tion results. The paper is concluded and perspectives are
discussed in Section 5.

2 System architecture
The proposed architecture, illustrated in Fig. 1, is com-
posed of:

• The SBS: wireless communication station covering a
small area (10 m to 1 km), used to offer high data rate
services to mobile users.

• The photo-voltaic (PV) system: equipment harvesting
solar energy to produce electricity. It is one of the two
energy sources of the system.

• The two-way link to the smart grid (SG): the SG is
the second energy source of the system. The two-way
energy connection enables to buy or sell electricity to
the power grid.

• The battery: storage device that offers flexibility in
the energy utilization. It can store the electricity
coming from the SG and the PV system to feed the
SBS or sell the energy back to the SG.

• The cognitive energy supervision system (ESS):
controller that schedules the energy flows to reduce
the electricity bill and improve the battery life span.
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Fig. 1 System architecture of the proposed cognitive energy supervisor for small cells

In the following, we present the chosen model for each
component of the system.

2.1 Small cell base station power consumptionmodel
The SBS load ρ is modeled as a non-homogeneous Pois-
son process, whose intensity varies during time. We sup-
pose that, depending on the load, the SBS can operate in
two modes: active when ρ > 0 and sleep when ρ = 0. The
relation between the SBS power consumption PBS [W]
and the traffic load is given by the following equation [18]:

PBS(t) =
{

P0 + �p · ρ(t) · Pmax, if 0 < ρ(t) ≤ 1
Psleep, if ρ(t) = 0 ,

(1)

where P0 is the power consumption at the minimum non-
zero output power, �p is the slope of the input-output
power consumption, Pmax is the maximum output power,
and Psleep is the power consumed in sleep mode.

2.2 Energy storage model
We choose a Lithium-ion battery as the power storage
device in our architecture for its several advantages such
as high energy density and low self-discharge. The battery
can store the electricity provided by the PV system and
the SG and discharge the stored energy to feed the SBS
and sell it back to the SG. In this paper, the battery state is
jointly described by its state of charge (SOC) and its state
of health (SOH), which both depend on the (dis)charge
power. The SOC is an expression of the battery momen-
tary storage level as a percentage of its nominal capacity
CN [Ah], which corresponds to the battery capacity at the
beginning of life, and the SOH is a metric that reflects the
general condition of a battery and its ability to deliver the
specified performance compared with a new battery.

2.2.1 State of chargemodel
The SOC variation is generally calculated using current
integration. The rate at which the battery is charged or dis-
charged, noted Crate [ s−1], corresponds to the charge or
discharge current intensity i(t) [A] relative to the battery
nominal capacity:

Crate(t) = i(t)
3600 · CN

. (2)

Periodically, for a given Crate, we use the Ampere-Hour
integral model to estimate the SOC variation [19]:

z(t + �t) = z(t) + η

∫ t+�t

t
Crate(u)du, (3)

where z(t) is the SOC at time t, �t represents the time
step between two SOC estimations, and η is the battery
Coulombic efficiency, equals to ηdis when discharging and
ηchg when charging.

2.2.2 Battery powermodel
The battery is an electrochemical system composed of
several modules. Each module is composed of cells orga-
nized in series and parallel. Without loss of generality, we
suppose that the battery contains ns modules connected
in series, where each cell module comprises one cell. In
this configuration, the relation between the (dis)charge
current i(t) and the voltage of the kth cell Vk [V] is the
following [20]:

Vk(t) = OCV(z(t)) + Rk · i(t), (4)

where OCV [V] is the open circuit voltage and Rk [�]
is the kth cell internal resistance, which depends on
several parameters such as the SOC, the current inten-
sity, the temperature, and the SOH [21]. The OCV-SOC
dependency can be constructed experimentally by dis-
connecting the battery from any load for a long duration
until reaching equilibrium and then measuring its voltage,
for different SOC values [22]. The obtained data can be



Mendil et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:127 Page 4 of 13

used to elaborate an analytical OCV model. In this paper,
we consider an n-order polynomial approximation model
such that [23]:

OCV(z(t)) =
n∑

j=0
aj · zj(t), (5)

where n is a natural number and (aj)j=1..n are the polyno-
mial coefficients calculated from the experimental OCV-
SOC dependency function.
As a sign convention, we assume that the charge (resp.

discharge) current and power have a positive (resp. neg-
ative) sign. Consequently, the power Pbatt [W ] of the
battery can be calculated using the sum of all cell power:

Pbatt(t) =
ns∑
k=1

i(t) · Vk(t). (6)

By combining Eqs. (2) to (6), the battery power can be
expressed as a function of two consecutive SOC values:

Pbatt(z(t), z(t + �t)) =
ns∑
k=1

n∑
j=0

Aj,kzj(t)z(t + �t)

−Bj,k zj+1(t)+α2 · Rk · z2(t + �t),
(7)

such that
Aj,k = α · (

aj − 2α · Rk · δ1,j
)
,

Bj,k = α · (
aj − α · Rk · δ1,j

)
,

α = 3600 · CN
η · �t

,

and δ1,j is the Kronecker symbol, equals to 1 when j = 1
or 0 otherwise.

2.2.3 State of healthmodels
The SOH degradation is inevitable in a battery life cycle.
It is manifested as a loss of available capacity (energy

loss) and/or an increase in impedance (power loss). In
this paper, we assume that the SOH reflects the capacity
evolution:

SOH(t) = Cref(t)
CN

, (8)

where Cref(t) is the reference capacity defined as the
battery maximum storage capacity at time t. The degra-
dation of the battery reference capacity can be caused
by two aging situations: during use (cycle aging) and on
storage (calendar aging) [8]. In the following, these two
aging mechanisms are considered independent and thus
additive.

Cycle aging: is modeled as reference capacity losses,
which depends linearly on the battery SOC variations [24].
At each time step, the new SOH is obtained by Eq. (9):

SOH(t+�t) = SOH(t)−Z · |SOC(t)−SOC(t+�t)|.
(9)

The experimental results of [25] determine the lin-
ear aging coefficient Z for different battery technologies.
However, because the cycle aging is amplified outside the
recommended operating range �soc =[ 20%, 90%] of the
battery SOC (see Fig. 2 [26]), the aging coefficient Z is
defined as:

Z =
{
85 × 10−6, if 20% ≤ SOC(t) ≤ 90%
χ × 85 × 10−6, otherwise ∀t,

(10)

where χ is a scalar strictly greater than one.

Calendar aging: The battery temperature is an impor-
tant parameter to model calendar aging, especially for
Li-ion technology. The thermal model is used to estimate
the cell temperature in response to the current, voltage,

Fig. 2 Recommendations for the operating range of SOC for lithium ion battery [26]
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and ambient temperature. According to the energy con-
servation law, the temperature change for a single-cell
battery is given by [27]:

mc · ch dTdt = Qg − Qr, (11)

where mc [g] is the cell mass, ch [ J/(g.K)] is the specific
heat capacity at constant pressure, T [°C] is the tempera-
ture within the cell,Qg [W ] is the rate of heat generated by
the single cell, andQr [W ] is the rate of heat removed from
the cell by the cooling. The heat generation for a battery
cell k can be approximated by Joule heating law:

Qg = Rk · i2. (12)

For simplicity, the heat generation and temperature
within the battery are assumed to be uniformly dis-
tributed. The single-cell thermal model is thus supposed
to represent the overall internal battery temperature.
Ecker et al. [28] have proposed a calendar lifetime pre-

diction model describing the degradation of the battery
Cref over time. The model shows exponential dependency
with the battery voltage V and temperature T, and square
root dependency with the time of rest. The degradation of
SOH after a time rest �t (expressed in weeks) is defined
as follows:

SOH(t + �t)
SOH(t)

= 1 + ca · c
V−V0
�V

V · c
T−T0
�T

T · √
�t, (13)

where T0 and V0 are reference temperature and voltage,
�T and �V are reference temperature and voltage vari-
ation, and ca, cV, and cT are fitting parameters based on
accelerated calendar aging test data. Given this model, we
can conclude that high voltages, and therefore high SOCs
(Eq. (4)), contribute to an accelerated battery degradation
during rest. Also, the calendar aging grows exponentially
with the temperature. Knowing the relation between the
current intensity and the heat generated within the battery
(Eq. (12)), it is clear that a high current rate increases the
internal temperature and therefore leads to faster calendar
aging.

2.2.4 Battery aging constraints
The aforementioned aging models suggest that Li-ion bat-
teries must be used within a safe operating area restricted
by temperature, current, and SOC windows. Not respect-
ing these restrictions leads to a rapid attenuation of the
battery performance (capacity loss and decrease of charge
and discharge efficiencies). Also, avoiding a long battery
rest duration can considerably lower the calendar aging. In
this paper, we consider three aging constraints to preserve
the battery from rapid degradations:

• We restrict the battery usage on the specific range of
the SOC �soc =[ 20%, 90%]. As discussed earlier,
operating the battery outside this range accelerates

the cycle aging by factor χ . In addition, the calendar
aging is amplified when the battery voltage is high,
which corresponds to a high SOC.

• We avoid using high (dis)charge currents that cause
accelerated cycle aging (due to deep cycling) and
calendar aging (due to heat generation). The current
restriction can be reformulated as a limitation of the
SOC variation in each decision period:

∀t,�SOCmin ≤ z(t+�t)−z(t) ≤ �SOCmax (14)

where �SOCmax≥ 0 (resp. �SOCmin ≤ 0) is the
maximum variation of the SOC during charge (resp.
discharge).

• We prevent the battery from long resting to lower the
calendar aging impact. It is possible to completely
avoid rest periods and force the battery into
permanent cycling. However, according to some
researches [29, 30], providing batteries with a rest
period after (dis)charging might be essential for
relaxation of gradients generated due to the passage
of current and could enable capacity recovery. Such
phenomenon is not included in our models, but we
can take it into consideration by allowing at most one
time step rest between charges and discharges.
Equation 15 expresses this constraint by imposing a
minimum variation of the SOC (be it positive or
negative) over any two consecutive time steps:

∀t, [z(t + 2�t) − z(t + �t)]2+[(z(t + �t) − z(t)]2 ≥ ε,
(15)

where ε is strictly positive.

2.3 Harvested energy model
Our architecture uses solar panels to capture solar energy
and convert it into electricity via the photo-voltaic (PV)
effect. The solar radiation Ig [W/m2] depends on several
factors including geographical location and time of the
day.
Let It and Tt be the random variables correspond-

ing to the solar radiation and the ambient temperature
at hour t, respectively. Given the correlation between
the solar radiation and the temperature, we suppose
that the combined daily radiation-temperature vector
(I1, . . . , I24,T1, . . . ,T24) follows a multivariate Gaussian
distribution GP([μirrad,μtemp] ,�irrad-temp), where μirrad
(resp. μtemp ) is a vector of size 1 × 24 composed of
the hourly average radiations (resp. temperatures) of the
day, and �irrad-temp is the covariance matrix 48 × 48.
We compute μirrad, μtemp, and �irrad-temp as the means
and the covariance of successive realizations related to
historical measures of solar radiations and associated tem-
peratures during 5 years [31]. It is noteworthy that by
using real historical data, all the phenomena that influence
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the temperature and the solar radiation are captured in
the obtained stochastic process. Then, the hourly photo-
voltaic output power PPV [W] is given by the following
relation [32]:

PPV(t) = ηPV · S · Ig(t), (16)

where ηPV is the energy conversion efficiency of the solar
panel and S [m2] is the panel surface.

2.4 Energy price model
In the SG, reducing the peak to average consumption
ratio is one of the main keys to maintain a smooth bal-
ance between the power consumption and production. To
this purpose, dynamic pricing can be adopted to adapt
consumption profiles to the energy availability.
In this paper, we consider a stochastic dynamic energy

price. Let p(t) [$/kWh] be the random variable corre-
sponding to the buying price (i.e., the cost of energy from
the SG) at hour t. The vector (p(1), . . . , p(24)) of daily
energy buying price is supposed to follow a multivariate
Gaussian distribution GP(μprice,�price), where μprice is a
vector of size 1× 24 composed of the hourly average buy-
ing price of the day and �price is the covariance matrix
24×24.We computeμprice and�price as the mean and the
covariance of successive realizations related to historical
data of electricity pricing for residential customers dur-
ing 5 years [33]. Moreover, we consider that the price of
energy sold to the SG is proportional to the buying price
such that psell = κ · p, where κ is the price factor.

3 Cognitive energy supervision system
We aim at minimizing the energy expenditures of the
energy-harvesting SBS while reducing the battery aging.
This is achieved by scheduling the power flow between the
energy sinks and sources over a time horizon discretized
into N decision periods. During each time step, we con-
sider that the SBS load, the PV power, and the energy
price remain constant. The ESS, in charge of the energy
management, is composed of two layers:

1. The high level controller (HLC) schedules the
consecutive battery SOCs during the optimization
horizon. The obtained energy strategy minimizes the
energy cost and reduces the battery aging.

2. The low level controller (LLC) implements the HLC’s
energy strategy by controlling the power flow
between each subsystem in real time such that the
energy balance is respected.

Figure 3 represents the cognitive cycle on which the
ESS is based. First, the HLC uses the statistical models
of the energy variables to solve the long-term (which can
be days, hours, or minutes) aging-aware energy cost opti-
mization problem. Specifically, the policy planned by the

HLC consists of a succession of the battery SOCs dur-
ing the optimization period (the SOC variation means
that the battery is being charged or discharged, see
Section 2.2). Next, according to the SOC strategy, the LLC
manages in the short term (minutes to milliseconds) the
energy exchange with the SG and between each subsystem
of the green small cell. Given the energy conservation law,
the LLC senses the realizations of each energy variable
and adjusts the power flows to meet the targeted SOC val-
ues while respecting the equilibrium between the power
supply and demand. In other words, if the energy pro-
vided by the PV system and/or the battery is not sufficient
to power the SBS and/or the battery, the LLC purchases
the missing quantity from the SG. Similarly, the LCC sells
the energy surplus when the provided energy exceeds the
consumption.
This study focuses on the HLC. We suppose that the

LLC is available and operates in real time. The constrained
cost optimization problem P1 at the HLC level aims to
find the optimal SOC strategy z∗ = (z∗(1), . . . , z∗(N + 1))
and is defined as follows:

P1 : argmin
(z(1),...,z(N+1))∈[0,1]N+1

N∑
t=1

p(t) · [Eb(t) + κEs(t)] ,

subject to

Eb(t) = max (0,PBS(t) + PBatt(z(t), z(t + 1)) − PPV(t)) ,
(17)

Es(t) = min (0,PBS(t) + PBatt(z(t), z(t + 1)) − PPV(t)) ,
(18)

z(t) ∈ �SOC, t = 1, . . . ,N + 1, (19)

�SOCmin ≤ z(t + 1) − z(t) ≤ �SOCmax, t = 1, . . . ,N ,
(20)

[z(t + 2)−z(t+1)]2+[(z(t+1)−z(t)]2≥ε, t=1, . . . ,N−1,
(21)

where (z(1), . . . , z(N + 1)) is the decision vector that rep-
resents the battery SOCs over the optimization horizon
and Eb ≥ 0 (resp. Es ≤ 0) is the amount of energy bought
from (resp. sold to) the SG. The objective function of P1
corresponds to the long-term cost due to power transac-
tions with the electrical grid. At all time steps, the balance
between the power supply and demand is illustrated by the
constraints (Eqs. (17) and (18)). Note that the battery can
be either an energy source (when PBatt(z(t), z(t + 1)) ≤ 0)
or a load (when PBatt(z(t), z(t + 1)) ≥ 0). When the
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Fig. 3 Proposed cognitive energy supervision infrastructure

energy consumed is greater than the energy provided by
the PV/battery system (i.e., PBS(t) + PBatt(z(t), z(t + 1)) −
PPV ≥ 0), the controller perceives a cost p(t) · Eb(t) ≥ 0
corresponding to the energy bought from the SG. In con-
trast, when the energy available is superior to the energy
consumption (i.e., PBS(t)+PBatt(z(t), z(t+1))−PPV ≤ 0),
the controller receives a negative cost κp(t) · Es(t) ≤ 0
(that can be seen as a reward) associated with the energy
sold to the SG. The aim of the HLC is to jointly min-
imize the cumulative positive costs and maximize the
cumulative rewards, which corresponds to minimize the
negative costs. In addition, during all the decision periods,
Eqs. (19), (20), and (21) represent the constraints on the
SOC that have to be respected to improve the battery life
span (see Section. 2.2.4).

4 Results and discussion
The simulation has been accomplished for finite horizons
of 24 h, that is N = 24 and �t = 1 h. The stochastic
variables are generated each hour of the day accord-
ing to their respective models. The profiles illustrated in
Fig. 4 describe the hourly average SBS load, solar radia-
tion, ambient temperature, and energy buying price used
in our simulations to model the average SBS load ρ, the
average solar radiationμirrad, the average ambient temper-
ature μtemp, and the average energy buying price μprice,
respectively. Regarding the SBS, the general trend is a pro-
gressive increase of the traffic load such that the peak is
reached around 21:00–22:00. Notice that the load between
3:00 and 10:00 is absent since it is completely handled by
the under-layer macro base station. Concerning the solar

Fig. 4 Normalized profiles of the average solar radiation, average ambient temperature [31], SBS load (based on [36]), and average energy price [33]
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Table 1 Simulation parameters

Parameter Value Parameter Value

SBS P0 13.6 W �p 4

Pmax 0.13 W Psleep 8.6 W

Battery ns 5 CN 7 Ah

∀k Rk 50 m� ηchg 96%

ηdis 100% z0 30%

�SOCmin −30% �SOCmax 30%

ε 10−4

Solar panel ηPV 14% S 0.25 m2

Energy price κ 100%

radiation and ambient temperature, the profiles are both
bell-shaped and the peak is reached around midday. In
particular, the solar radiation is available only at daytime.
Finally, the SG electricity price is characterized by two
separated peak hours (between 14:00–16:00 and at 21:00)
and off-peak intervals during night and evening.
We also consider our experimental data for Li-ion bat-

teries to model the OCV (Eq. (5)) as a second order
polynomial such that OCV(z(t)) = 2.9 + 0.13 · z(t) −
0.008·z2(t). Other simulation settings for each component
of the system are summarized in Tables 1 and 2. Without
loss of generality, we assume that the battery parameters
(nominal capacity, cell resistance, and charge/discharge
efficiency) are independent of the current intensity and
temperature. Also, it is noteworthy that the usage of the
hour as a time step does not lead to loss of general-
ity. In reality, we can consider another time scale (e.g.,
minutes) for the power control and the dynamics of the
energy variables without any further changes in the energy
management framework.
In this paper, we adopt an offline approach to solve the

non-linear constrained problem P1. We suppose that the
ESS operates in the ideal case where the realizations of the

Table 2 Battery thermal and aging simulation parameters [28, 35]

Parameter Value Parameter Value

ch 1900 J/(kg K) V0 3.5 V

ca −0.0064 T0 25 °C

cV 1.1484 �V 0.1 V

cT 1.5479 �T 10 °C

χ 5 mc 40g

SBS load, solar radiation, temperature, and energy price
over all the optimization period are considered known.
By doing so, we can assess the ESS maximum perfor-
mance, which can serve as an upper bound in the realistic
case where the stochastic variables cannot be perfectly
forecast. In this configuration, the simulation has been
performed for 1825 different days (5 years), such that P1 is
solved each 24 h by running the interior-point algorithm
implemented in MATLAB with several initializations to
reduce the probability of local minima [34]. Furthermore,
we evaluate the trade-off between the SBS energy opex
savings and the battery life span preservation by solving
P1 considering three constraint sets:

1. C1 = {Eqs. (17) and (18)}. The decision-
making does not take into consideration
the battery life span preservation.

2. C2 = {Eqs. (17) to (20)}. The power flow
strategy includes as constraints the
recommended battery operating SOC
interval and maximum (dis)charge rate.

3. C3 = {Eqs. (17) to (21)}. In addition to the
recommended battery operating SOC
interval and maximum (dis)charge rate,
the power flow strategy includes the
battery rest time limitation.

The results obtained for each 24 h are averaged and
presented in the following subsections.

Fig. 5 Energy transaction, consumption, production, and storage with the ideal strategy under C1, averaged over 5 years
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Fig. 6 Energy transaction, consumption, production, and storage with the ideal strategy under C2, averaged over 5 years

4.1 Power flowmanagement
The energy flows obtained under the constraint sets C1,
C2, and C3 are respectively presented in Figs. 5, 6, and
7. In these figures, we have represented the average SBS
energy consumption, RE production, energy transactions
with the SG, and energy stored in the battery. We observe
that, in average, the cognitive ESS buys electricity at night,
when the PV system cannot produce any energy, to power
the SBS and/or store it into the battery. Additionally, we
can note that the amount of energy purchased from the
SG depends closely on the energy price (the lower the
price, the higher the amount of energy bought). Once the
PV production becomes available or when the price is
high, the cognitive ESS prioritizes the use of the energy
produced by the PV panel and the energy already stored
in the battery to feed the SBS and sells a quantity of
the surplus to the SG. Note that the global behavior of
the three policies is similar. However, there are some
differences between these strategies, generated by the bat-
tery constraints imposed in each case. In C1 (Fig. 5), the
absence of any battery operational limitations enables the

ESS to charge and discharge the battery at full (from 0
Wh to 105 Wh), using high (dis)charge current intensi-
ties (for example, the SOC variation between 4:00 and
5:00 is equal to 45%≥ �SOCmax). Some limitations are
introduced in C2 (Fig. 6) such that the SOC values are
restricted in �SOC (corresponding to the battery power
level interval [20, 95] Wh), and all the SOC variations
are limited between �SOCmin and �SOCmax. Finally, C3
(Fig. 7) includes C2 constraints in addition to the calendar
aging restriction that avoid a long battery inactivity. For
example, and contrarily to C2, slight battery (dis)charges
have been introduced between 7:00 and 13:00 to generate
a battery activity and prevent large capacity losses due to
the calendar aging process.
Figure 8 compares the ideal strategy under each con-

straint sets. The battery power flow under the constraint
set C1 is characterized by high battery currents and
extreme SOCs. The amounts of energy exchanged with
the SG are large and the battery state varies rapidly. In
contrast, the strategies under C2 and C3 involve progres-
sive battery (dis)charge such that the aging constraints are

Fig. 7 Energy transaction, consumption, production, and storage with the ideal strategy under C3, averaged over 5 years
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Fig. 8 Average SOC of the ideal strategy under the constraint sets C1, C2, and C3

respected. In reality, these two strategies are very similar
such that the only differences are noticed between 7:00–
13:00 and 22:00–0:00 regarding the battery storage level
and the energy bought from the grid. This difference is
due to Eq. (21), which restricts the battery rest during two
consecutive time steps and generates a sawtooth pattern
with respect to the SOC.

4.2 Battery aging
In this section, we investigate the impact of each power
scheduling policy on the battery aging. As mentioned
before, such aging phenomenon can be dissociated into
two parts: the cycle aging and the calendar one.
Figure 9 shows the average time evolution of the SOH

due to cycle aging for the ideal strategy in the three con-
straint configurations. Each time the battery is charged
or discharged, the cycle aging contributes to decrease its
life span whereas no degradation occurs during rest. The
battery degradation observed under C1 (0.08% SOH loss
per day) are substantially high compared to the strategy
under C2 and C3 (0.02% SOH loss per day). The accelerated
aging is explained by the profound depth of (dis)charge

cycles and the battery operating in dangerous SOC areas
(below 20% and above 90%). Besides, the cycle aging in C3
is slightly higher than C2 because of the additional cycling
that prevent long battery rests.
Similarly, Fig. 10 illustrates the battery calendar aging

in the three constraint configurations. The calendar
aging corresponds to the SOH loss when the battery
is not used and depends on the rest duration, momen-
tary voltage, and temperature. In the unconstrained case
C1, the internal battery temperature peaks illustrated in
Fig. 11 are caused by deep battery (dis)charges. The cor-
responding current intensities are such high that the
generated heat by Joule effect increases the battery inter-
nal temperature to attain large values (30 °C). In this
situation, the accumulated calendar aging can also be
considerable (0.12% SOH loss in 1 day). The SOC con-
straints C2 contribute to slightly reduce the impact of
the calendar aging process thanks to current and volt-
age limitations (0.09% per day). However, it is only by
restricting the rest time, such as we do by introduc-
ing C3, that calendar aging can be considerably avoided
(0.02% per day).

Fig. 9 Average battery cycle aging of the ideal strategy under the constraint sets C1, C2, and C3
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Fig. 10 Average battery calendar aging of the ideal strategy under the constraint sets C1, C2, and C3

Finally, by summing the cycle and calendar aging effects,
we conclude that the respect of the SOC constraints
enables considerable reduction of the battery degradation
rate. This allows in average 51% (resp. 30%) of the battery
SOHpreservation per year when operating under C3 (resp.
C2) compared to the unconstrained case C1.

4.3 Economic performance
In this part, we assess the economic performance of the
proposed energy management by comparing the energy
cost of the ideal strategy with two other schemes:

1. The reference strategy that systematically buys all
the energy needed to feed the SBS from the SG. The
battery and the PV system are not used.

2. The naive strategy is a greedy strategy that aims to
decrease the immediate energy cost, regardless of any
long-term cost saving opportunity. At each decision
period, the PV production is first dedicated to cover
the SBS consumption. In case the production
exceeds the consumption, the surplus is sold to the

SG. Otherwise, the missing energy is purchased from
the SG. Consequently, the battery is never used.

For this analysis, we assume a battery investment cost of
$0.4/Wh that includes the purchase and installation fees.
Figure 12 represents the normalized average hourly cost
of the ideal (under the three constraint sets), naive and,
reference strategies. In the reference strategy, the cost is
exclusively generated by the SBS consumption. Once the
PV production is considered, it appears that the naive
strategy overlaps with the reference strategy during night,
while energy production during day is sufficient to feed
the SBS and sell energy back to the SG (negative cost).
Concerning the ideal strategy, we first notice the energy
purchase used to charge the battery during time inter-
vals that match with off-peak price periods. The energy
stored is then discharged when the electricity price is high
to achieve a higher benefit compared to the aforemen-
tioned strategies. In particular, the ideal strategy under C1
spends and earns more than those under C2 and C3 given
the additional allowed battery flexibility.

Fig. 11 Average battery temperature of the ideal strategy under the constraint sets C1, C2, and C3
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Fig. 12 Normalized daily energy cost of the ideal (under C1, C2, and C3), the naive, and the reference strategies, averaged over 5 years

Table 3 shows the accumulated energy costs averaged
over 5 years and normalized with respect to the reference
policy. Negative costs mean that not only cost saving is
achieved but also the mobile operator is making profits.
The largest cost saving of 145% compared to the reference
is naturally achieved in the ideal case under C1. With the
constraints C2 and C3, the proposed cognitive energyman-
agement framework performs approximately 132% cost
reduction. On the contrary, the naive strategy achieves
only one quarter of the ideal strategy cost savings.
It is clear that an efficient use of the battery enables

more flexibility in the energy trading. In fact, the ESS
can exploit the price variation to buy energy at low cost,
not only to match an imminent energy demand but also
to store it in prevision of future consumption that can
generate heavy expenditures from the SG. Also, the RE
energy can be saved in the battery until interesting selling
prices are offered by the SG. However, there is a trade-
off between how much the battery can be used to realize
cost savings and the aging issues. In fact, when the battery
aging constraints (C2 and C3) are respected, the cost sav-
ing is reduced by about ten points, which corresponds to a
loss of $1.6 in 1 year. At the same time, 30% (resp. 51%) of
the battery initial SOH is preserved per year, equivalent to
$13 (resp. $20) cost saving each year under C2 (resp. C3),
which is by far more profitable given the current battery
cost. In other words, it means that the implementation of
the ideal energy strategy requires the battery replacement
after 1.5 years under C1, 3 years under C2, and 7 years
under C3.

Table 3 Normalized average opex for the ideal (with and
without SOC constraints), naive, and reference strategies

Strategy Ideal under C1 Ideal under C2 Ideal under C3 Naive Reference

Cost −0.45 −0.332 −0.329 −0.11 1

5 Conclusions
In this paper, we have presented a cognitive energy con-
troller for a small cell base station connected to the smart
grid and equipped with a battery and renewable produc-
tion. This architecture had for purpose to jointly optimize
the energy cost and reduce the battery aging effects.
Obtained simulation results have shown that the energy
supervision system achieves very large cost reduction
compared to basic strategies while enhancing the storage
life span. In particular, the battery aging constraints allows
to considerably reduce the calendar and cycle degrada-
tion (up to 51% in average of the initial state of health
preserved per year). Furthermore, the respect of these
constraints resulted in only ten points decrease of the
average opex cost saving, which is negligible considering
current battery costs. As future work, we plan to study the
proposed cognitive energy supervision framework consid-
ering casual information about the environment energy
variable. We also aim to realize a demonstrator of the
proposed solution to assess its performances in real-life
conditions.
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