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Abstract

The latest advances in wireless technologies have led to a proliferation of data mobile devices and services. As a
consequence, mobile networks have experienced a significant increase in data traffic, while voice traffic has shown
nearly no growth. It is therefore essential for operators to understand the data traffic behavior at the user level in order
to ensure a good customer experience. In the radio access networks (RANs), traditional solutions based on cell-level
measurements are not adequate to analyze performance of individual users. Instead, novel alternatives such as the
use of call traces and the definition of new user-centric indicators will provide detailed and valuable information for
each connection. One of the key measurements related to data services is the user throughput. In this work, the user
throughput is adopted as the main attribute to conduct diagnosis in the RAN, which has typically been the bottleneck
for data services. To that end, a binary classification tree is proposed to determine the root cause of poor throughput
in user-level data sessions. Then, this information is aggregated at the cell level in order to provide effective diagnosis
of degraded cells. In particular, a correlation-based analysis of the cell status is proposed in order to identify abnormal
cell behaviors in an automatic way. Evaluation has been carried out with datasets from live cellular networks. Results
show that the proposed diagnosis approach is an effective means to identify the main factors that limit the user
throughput in network cells.
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1 Introduction
During the last years, the wireless data services have
become the dominant traffic source in cellular networks.
Behind this, there is an expansion of new mobile appli-
cations and a rapid growth in the number of subscribers,
both motivated by the advances in cellular communica-
tion technologies and the development of user-friendly
smartphones. According to a large network vendor [1],
global mobile data traffic grew 69% in 2014 while the
average smartphone usage grew 45% in the same year.
This enormous increase in data traffic has forced oper-
ators not only to invest large amounts of money in new
infrastructure but also to reduce operational expendi-
tures (OPEX) in order to maintain the levels of user
satisfaction.
To produce significant cost savings, one of the adopted

solutions by standardization bodies was the creation of
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the Self-Organizing Networks (SONs) [2], which provide
a new concept of network management where the main-
tenance and optimization tasks are carried out mostly
in an automated way. Typically, technical experts in
these fields have to deal with hundreds of traffic mea-
surements and performance indicators every day [3, 4].
The vast diversity and quantity of these metrics makes
the operational work very complex. Thus, the use of
automated techniques for cellular traffic data analysis is
essential to reduce human effort while expertise can be
focused on new areas, bringing additional value to the
operator [5].
Traditionally, mobile operators paid their attention in

providing a good quality of the voice service, since it
was the main offered service. To ensure this Quality-of-
Service (QoS), troubleshooting experts mainly monitored
the call blocking and dropping rates at the cell level to
measure the levels of accesibility and retainability, respec-
tively, in the network. However, with the explosion of
Internet services, the QoS of multimedia and data appli-
cations is given by the data rates experienced by the users,
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where integrity metrics such as throughput and latency
are essential traffic measurements [4]. The problem of
throughput performance indicators is that they are often
difficult to interpret because of their dependence onmany
factors. In particular, there are some aspects beyond the
typical variables related to the radio environment (e.g.,
distance to base station, cell loading, user speed, etc.) that
should be considered. First, unlike in traditional voice ser-
vices, the mobile network is only one segment of the end-
to-end connection in an IP world. For example, a router in
the IP cloud that suffers congestionmay influence the user
perceived data rate. Second, the recent radio access tech-
nologies (RATs) such as Long-Term-Evolution (LTE) have
included a class-based QoS model as a mechanism to dif-
ferentiate between services, establishing various levels of
service to the users. Third, the traffic pattern of new data
services clearly impacts throughput measurements. Due
to the increasing popularity of web navigation, stream-
ing video, social networking, file sharing, online gaming,
and other data services, there are significant differences
in traffic patterns [6]. As a consequence, operators are
investing a large amount of money to investigate traffic
modeling and classification through packet inspection in
order to better understand the characteristic of today’s
cellular data traffic. In addition, sophisticated traffic data
filtering, processing, and correlation with other network
metrics are also important features to identify root causes
of any detected anomaly and increase the reliability of the
network [7, 8].
The increasing complexity of network infrastructure

and services has also led operators to be interested in
managing performance at the user level, instead of the
cell- or network level, with the aim of maintaining their
competitiveness levels. Today’s solutions based on per-
cell performance counters are insufficient to perform
adequate root-cause analysis. For this reason, the stan-
dardization bodies have proposed the use of user-centric
indicators and call traces to support the optimization and
troubleshooting processes [9]. With the Minimization of
Drive Tests (MDT) described in [10], the collection of traf-
fic measurements can be done in an autonomous manner.
In other words, each device that is active in the network
reports measurements and signaling messages (i.e., call
events) to the base station. Unlike traditional drive tests,
MDT avoids the use of expensive measurement equip-
ment and it does not require human effort. The informa-
tion provided by call traces and MDT is not aggregated
and reflects the performance at the user level. However,
operators can process this information and use it to iden-
tify problems with greater accuracy at higher levels (e.g.,
the cell level).
This paper presents a novel method for determining

problems in cells using information at the user level.
Specifically, the input of the method is given by the

metrics contained in the call traces that provide specific
information about data sessions. One of these metrics is
the user throughput, which will act as the driver attribute
to determine those data sessions experiencing bad QoS.
This work focuses on the most common radio causes that
may impact user throughput in a cellular network (i.e.,
congestion, lack of coverage, and interference). In case the
user throughput is degraded, other radio measurements
obtained from call traces will also be analyzed in order to
identify the cause of bad QoS. To automate the analysis,
a method based on a binary classification tree has been
proposed. The adopted tree is generated from the analysis
of real datasets and expert knowledge. Given the diagno-
sis of each data session, this information is aggregated for
each network cell with the aim of creating a cell status
or profile. Such a cell profile is then correlated to other
cell profiles in order to identify faulty cells. The required
calculations to classify the data and then compute the
correlation values are carried out in an external server
which communicates with the Operational Support Sys-
tem (OSS) in the network to obtain the network metrics.
The study is carried out with different datasets from LTE
networks where the proposed approach is applied to diag-
nose abnormal cells whose most users are experiencing
poor user throughput.
Compared to other techniques, such as self-organizing

maps [8], classification trees are an appropriate method to
improve the effectiveness of diagnosis systems, especially
when faults have a critical impact on network perfor-
mance (i.e., various metrics are affected). Note that this
kind of faults should be attended before any other. For
example, a congestion situation is a critical problem that
is reflected by a high number of connected users, but
it may also be reflected by a high level of interference
in the scenario. As a consequence, the diagnosis system
could wrongly identify this situation as an interference
problem. However, if the congestion situation is alleviated,
the excessive interference level is also reduced. Thus, it
is important for troubleshooting experts to have a clear
map of which problems are prioritized by the diagnosis
system. With classification trees, critical faults receiv-
ing higher priority should appear closer to the top of
the tree. According to this, the classification trees enable
fast visualization of the importance and prioritization of
each fault.
The rest of the paper is organized as follows. The

state-of-the-art is discussed in Section 2. The measure-
ment setup and the real datasets to build and evaluate
the proposed method are described in Section 3. The
generation of the classification tree and the correlation-
based method are covered in Section 4. The proposed
method is evaluated using a real dataset in Section 5.
Finally, Section 6 summarizes the main conclusions of
this work.
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2 Related work
The operational tasks in network management can be
divided into three stages [11]: an initial measurement
activity, a decision-making process, and lastly, a phase
in which one or more actions are applied to the net-
work. The first step means a continuous activity where a
multitude of measurements are collected through differ-
ent sources, including network counters and probes. Key
Performance Indicators (KPIs) are continuously collected
from network cells and then evaluated for optimization
and troubleshooting purposes [12–14]. The main draw-
back of using those KPIs is that individual user perfor-
mance may be lost if the data aggregation process at
the cell level involves a considerable number of users. In
addition, although they provide relevant information for
managing the voice service, they are not enough for mea-
suring the performance of data services. In this case, the
use of user-centric KPIs would make the optimization
and troubleshooting much more effective. For this reason,
MDT is a feature introduced by the 3rd Generation Part-
nership Project (3GPP) allowing operators to utilize user
devices to collect radio and traffic measurements in order
to assess per-user level performance [15].
Some works addressing the MDT use case can be found

in the literature. In [16, 17], MDT is utilized for coverage
optimization, where the geo-localization of the user mea-
surements enables powerful estimation and prediction of
coverage holes. In [18], the location-aware radio measure-
ments are employed for creating RF fingerprint databases
which improves User Equipment (UE) positioning accu-
racy. In [19], a signal strength forecast method based
on the classification and regression trees is proposed as
another application of MDT. In [20], a KPI ranking system
is proposed to significantly reduce the number of analyzed
variables in MDT, while earlier work on QoS verification
of MDT is described in [21]. In particular, the user experi-
enced QoS in terms of throughput and its corresponding
radio conditions are jointly analyzed. However, the evalu-
ation is carried out by using a simulation tool instead of
real traffic profiles and measurements.
The analysis of integrity performance (e.g., in terms of

user throughput) in live networks has also gained atten-
tion in the research community. This kind of analysis can
be carried out by means of field trials [22–24] or by using
call traces (or MDT) [25]. However, in the case of field tri-
als, the conclusions may not be representative of the real
QoS experienced by the users. In the case of call traces,
the correlation analysis presented in [25] is rather limited
in terms of the number of radio measurements employed
and no method for root-cause analysis was applied.
Due to the vast amount of data when per-user level

information is collected, a new approach for network
management is needed to address the requirements of
the future fifth generation (5G). The main challenges

in the current SON paradigm to make 5G techni-
cally feasible has also been investigated in the liter-
ature. In [26–28], empowering SONs with Big Data
techniques is studied with the aim of transforming
big data into a readily useable knowledge base. In the
field of self-healing, several research efforts have been
devoted to the development of usable automatic detec-
tion and diagnosis systems [29]. On the one hand,
various mathematical approaches have been applied to
analyze network measurements, such as Bayesian net-
works [30, 31], Neural Networks [5, 8], Fuzzy Logic
combined with Genetic Algorithms [32], linear predic-
tion [33], correlation [34], and statistical analysis [35, 36].
However, these data-driven algorithms have been exclu-
sively evaluated with per-cell level measurements, which
may not be sufficient to manage the new data services.
The work in [8] whose aim is to diagnose problems

at the cell level from traditional KPIs has been further
investigated in [37] by employing call traces (as opposed
to traditional KPIs) and applying a rule-based system to
them. That work has been extended in [38], where a
method based on Neural Networks (similar to that in [8]),
is applied to diagnose the users. Then, from such a user
diagnosis, a threshold-based method is applied to diag-
nose faulty cells. Due to its benefits, the present work
also employs call traces as in [37, 38], instead of tradi-
tional KPIs. However, the proposed method improves the
results presented in [38], whose method for cell diagnosis
shows a clear dependence on thresholds settings. Unlike
[38], the proposed method in this paper for cell diagno-
sis is based on the correlation to specific cell profiles so
that the use of thresholds is avoided. In addition, the work
in [37, 38] focuses on connections whose release has been
abnormal, which can be considered a limitation in the case
of data traffic, where the QoS evaluation during the ses-
sion in both uplink and downlink is essential for diagnosis
purposes.
On the other hand, there are some works in the litera-

ture that investigate the problem of cell outage by employ-
ing user-centric measurements [39–41]. Nevertheless,
this information is commonly related to the radio envi-
ronment (e.g., signal strength) derived from MDT func-
tionality, while other measurements related to integrity
performance such as user throughput are ignored.
Thus, there is a large fragmentation in references

related to the abovementioned topics. For this rea-
son, this paper attempts to unify such a fragmentation
and overcome some limitations that have been found
in previous works. First, the user throughput is used
as a key indicator to estimate QoS of data traffic in
mobile networks. Second, a method for troubleshooting
network cells based on analysis of call traces is pro-
posed. Third, rather than using traffic measurements from
simulation tools or field tests, the evaluation is carried out
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with large-scale datasets of real subscribers provided by
operators.

3 Measurement setup and datasets
Figure 1 depicts the architectural model of 3GPP Radio
Access Networks (RANs), together with the extensions to
support the proposed data analysis framework. Since the
data services are the dominant traffic source, this study
focuses on LTE networks. The OSS is in charge of col-
lecting events and measurements. These recordings are
stored in files every report period, typically of 15 min
duration. On the one hand, the connection between the
OSS and the base station (e-NodeB) supports the collec-
tion of radio events. On the other hand, the connection
between the OSS and the Mobility Management Entity
(MME) enables the collection of user session details that
can be used for mapping of radio events with mea-
surements from another location of the network. Other
network nodes (e.g., S-GW and P-GW) could also be
employed to measure the quality of the services given to
the user.
The tracing system provides detailed information at the

session level for the UE. This information is contained in
events which include measurements reported by the UE
and signaling messages exchanged between the network
elements. There are two different approaches for record-
ing this information: UE traces and cell traces. The UE
traces record events from those UEs which have been

selected by the operator. This allows operators to monitor
a certain user if it is not getting the appropriate QoS.
The cell traces record information from all UEs or a sub-
set of UEs (provided some filters) in a selected cell. This
approach can be used by operators for network optimiza-
tion and troubleshooting purposes, since it provides larger
datasets of per-user level statistics than UE traces. For this
reason, cell traces have been used in this work.
After trace collection, the information has to be pro-

cessed (trace processing in Fig. 1) in order to obtain
relevant statistics at the user session level and KPIs with
adequate granularity. For example, the data provided by
an event that periodically reports a certain measurement
can be aggregated in time to produce values in a longer
time scale (e.g., at the user session level). A priori, the
information could also be aggregated in the space domain
(e.g., cells, cell clusters, or network). However, this may be
equivalent to traditional approaches based on cell coun-
ters, where the measurements are typically aggregated at
the cell level. Instead, the user-level statistics are directly
analyzed by means of the trace analysis module. At this
stage, the analysis of traces can be extended to higher
levels, such as the cell level, keeping in mind that individ-
ual user performance should always be reflected to avoid
hiding problems in the context of root-cause analysis.
The present work is carried out with large-scale mea-

surements coming from performance recording applica-
tions which are executed in four different commercial

Fig. 1 LTE architecture and tracing system
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LTE network deployments. They are owned by different
operators and located in metropolitan areas. The main
characteristics of the networks are described in Table 1.
Note that these values are calculated after filtering the
data. Thus, the actual number of data sessions per cell is
presumably higher; however, only the data sessions that
provide reliable statistics have been considered in the
study. The data filtering process will be explained in
the next section. Another remarkable observation is that
the cell bandwidth varies depending on the dataset. This
may have an impact on user throughput. For example, it
is observed that the average session throughput is higher
in dataset 4 since the cell bandwidth in this network is
greater.

4 Cell diagnosis based on per-user level traffic
measurements

Cell traces provide very detailed information at the ses-
sion level on every UE served by a cell. In particular, they
give instantaneous values for a specific event. The events
related to radio measurements play an important role
in activities such as determining the root cause of mal-
functioning UEs, analyzing dropped calls and optimizing
resource usage and quality. In this work, the information
contained in the traces is used to diagnose UEs whose
performance in terms of throughput is degraded. This is
carried out by means of a binary classification tree. The
diagnosis made for each UEwill serve to identify problems
at the cell level. The following sections explain in detail
how the classification tree is built and the subsequent cell
diagnosis based on a correlation analysis.

4.1 Data input definition and filtering
In the context of data mining, the data pre-processing is
essential to carry out troubleshooting and optimization
tasks in an effective manner. Due to this, the first step
in the construction of the classification tree is the defini-
tion of the input metrics from the information contained
in the cell traces, followed by the filtering and cleaning
processes. Themetrics that have been defined in this work

are shown in Table 2. As observed, they represent the
main aspects in a cellular network such as coverage, qual-
ity, and capacity in both directions of the radio link. By
analyzing the distribution of these metrics over the net-
work, most problems in the RAN can be diagnosed. For
this reason, the number of selected metrics in this paper
has been limited to 7. However, after building the classi-
fication tree, new metrics could be included in the tree
in order to identify a larger number of problems, such as
those related to mobility issues. To do this, the classifica-
tion tree must comprise at least one leaf (i.e., a class) that
represents the data sessions whose root cause remains
unknown. From this leaf, the classification tree would be
grown by introducing the conditions related to the new
metrics. It is worth noting that the priority of the prob-
lems is affected by their position in the tree. The following
paragraphs explain in detail each of these metrics as well
as some aspects related to their filtering and cleaning
processes.
To evaluate network performance, the 3GPP defines

integrity as one of the basic categories for KPIs [4]. It
attempts to measure how the RAN impacts the service
quality provided to the users. Within this category, two
different types of metrics are commonly defined: latency
and throughput. In the downlink, the former is related to
the delay experienced by the users, measured as the time
from the reception of data in the e-NodeB to the transmis-
sion of the first packet over the radio interface. The latter
is the data rate experienced by the users, measured as the
data volume per elapsed time unit on the radio interface.
In this work, the session throughput (Ses_Thp) is com-
puted to identify users whose performance in terms of
QoS is degraded. This requires the activation of the trace
event that provides the corresponding data to compute the
throughput for each UE in the downlink radio interface.
In particular, this event periodically (every 2 s) reports the
data rate for each radio bearer on the Downlink Shared
Channel (DL-SCH) and Uplink Shared Channel (UL-
SCH), which are themain transport channels for downlink
and uplink data transfer, respectively. Let rk be the kth

Table 1 Characteristics of the datasets and network-related information

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Technology LTE LTE LTE LTE

Area Urban Urban Urban Urban

Cell type Macrocells Macrocells Macrocells Macrocells

Measurement period [min] 15 15 15 15

Cell bandwidth [MHz] 5 and 10 10 10 15

Number of cells 6421 238 318 655

Average number of data sessions per cell 4.07 4.07 4.38 5.19

Average session duration [s] 73.7 75.3 91.2 92.2

Average session throughput [Mbps] 5.1 5.3 6.7 11.6
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Table 2 Selected metrics from cell traces

Metric Link direction Related magnitude

Ses_Thp Downlink QoS

Num_UE_MHz_DL Downlink Cell load per MHz

RSRP Downlink Signal strength

RSRQ Downlink Signal quality

Num_UE_MHz_UL Uplink Cell load per MHz

Restr_Pwr_Ratio Uplink Signal strength

HARQ_Fail_Ratio Uplink Signal quality

sample of data rate in the downlink collected during a
session. The data rate rk is internally computed by mea-
suring the data volume in the so-called TimeTransmission
Intervals (TTIs).
Once the data rate samples at each measurement period

k are gathered, Ses_Thp is calculated as an average of
these samples. However, some of them should be excluded
from the computation of this indicator in order to have
a more accurate estimation of the throughput. The rea-
son for this is that, with the new data services such as the
online instant messaging, the level of bursty traffic has sig-
nificantly increased. This obviously affects the evaluation
of throughput performance indicators. On the one hand,
there are a lot of TTIs in the traces where there are no
data to transmit by the base station. These time intervals
should be ignored in the computation of these indicators
to make them independent of the file size. On the other
hand, there are TTIs where the measured throughput is
not representative of the data rate experienced by the UE.
More specifically, given a traffic burst, the data volume
transmitted in the TTI that empties the buffer (i.e., the last
TTI in the burst) can negatively impact the average user
throughput, especially if the amount of data in the last TTI
is relatively much smaller than in the previous TTIs. The
data volume in the last TTI also depends on the size of
the packets at the user plane. As stated in [25], in the LTE
downlink, almost 14% of data are transmitted in the last
TTI, while around 40% of TTIs are last TTIs. To avoid the
effect of the last TTI, in this paper, the data rate samples
below a certain level, rmin, have been removed from the
calculation of Ses_Thp. Assuming that N is the total num-
ber of samples in a data session, Ses_Thp can be formally
expressed as:

Ses_Thp =
∑N

k=1 f (rk > rmin) · rk
∑N

k=1 f (rk > rmin)
, (1)

where f (·) is a function that returns “1” if the condition
within the brackets is true, otherwise it returns “0.” In this
paper, rmin is set to 250 Kbps.
The metric Ses_Thp is also impacted by other factors,

so that data filtering will be required at the session level.

For example, the Outer Loop Link Adaptation (OLLA)
function [42] leads data sessions of short duration to
abnormally low values of Ses_Thp [43]. The reason is
that this mechanism adapts the modulation and coding
scheme to provide certain block error rate in the connec-
tion. In particular, the OLLA starts with a conservative
parameter setting and, after some iterations, the algorithm
must converge. However, the target value is reached or not
depending on the session duration. For short transmis-
sions, the steady state of OLLA may not be reached and
the modulation ramp-up is not long enough to compen-
sate the initial setting of the algorithm. As a consequence,
Ses_Thp will be negatively impacted. To avoid this prob-
lem, short data sessions should be removed from the
dataset. Specifically, the event parameter available in the
tracing system that measures the time to transmit a data
burst excluding the last TTI can be used for this pur-
pose [44]. Thus, those data sessions with this parameter
below a certain threshold (set to 1500 ms in this work) are
removed from the considered datasets.
While Ses_Thp is a measurement of the per-user QoS,

the rest of metrics presented in Table 2 are measurements
that describe the channel conditions in the radio envi-
ronment for each UE. An estimation of the cell load in
the downlink and uplink is given by Num_UE_MHz_DL
and Num_UE_MHz_UL, respectively. They represent the
mean number of UEs considered active in the correspond-
ing link per TTI, calculated over one measurement period
(2 s) and normalized by the cell bandwidth. Formally, it
can be formulated as:

Num_UE_MHz_xL = Num_UE_xL
Cell_BW

, (2)

where x is “D” or “U” depending whether it is related to the
downlink or the uplink, Num_UE_xL indicates the mean
number of active UEs in the cell and Cell_BW expresses
the cell bandwidth in MHz. The denominator can be
obtained from the configuration management functional
area, and the numerator is taken from an internal trace
event in the cells. This event reports information about
the cell traffic. It can be expected that a congested area
would simultaneously lead to a high value of both down-
link and uplinkmetrics (Num_UE_DL andNum_UE_UL).
This effect is represented by the squared Pearson corre-
lation coefficient (r2) calculated for these two metrics, as
shown in Fig. 2a. However, there are also frequent sit-
uations where only one link is congested, as illustrated
in Fig. 2a, where the samples of dataset 1 (considering
only cells with 10 MHz bandwidth) are represented. This
means that the two metrics are meaningful from the diag-
nosis perspective. The metrics have also been normalized
by the cell bandwidth since today’s LTE network deploy-
ments may have cells with different bandwidths, mean-
ing that cells with higher bandwidth will provide higher
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a c

b

Fig. 2 Analysis of the mean number of active UEs in a cell: a Correlation between the downlink and uplink. b, c Impact of the cell bandwidth

user throughput and support higher number of users. In
Fig. 2b, c, the mean number of active UEs against the ses-
sion throughput is represented in two cases: when the cell
bandwidth is omitted, Fig. 2b, and when it is included in
the definition, Fig. 2c. In the first case, given a number of
active UEs, there is a big difference in Ses_Thp between
cells with different bandwidth. Conversely, in the latter
case, the values are very similar. For this reason, the cell
bandwidth has been considered in the definition of cell
load according to (2).
Another kind of metrics is related to the measurement

of the signal strength. In the downlink, it is given by the
Reference Signal Received Power (RSRP), defined as the
average power of resource elements that carry cell spe-
cific reference signals over the entire bandwidth. RSRP
levels typically range from around −75 dBm (close to
an e-NodeB) to −120 dBm (at the cell edge). In the
uplink, the information is taken from a trace event that
reports the number of transport blocks on the Medium
Access Control (MAC) level that are scheduled in the
uplink, distinguishing between two cases. In particular,
one is when the UE was considered to be power limited
(counted by Sched_TP_Restr_Pwr) and another is when
the UE was not limited in terms of power (counted by
Sched_TP_Unrestr_Pwr). Based on these event parame-
ters, the Restr_Pwr_Ratio is defined as follows:

Restr_Pwr_Ratio [ %]

= 100 × Sched_TP_Restr_Pwr
Sched_TP_Unrestr_Pwr + Sched_TP_Restr_Pwr

.

(3)

A high value of this metric may represent a situation
where the UE suffers from a lack of coverage since the UE
is transmitting with the maximum power.
Finally, the measurement of the signal quality provides

additional information of the radio environment, since it
includes the interference component. In the downlink, it
is given by the Reference Signal Recieved Quality (RSRQ),
defined as:

RSRQ = L × RSRP
RSSI

, (4)

where RSSI is the average total received power including
the intra-cell power, interference, and noise, and L is the
number of resource blocks over which the RSSI is mea-
sured (typically equal to the cell bandwidth). While the
RSRP and RSRQ are reported by the UEs, the RSSI can
simply be computed from RSRP and RSRQ. The range of
RSRQ is normally from −19.5 to −3 dB.
In the uplink, an estimation of the signal quality is

obtained from a trace event that reports the number of
successful and unsuccessful transmissions at the hybrid
automatic repeat request (HARQ) level in the uplink
direction. The failed transmissions at the HARQ level are
detected by means of a cyclic redundancy check (CRC).
The provided information is also collected for each mod-
ulation format that is chosen by the UE. In this work,
the statistics related to the quadrature phase-shift keying
(QPSK) modulation have been considered since this mod-
ulation is typically used under the worst radio conditions.
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Thus, from these event parameters, the following metric
has been defined:

HARQ_Fail_Ratio [ %]

= 100 × HARQ_Fail_QPSK
HARQ_Succ_QPSK + HARQ_Fail_QPSK

.

(5)

whereHARQ_Succ_QPSK andHARQ_Fail_QPSK are the
number of successful and failed transmissions, respec-
tively, at the HARQ level in the uplink direction using the
QPSK modulation.
To avoid certain dependence of performance evaluation

on the datasets and, thus, facilitate the application of the
proposed method to any LTE network, it is observed that
the usedmetrics are not influenced by the network config-
uration. For example, the indicator to measure the traffic
load is given per unit of bandwidth to avoid dependence
on the system bandwidth. In addition, it is important that
the number of considered cells (i.e., the network’s size)
in the datasets is large to include a significant number of
faulty cells. Finally, note that the lack of data for any of the
above described metrics in a few cells of a large network
is a common situation, e.g., because the corresponding
trace events have been erroneously deactivated. For this
reason, as part of the data pre-processing, the cleaning
function copes with incomplete and incorrect samples in
the dataset. In this work, to avoid having inconsistent data,
the entries (sessions) in the dataset with missed values are
removed.

4.2 Construction of the classification tree
Traditionally, the RAN has been the bottleneck for data-
hungry services. From the perspective of the QoS, it
is important to identify if any degradation in the user
throughput is due to the radio environment. The proposed
classification tree aims at determining the root cause of
abnormally low throughput values in user data sessions.
This problem is addressed in the context of unsuper-
vised learning since the training dataset is composed of
unlabeled data, i.e., the root cause is a priori unknown.
Considering a sufficient number of varied samples in a cel-
lular network, the main problems related to radio aspects,
such as congestion, lack of coverage and interference in
either downlink or uplink, can be found in the given
dataset. These root causes are determined by establishing
adequate thresholds to radio KPIs. In the present section,
the structure of the binary classification tree is proposed,
while in the next section the adjustment of the thresholds
is covered.
To better understand the binary classification problem,

let� be the population of a training dataset,X1,X2, . . . ,Xq
be the set of q selected KPIs and C be the target attribute

that indicates the root cause and takes only a finite num-
ber of different values, i.e., C = {c1, c2, . . . , cq+1}, where
c1 represents the normal behavior and q is the num-
ber of potential faults. Note that q + 1 categories can
be distinguished using a binary classification tree with
q KPIs. The goal of the tree is to generate a model
φ(X1,X2, . . . ,Xq) in the form of a decision tree for pre-
dicting the value of C from the values taken by the
predictive variables. The solution is obtained by partition-
ing the � space into q + 1 disjoint sets, A1,A2, . . . ,Aq+1.
Thus, given a member of the space � denoted by ω,
the predicted value of Y is cj if ω belongs to Aj. The
construction of the tree is based on iteratively splitting
the dataset at each step by using one of the predictive
attributes, X1,X2, . . . ,Xq. In this work, a binary partition
of the attributes is assumed since each attribute can be
represented by two states, corresponding to normal and
anomalous values. In most cases, one of the two children
of the node will be a leaf node representing a specific prob-
lem. In addition, the nodes of the tree (referred to as sj)
obtained at each step t of the growing process define a
partition that becomes finer with t. To make a binary par-
tition, the logical operator “<” is used to compare each
metric to a given threshold.
Figure 3 shows the logic of the proposed classification

tree. Internal nodes and leaf nodes are colored in gray and
white, respectively. The first partition of the tree, L1, acts
as a detection step where data sessions with poor values
of throughput are separated from those whose values are
good. Thus, as illustrated in Fig. 3, the first leaf-node s1
represents the group of data sessions with acceptable QoS,
while the other branch of the split (i.e., node s2) is subject
to further analysis. As observed, the position of each vari-
able in the tree will determine the priority of each problem
in the diagnosis process. This establishes the way that
troubleshooting experts operate when simultaneous prob-
lems happen in a network cell. To decide which variables
are placed at higher levels in the tree, the statistical signifi-
cance of the variables with respect to the primary variable,
Ses_Thp, is first analyzed. More specifically, the predictive
variables are used to fit a linear regression model where
a set of coefficients are derived to describe the statisti-
cal relationship between Ses_Thp and the rest of KPIs.
Then, the p values of the t statistics are computed for each
coefficient in order to test the null hypothesis that the
coefficient is equal to zero. In other words, a predictive
variable Xj that has low p value is suitable to be included
in the regression model since the changes in the variable
are expected to be related to changes in Ses_Thp. On the
contrary, a larger p value indicates that the changes in
the predictive variables are not associated with changes in
the primary variable. Table 3 shows the p values for each
coefficient of the predictive variables in the linear regres-
sion model when 2000 samples from dataset 1 are used
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Fig. 3 Structure of the proposed binary classification tree

as input. In the downlink, two metrics result in p values
equal to zero, meaning that there exists a strong relation
between the user throughput and such metrics. For this
reason, in order to analyze the downlink user throughput
(Ses_Thp), the radio conditions in the downlink are eval-
uated first in the proposed tree. This is represented by
“DL diagnosis” in Fig. 3. After checking that the conditions
in the downlink are good, the radio environment is then
analyzed in the uplink (see “UL diagnosis” in the figure).
For each link direction, the decision flow in the tree is
started by checking the traffic load (nodes s2 and s5),
because the p value obtained for Num_UE_MHz_xL is
zero in both link directions. The next conditions to be
evaluated are those related to coverage and quality issues.
In the downlink, it is observed that RSRQ is notably more
correlated to Ses_Thp than RSRP since there is a big dif-
ference between their p values. As a consequence, the
RSRQ is used in the node s3 to separate UEs with coverage
and quality issues from those with good radio conditions
in the downlink. The first group of UEs, related to node
s5, are further diagnosed by analyzing the uplink through
a decision flow that, for simplicity, is similar to the one
applied in the downlink. The second group of UEs, related

Table 3 The p-values of the predictive variables

Metric p value Related root cause Link direction

Num_UE_MHz_DL 0.0 Congestion Downlink

RSRP 7.5e − 3 Lack of coverage Downlink

RSRQ 0.0 Interference Downlink

Num_UE_MHz_UL 0.0 Congestion Uplink

Restr_Pwr_Ratio 1.7e − 12 Lack of coverage Uplink

HARQ_Fail_Ratio 3.9e − 7 Interference Uplink

to node s6, are separated by using the RSRP with the aim
of distinguishing UEs having a lack of coverage from those
suffering from interference. Finally, in Fig. 3, there is one
leaf node (s11) representing the group of UEs that, having
low values of Ses_Thp, are not associated to any of the con-
sidered root causes. This kind of UEs has been labeled as
“Unknown” meaning that the root cause of their problem
is not known.
Perturbation from external systems may produce false

or very biased values of the metrics. However, this nor-
mally happens in a small number of UEs/cells compared
to the size of the analyzed cell cluster/network. Thus,
the “Normal” UE class and cell profile can be properly
determined by the proposed method. If the external per-
turbation degrades the throughput but it does not pro-
duce any effect on the selected metrics, then the cause
of this perturbation will be identified as “Unknown” by
the system. On the contrary, if one or more selected
metrics are degraded, then the system will probably
produce diagnostic errors. Lastly, in case of a global
impact of the perturbation, the expert team should be
responsible for monitoring and troubleshooting this kind
of problems.
The adjustment of each threshold thj present in the

classification tree is addressed in the next section. In par-
ticular, the thresholds from th2 to th7 are configured by
calculating a certain percentile of data, given that degra-
dation is associated to extreme values of the indicators.
After this, the data distribution over the classes is ana-
lyzed for different values of th1. Based on this analysis, th1
is configured.

4.3 Adjustment of the thresholds
The binary classification tree performs test on numeric
features to divide the data into two groups: those whose
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values for the variable are less than a threshold and
those whose values are greater than or equal to the given
threshold. Thus, the configuration of the thresholds deter-
mine the data distribution over the different rootcauses.
The metrics placed in higher levels of the tree will have
greater impact on the overall data distribution. In partic-
ular, the metric Ses_Thp, located at the top of the tree
and used for detection purposes, affects the distribution
of all the considered root causes. This variable, which
is not related to a single problem, requires some practi-
cal experience to define the corresponding threshold. The
problem of defining low/abnormal values of throughput is
not straightforward, as it depends onmany aspects such as
the radio access technology or the user perception. Thus, a
sensitivity analysis is needed to evaluate the overall impact
on the diagnosis process. Conversely, the rest of variables
in the tree are related to specific problems. To calculate
the thresholds for such variables, an automatic technique
referred to as Percentile-Based Discretization (PBD) [45]
is used. In particular, each threshold is set to the Xth per-
centile of all the values of the corresponding metric in
the dataset. Such a percentile represents an estimation of
the percentage of data samples considered to be degraded
over the total, assuming that the worst values of each vari-
able most likely correspond to UEs having the associated
problem. For example, UEs with bad RSRP are assumed to
have a lack of coverage. The PBD technique is applicable
when the training dataset is large enough to be statisti-
cally meaningful (as it is the case of the datasets used in
this work), including not only the well-performing UEs
but also the problematic UEs. Thus, the thresholds from
th2 to th7 are adjusted by computing a certain percentile
of the data.
Table 4 shows the corresponding percentiles for each

metric of the datasets used in this work. Typically, if the
metric is degraded by reaching high values, the 80th per-
centile has been selected. On the contrary, if degradation
is given by the lower part of the range, the 20th per-
centile is taken. Note that the selected percentiles are not
extreme values since there can be different levels of the
magnitude of the problems. It is observed that the calcu-
lated percentiles, especially for the measurements RSRP
and RSRQ, are similar to those used by troubleshooting

experts in practice. In addition, the obtained values are
similar over the different datasets. Only dataset 4 reflects
a notable deviation in the RSRQ values since its greater
cell bandwidth has resulted in lower inter-cell interference
conditions. Finally, note that the thresholds from th2 to
th7 in the classification tree will be those derived from
the PBDmethod, depending on the specific dataset. Thus,
each dataset has its own set of thresholds to be used in the
classification tree.
Once the mentioned thresholds have been adjusted,

the sensitivity analysis of th1 can be performed. Figure 4
shows the distribution in percentage of the data sessions
over the root causes for each dataset with cell bandwidth
equal to 10 MHz. The distributions are represented for
three different values of th1. As observed, results between
datasets 1 and 2 are quite similar in general. Compared
to them, dataset 3 presents some differences in specific
classes. In particular, the percentage of data sessions for
the Normal class in dataset 3 is higher than in datasets 1
and 2, while the percentage of data sessions experiencing
congestion in the downlink in dataset 3 is lower than in
datasets 1 and 2. This observation reveals that the network
in dataset 3 is less loaded and, as a consequence, better
QoS is provided to the UEs. However, when th1=10 Mbps
is used, the differences between datasets in the percentage
of Normal UEs are significantly reduced. This is mainly
because of an increase of the percentage of UEs suffer-
ing from interference and UL congestion in dataset 3.
Thus, setting th1 to 10 Mbps would lead to similar dis-
tributions between normal and abnormal cases for the
given datasets. Themain disadvantage of using this setting
is that the percentages of normal cases are significantly
low, specifically below 20%, while the percentage of data
sessions with unknown root cause is above 25%. Obvi-
ously, this represents a pessimistic view of the network
status and may block the detection of those problems
with major impact on QoS. On the contrary, the setting
with the lowest tested value, th1=2 Mbps, provides distri-
butions where some fault classes are empty. This is also
a bad choice provided that all the considered problems
should be present in large datasets even in a small propor-
tion. For these reasons, the setting th1=5 Mbps has been
selected in this work to providemore effective diagnosis of

Table 4 Defined thresholds based on the Xth percentile of the metrics for each dataset

Metric Xth -ile Dataset 1 Dataset 2 Dataset 3 Dataset 4 Units

Num_UE_MHz_DL 80 0.4 0.7 0.2 0.2 [UE/MHz]

RSRP 20 −118.0 −111.5 −112.1 −113.4 [dBm]

RSRQ 20 −18.0 −16.5 −17.5 −13.7 [dB]

Num_UE_MHz_UL 80 0.4 0.7 0.3 0.2 [UE/MHz]

Restr_Pwr_Ratio 80 99.0 98.7 99.9 99.8 [%]

HARQ_Fail_Ratio 80 10.4 9.2 16.0 13.4 [%]



Muñoz et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:130 Page 11 of 20

a

b

c

Fig. 4 Sensitivity analysis of th1 for datasets with the same (10 MHz) cell bandwidth. a th1 = 2 Mbps. b th1 = 5 Mbps. c th1 = 10 Mbps

the radio problems. In this sense, note that the Unknown
class includes the UEs with bad QoS due to non-radio
issues. Since most UEs are accessing to Internet services,
the contribution to this class should be important. With
the proposed threshold, the percentage of data sessions
whose root cause is unknown remains relatively high but
in a lesser extent than the Normal class, as expected.
Finally, Fig. 5 shows a comparison of the data distribu-

tion over the classes between the datasets with different
values of cell bandwidth. The analysis is also made for
each value of th1 previously analyzed. As expected, there
is a clear trade-off between the cell bandwidth (related to
capacity) and the QoS of the data sessions. In particular,
the higher the cell bandwidth, the higher the percentage
of UEs belonging to the ‘Normal’ class is expected to be.
On the one hand, it is noted that the main affected root
cause due to a change in the cell bandwidth is congestion,
while the data distribution over the rest of root causes
is not significantly impacted. Thus, the proposed classi-
fication tree effectively establishes a relation between the
cell bandwidth and congestion issues: a high contribution
of the classes related to congestion suggests that there is
a lack of extra bandwidth. On the other hand, the same
tendency is observed regardless of the specific value of

the analyzed threshold, th1. Thus, the optimal setting for
th1 previously selected can be applied to scenarios with
different cell bandwidth.

4.4 Cell-level correlation-based diagnosis
The final cause of the problem in a specific UE can be very
diverse, especially when it connects to Internet. Abnor-
mally low values of throughput can be registered, for
example, when a router in the core network is malfunc-
tioning, the server is overloaded or when an application
in the UE is crashing. In this paper, the previous sections
have proposed a practical system with the aim of deter-
mining the root cause of problematic data sessions when
their radio conditions are not favorable. This means that
isolated problems (such as the previously mentioned) are
not considered in this work. On the contrary, the final goal
of the proposed method is the diagnosis of problems in
the radio environment that affect a significant number of
UEs. More specifically, the diagnosis made for every UE
is used to find localized problems in network cells. This is
achieved by defining cell profiles (explained later), which
represents the distribution of the diagnosed UEs over the
predefined fault classes. Then, the comparison between
different cell profiles using correlation techniques allows
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Fig. 5 Sensitivity analysis of th1 for datasets with different cell bandwidth. a th1 = 2 Mbps. b th1 = 5 Mbps. c th1 = 10 Mbps

identifying problematic cells. This differs from traditional
approaches where individual measurement samples are
aggregated in a non-selective way at the cell-level to pro-
vide the diagnosis. The main benefit of the proposed
method is that the performance of the problematic UEs
is not biased by the performance of the dominant UEs
in a cell, since the diagnosis is first made at the user
level. Essentially, the method is composed of five steps
represented in Fig. 6.
The first step of the proposed method is to apply the

binary classification tree to every UE in a certain cell in
order to obtain the diagnosis at the user level. After this,
the percentage of UEs having a specific issue (i.e., those
UEs belonging to a certain class in the tree) is computed.
In particular, the following cell-level indicator, denoted
as ξ kj , is calculated for each class j in every cell k of the
scenario:

ξ kj [ %]= 100· |Ak
j |

∑q+1
i=1 |Ak

i |
, ∀ j = 1, 2, . . . , q+1. (6)

where Ak
j is the set of data sessions associated to class j

and served by cell k.
Once the above indicator is computed for the q + 1

classes, the profile of a cell k is determined by the tuple
ξ k =

{
ξ k1 , ξ

k
2 , . . . , ξ

k
q+1

}
. A visual representation of the

cell profile provides an effective means of diagnosing
cells. For example, in the case of cells without problems,
the value of ξ is expected to be high for the Normal
class and low for the rest of (fault) classes. However, this
can be an overly simplistic view of the diagnosis pro-
cess. Specifically, the profile of a healthy cell depends
on many factors and it may vary from one network to
another. To explain this, Fig. 4b can be seen as a rep-
resentation of the profile of a network, in a similar way
to cell profiles. Then, a close examination of this figure
reveals that, although the UEs without problems are the
dominant class in the network, there are still significant
differences in the profiles between the different datasets.
For example, the levels of interference in healthy cells
of dataset 3 are expected to be higher than in the other
two datasets. This does not necessarily mean that most
cells of dataset 3 suffer from interference issues, rather
it is merely an indication of the overall radio conditions
in the network. For this reason, cell profiles should be
adapted to every network in order to provide a better
diagnosis.
Based on the above explanation, the next step of the

method (Fig. 6) is the creation of the Reference Cell Pro-
files (RCPs). There exists one RCP that represents the
faultless or normal behavior of a cell in the considered
network, referred to as ξnormal. Additionally, other RCPs
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Fig. 6 Block diagram of the proposed cell-level correlation-based
algorithm

for faulty situations
(
e.g., ξDL_Cong, ξDL_Cov

)
can be gener-

ated. The main problem is that the RCPs must be created
in an unsupervised manner because the actual perfor-
mance of each cell (normal or faulty) is unknown. Cluster-
ing methods are useful to discover the most frequent cell
profiles existing in the datasets. In this paper, data cluster-
ing is carried out by using the well-known k-means algo-
rithm, which is the most popular clustering tool used in
scientific and industrial applications. However, the RCPs
can also be obtained by using other clustering methods,
such as Self-Organizing Maps (explained later).
The k-means algorithm partitions the dataset into k

clusters. Such a partition minimizes the sum of discrep-
ancies between a point and its centroid expressed through
appropriate distance (in this case, Squared Euclidean dis-
tance is used). Each cluster is represented by the mean
(or weighted average) of its points, i.e., the so-called cen-
troid. In this work, each centroid represents a RCP. The
mechanism to choose the initial positions of the cluster
centroids is based on randomly selecting k observations

from the dataset. Then, the algorithm iteratively executes
three steps until convergence is reached: first, the distance
of one data point to the centroids is calculated; second,
the class label of the cluster centroid having the mini-
mum distance is set to the given point; third, the centroids
are updated based on the assignment. The convergence
is reached when the partitioning error is not reduced by
the relocation of the centroids or the maximum number
of iterations allowed is reached. The number of clusters
k establishes how many RCPs are identified. This num-
ber must be at least equal to the number of categories that
have been defined in the classification tree for the user
diagnosis (i.e., q + 1). A greater value of k can be used
to identify new RCPs that would be associated by trou-
bleshooting experts to one of the given categories. Note
that an excessively high value might lead to wrong associ-
ations between the RCPs and the fault categories. For this
reason, the value of k has been set to 12.
Table 5 shows the results of applying the k-means algo-

rithm to dataset 1. Each row represents one obtained
RCP or centroid. The first column is the identifier of the
RCP, the second column shows the category assigned to
the RCP, which can be the normal state or a fault, and
the last columns provide the percentage of UEs associ-
ated to a specific issue for the given RCP. It is observed
that RCPs from 1 to 8 are associated to categories where
the dominant diagnosis at the user level corresponds
to the labeled category at the cell-level. More specifi-
cally, RCP 1 is linked to the normal state, since not only
the percentage of well-performing UEs is the highest,
but also the percentage of UEs for the rest of (faulty)
categories is very low. In line with the network profile
represented in Fig. 4b, the second dominant category
in RCP 1 is Unknown. This means that a cell normally
has a tolerable percentage of abnormal UEs, labeled as
Unknown, under normal cell conditions. RCPs from 2 to
8 are mainly related to specific problems, having a large
percentage of UEs experiencing the dominant problem,
but also a small percentage of UEs belonging to Normal
and Unknown categories. Such particular distributions
between categories, which varies among datasets, is an
interesting reason to create specific RCPs to every net-
work. Another reason comes from analyzing RCPs from
9 to 12, where it is observed that the Normal (and in
many cases Unknown) category achieves similar levels to
a certain fault category. Recall that the parameter k has
been configured in order to find a reasonable number of
these situations. This set of RCPs represents the most dif-
ficult faulty situations to be identified by the diagnosis
system since the problematic UEs are not a clear domi-
nant group within the coverage area of the affected cell.
Moreover, in these cases, using traditional KPIs (i.e., cell-
level measurements) may not be enough to identify the
problem.
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Table 5 Set of RCPs obtained by applying k-means with k=12

ξi [%]

No. of Labeled Normal DL Cong DL Cov DL Int UL Cong UL Cov UL Int Unknown
RCP categ. ci (i=1) (i=2) (i=3) (i=4) (i=5) (i=6) (i=7) (i=8)

1 Normal 98.41 0.07 0.16 0.28 0.03 0.15 0.11 0.78

2 DL Cong 4.38 92.65 0.13 0.51 0.85 0.13 0.18 1.17

3 DL Cov 11.24 0.10 65.25 6.12 1.84 5.55 1.90 8.00

4 DL Int 0.80 0.00 0.85 93.38 0.66 0.16 0.71 3.44

5 UL Cong 3.59 3.24 1.21 3.71 85.23 0.98 0.51 1.54

6 UL Cov 3.66 0.00 0.78 2.03 1.06 86.83 1.22 4.43

7 UL Int 2.87 0.00 0.99 4.39 0.00 5.90 83.13 2.73

8 Unknown 1.77 0.03 0.25 0.67 0.08 0.35 0.32 96.54

9 DL Int 40.44 0.58 2.35 39.28 1.58 1.95 1.84 11.98

10 DL Int 7.96 2.48 4.51 17.30 1.71 11.13 8.35 46.57

11 UL Cov 53.69 6.05 2.30 1.73 8.19 15.40 7.77 4.87

12 Unknown 51.31 0.37 1.45 1.38 0.38 2.25 1.14 41.72

The next step of the proposed method is the calculation
of a correlation coefficient that measures the similarity
between a given cell profile and a reference cell profile.
Specifically, the Pearson’s correlation coefficient has been
used in this work. Its possible values are in the range −1
to +1, indicating high linear correlation when it is close
to any of those values. The plus sign represents positive
correlation between the variables, while the minus sign
indicates negative correlation. The Pearson’s correlation
between the cell profiles ξ k and ξ ref , referred to as ρk,ref ,
can be calculated according to this formula:

ρk,ref

=
∑q+1

j=1 ξ kj ξ
ref
j − (q + 1) ξ k ξ ref

√(
∑q+1

j=1

(
ξ kj

)2−(q+1)
(
ξ k

)2
)√(

∑q+1
j=1

(
ξ
ref
j

)2−(q+1)
(
ξ ref

)2
)

(7)

where ξ k (and similarly ξ ref ) is computed as:

ξ k = 1
q + 1

q+1∑

j=1
ξ kj . (8)

To improve the accuracy of the proposed system, the
cells are filtered before providing the final diagnosis. The
filtering module is composed of two filters. First, the cells
are filtered by the number of data sessions that have been
used to compute their cell profile. Note that the cells with
a low number of data sessions have been used to build
the RCPs. Since this group of cells can be large in the
dataset, they can provide (on average) meaningful infor-
mation to discover frequent patterns. However, these cells
are not adequate to be individually diagnosed since their

cell profiles may not be statistically significant. For exam-
ple, several UEs in a cell could provide an abnormal cell
profile if these UEs are all located at the cell edge. Thus,
cell k is considered for diagnosis only if the condition
Dk > Dth is fulfilled, where Dk is the number of data ses-
sions in cell k and Dth is a configurable threshold of the
filter. Second, the cells are also filtered by their correlation
value obtained in the previous step of the method. This
filter would act as a detection stage in order to discard the
cells whose profile is not similar to any of the RCPs and,
as a consequence, they cannot be correctly diagnosed. It
might happen that a cell profile is given by a high con-
tribution of two or more fault classes. In such cases, the
proposed system is not capable of providing a diagnosis
and they should be analyzed by troubleshooting experts
in order to determine whether the source of the problem
is the same or not and, if not, to solve the problems inde-
pendently. Thus, cell k is considered for diagnosis only
if the condition ρk,ref < ρth is satisfied, where ρth is a
configurable threshold.
Lastly, once the cells have been filtered, the diagnosis at

the cell level is computed. For cell k, the diagnosis is given
by the RCP having the highest correlation to the cell pro-
file of cell k. More specifically, the root cause ci associated
to that RCP is the diagnosis for the given cell.

5 Performance evaluation
In this section, the proposed method is evaluated and
compared to other referencemethods. To this end, dataset
1 is used due to its larger number of data sessions com-
pared to the other datasets. In addition, the filters of
the proposed system have the following configuration:
Dth = 8 data sessions and ρth = 0.70.
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The methods are evaluated by using a key metric in
diagnosis referred to as Diagnosis Success Rate (DSR).
It is estimated as the ratio between the number of well-
diagnosed cells and the total number of cells. Note that,
to calculate the proportion of observations correctly
diagnosed, the real root cause, or “label” associated to
the observed cell, must be known. This labeling has
been carried out in this paper by applying the rules
that troubleshooting experts use to diagnose faults
in their networks. Such rules, manually derived from
experience, are verified by means of the inspection
personnel that is in charge of checking the status of the
affected network elements, either remotely or on-site.
Thus, these labeled data have been used as reference
to calculate the diagnose success rate of the evaluated
methods.
To benchmark the proposed method, the results are

compared to baseline methods based on previous work.
On the one hand, regarding the user diagnosis, the pro-
posed method (i.e., a classification tree) is compared to
other approaches that are based on the following machine
learning techniques:

• The k-means clustering: as explained in the previous
section, this technique is used to partition the data into
a number of clusters. In this case, the data sessions
(regardless of the serving cell) are the input samples
to be divided into various clusters. Then, each clus-
ter is analyzed by experts and labeled with the normal
state or one of the considered faults as in the classi-
fication tree. In this way, users belonging to a certain
cluster share the same diagnosis. The result of this
process (i.e. the user diagnosis), which is equivalent
to that obtained from applying the classification tree,
can be used for cell diagnosis. The k-means clustering
has previously been applied to fault detection in the
context of wireless networks [46].

• The self-organizing map (SOM): it is a type of Neural
Network used for clustering. The methodology is sim-
ilar to the k-means algorithm, since both are example
methods of unsupervised learning. The approach fol-
lowed in this paper is explained in [8], with the differ-
ence that the diagnosis in [8] is carried out by using
traditional KPIs, while in this case call traces are used.

On the other hand, regarding the cell diagnosis, the pro-
posed method (that uses k-means to generate RCPs and
Pearson’s correlation coefficient to compute cell diagno-
sis) is compared to the method presented in [38]. Such
a method requires manual adjustment of several thresh-
olds and configurable parameters. Its operation is divided
into two stages, as follows. In the first stage, problem-
atic cells are detected by comparing the percentage of
well-performing UEs to a certain threshold. Then, in the

second stage, the cells detected as faulty cells in the pre-
vious stage are diagnosed only if the percentage of UEs
related to at least one fault is above a threshold. In that
case, the selected fault is the one with the largest percent-
age of UEs having the same fault in the cell. Although
the method is mainly based on selecting the most domi-
nant fault (i.e., the one having the maximum percentage
of UEs), note that the particular distribution of UEs (e.g.,
in Normal and Unknown categories) is key in the diagno-
sis process. Hereafter, the state-of-the-art method in [38]
is referred to as ‘Max,’ as opposed to the correlation-based
approach.
Note that the methods for user diagnosis can be inter-

changeably combined with the methods for cell diagnosis.
All these combinations have been implemented for evalu-
ation. Lastly, a reference method for cell diagnosis is based
on applying the classification tree to traditional (cell level)
KPIs. To do this, the average per cell of the selected met-
rics is firstly calculated. Then, the binary classification tree
is applied to the obtained samples with the aim of deter-
mining the diagnosis. Note that the population � of the
input space is composed of the set of cells included in the
dataset rather than the carried data sessions. Thus, a dif-
ference with the proposed method is that only one fault
class is associated to a given cell. On the contrary, with the
proposed method, a distribution of data sessions over the
fault classes is provided for each cell, namely the cell pro-
file. A configuration parameter that both methods have
in common is Dth in order to focus only on cells with a
significant number of data sessions.
The first analysis is devoted to the user diagnosis.

Figure 7 shows the DSR obtained in each category for
the proposed (tree) and reference (k-means and SOM)
methods. The ‘Normal’ category is not included in this
figure since all data sessions with a throughput below th1
are labeled (as real cause) with a faulty state, thus in the
same way that the evaluated approaches. The last bars
provides the global DSR, which is obtained by aggregat-
ing the UEs from each category (rather than averaging
the DSRs). The values in brackets below each category
represent the number of data sessions whose real diag-
nosis corresponds to such a category. According to these
values, the dataset appears to be unbalanced, i.e. the num-
ber of samples varies greatly from one class to another.
This is a consequence of using real data where some
faults are more likely than others. It is observed that,
from a perspective of the clustering techniques, the small-
est class (“UL Int”) is more difficult to be identified than
others. However, the accuracy of the evaluation should
not be affected since the number of samples per class is
in the order of hundreds. A closer inspection of Fig. 7
reveals that the proposed method provides good DSR for
“DL Cong” since this problem is placed at the top of
the tree. This means that, in situations where DL Cong
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Fig. 7 Diagnosis success rate per class for user diagnosis methods

might be confused with other fault classes, the classi-
fication tree will select DL Cong as diagnosis. Another
class with very high DSR for the proposed method is
“UL Cov.” In this case, the good correlation between
the metric and the associated fault has led to a higher
DSR with respect to other classes, as occurred in the
reference methods. It is also important that the meth-
ods provide high DSR for the Unknown class, since the
addition of new faults in the diagnosis system will rely
on the accuracy of this class. Lastly, regarding the last
columns, it is noted that the proposed classification tree
outperforms the reference methods in the global DSR.
The main differences between the k-means and SOM
methods are related to DL Cong and “DL Int” classes.
Note that, since these two faults are closely related (i.e.
a congestion problem usually entails higher interference
levels), the bad DSR in DL Cong achieved by the k-
means method is counteracted with a good DSR in DL
Int. This issue is less pronounced in the case of the SOM
method.
The existence of noise into the metrics may affect the

performance of the user diagnosis. The PBDmethodmiti-
gates the impact of the bias into the selectedmetrics in the
same way as the purging methods. To analyze the impact
of the noise variance, a synthetic noise has been added to
the metrics. In particular, the noise is generated follow-
ing the Additive white Gaussian noise (AWGN) model.
The average of the AWGN is set to zero and the standard
deviation is set to 0.2 × σ , where σ is the standard devi-
ation of the metric data. Figure 8 shows the global DSR
obtained for each method in presence/absence of AWGN.
As observed, the greater the DSR is, the higher the impact
of the noise is on the performance. Consequently, the
most affected method is the proposed classification tree,

experiencing a decrease of about 5% with respect to the
case without AWGN.However, the obtained value (71.6%)
is still much greater than the value obtained by other
methods.
With respect to intermittent perturbation, e.g., due to

user mobility, the potential impact on the system perfor-
mance is very limited due to temporal and spatial diversity
factors. Specifically, in the time domain, the call traces are
collected during a large period (typically, 15 min). This
means that all the trace events and samples gathered dur-
ing this period are considered for the elaboration of the
metrics. Hence, this period is large enough to filter most
propagation effects. In the spatial domain, all the users
located in the service area of a cell contribute to determine
its diagnosis. Thus, if one user experiences an eventual
perturbation due to propagation effects, the users in other
locations of the cell will counteract it.

Fig. 8 Impact of noise on the global diagnosis success rate
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The following analysis is related to the cell diagnosis,
which is conducted based on the user diagnosis obtained
in the previous evaluation. To do this, the methods
“Max” and “Correlation” are combined with the previ-
ous methods, k-means, SOM and classification tree. Note
that, in the case of solutions that comprise the pro-
posed ‘Correlation’ method, a k-means clustering has
been applied in order to find adequate RCPs for corre-
lation. Figure 9 represents the DSR for such combined
approaches. The method that applies the classification
tree to cell-level KPIs is also included as a baseline. It
is observed that the solutions based on reference clus-
tering methods (i.e., k-means and SOM) provide worse
performance than the classification tree with cell-level
KPIs. This is mainly due to the bad user diagnosis that is
obtained in the first stage of the solution. Moreover, the
benefits of the proposed Correlation method are not evi-
dent using these solutions. If, on the contrary, the user
diagnosis is carried out by means of the classification tree,
the obtained DSR is better than applying the classification
tree to cell-level KPIs. However, it is essential to use the
proposed Correlation method in order to obtain a clear
advantage over the reference method.
To further explain this, Fig. 10 shows the DSR obtained

in each category for each method. As before, the values
in brackets represent the actual number of data sessions
in each category. It is observed that the amount of sam-
ples in some categories is scarce, so that the accuracy
of the evaluation can be affected, especially for UL Int.
The reason why Normal is not the dominant category
is that cells with a low number of carried data sessions
have been filtered. Due to the low number of served UEs,
this group of cells are not critical from a troubleshooting
perspective. Moreover, most of these cells belong to the

Normal category. Regarding the methods, it is noted that
using the classification tree with cell-level KPIs leads to a
worse diagnosis, especially for coverage and interference
issues. One reason is that the performance of the classi-
fication tree is more sensible to threshold settings when
applied to cell-level KPIs (instead of call traces), since
only one sample per cell is used. Another reason is that,
if the proportion of problematic UEs in the cell is small,
the abnormal values are hidden when the average over all
the UEs in the cells is calculated. This idea can also
be applied to the ‘Max’ method, since in some cases
the identification of faults is hindered by the dominance
of ‘Normal’ class, having the maximum percentage of
UEs. Therefore, it can be concluded that the proposed
system, based on a classification tree and a correlation-
based approach, providesmore accurate diagnosis to trou-
bleshooting experts than the baselines. In addition, under
the SON framework, an improved DSR will increase the
effectiveness of the subsequent stages in the process, such
as the fault compensation.
To evaluate the capability of detection of the proposed

method, the false positive and false negative rates have
been calculated. In particular, Fig. 11 shows this infor-
mation together with the number (in brackets) of data
sessions that are classified as false positives or false neg-
atives. As observed, the method based on a classification
tree and a correlation-based approach provides a bet-
ter trade-off between false positives and false negatives,
because the number of cases is similar in both cases (i.e.,
17 and 11). In addition, the number of false negatives is
much lower than in other methods.
The gain in accuracy achieved by the proposed method

is at the cost of increasing the operational complexity due
to the management of a larger amount of information,

Fig. 9 Global diagnosis success rate for cell diagnosis methods
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Fig. 10 Diagnosis success rate per class for cell diagnosis methods

given by the call traces. To estimate the computational
cost, let Ctree be the cost of executing the classification
tree. Its computation only requires elementary arithmeti-
cal operations, thus the complexity is O(n). Let Cprofile be
the cost of generating the cell profile, whose complexity is
alsoO(n), since it mainly comprises data aggregation. The
RCPs are not needed to be generated every time the cells
are evaluated for diagnosis, e.g. they can be obtained from
past evaluations in the same network. Thus, the compu-
tational cost of applying a clustering technique to find
RCPs is not considered in this estimation. Let Ccorr be the
cost of calculating the Pearson’s correlation coefficient for
two data arrays. In this case, the computational cost is
expected to be higher than Ctree due to the presence of the
square root, whose complexity is O(M(n)) if the Newton’s

Fig. 11 False-positive and false-negative rates

method is used. Lastly, let Ncell be the number of cells
in the dataset and Nsession be the average number of data
sessions per cell. Then, the complexity of the proposed
method is estimated as Ncell · (Nsession × Ctree + Cprofile +
Ccorr), while in the case of using traditional KPIs (i.e. cell-
level measurements), the estimated complexity is Ncell ×
Ctree. Although there are substantial differences in the
computational cost, however, with the current solutions
of Big Data and Edge Computing, the required complexity
is not an issue. In addition, the temporal restrictions asso-
ciated to cell diagnosis are not the same as those applied
to other network management functions such as packet
scheduling at the link layer, which typically are more crit-
ical. In particular, the time to collect cell traces, which
is defined by the Report Output Period (ROP), in gen-
eral is much larger than the required time to execute the
diagnosis method. The ROP is typically 15 min, while the
proposed classification tree is executed in the order ofmil-
liseconds to seconds, depending on the number of cells.
Thus, the rate at which the diagnosis system is fed with
measurements is much slower than the required time to
compute the diagnosis.

6 Conclusions
Mobile operators have focused their attention in improv-
ing the user satisfaction for data services in their net-
works. In an IP world, a user connection experiencing
low throughput can be given by many factors. The RAN
is commonly the critical segment of the end-to-end path
that affects the service integrity due to the limited amount
of resources available in the radio interface. The correla-
tion between the user throughput and the related radio
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conditions has been investigated in this paper with the
aim of root-cause analysis. The study has been carried out
through the use of large datasets collected from mature
real networks.
More specifically, a diagnosis system has been devel-

oped to identify the most common radio causes that may
impact user throughput. It takes advantage of the mea-
surements that are collected per UE-basis as opposed to
traditional counters and KPIs given on a cell-basis. The
proposed system is based on a binary classification tree
that is used to diagnose every data session in a cell. This
tree allows the identification of data sessions suffering
problems related to congestion, coverage or interference
in either the downlink or the uplink from a set of met-
rics that have been carefully obtained considering some
aspects such as the cell bandwidth and the data ses-
sion duration. The diagnosis for each data session is then
aggregated at the cell-level to provide a cell status (profile).
After this, the set of cell profiles is then compared to sev-
eral reference cell profiles in order to find anomalous cells.
Such reference cell profiles has been previously generated
by applying clustering techniques, e.g., the k-means. The
comparison between cell profiles is made by calculating a
correlation coefficient which is then used to determine the
diagnosis of the cell.
Results show that the proposed system does not require

a thorough adjustment of thresholds such as in other
approaches, since the reference cell profiles automatically
includes the particular characteristics of each network.
Regarding the user diagnosis, the proposed method has
been compared to other common clustering methods. It
has been shown that the priority given by the proposed
classification tree to the faults provides better accuracy
in the diagnosis. With respect to the cell diagnosis, it has
been shown that the performance of a small group of
UEs experiencing poor radio conditions may be hidden
by the dominant user performance in a cell. Due to this,
the accuracy of the baselines is negatively affected. Con-
versely, the proposed method, by means of the generated
RCPs, provides a better diagnosis for this kind of situa-
tions. Such an improvement leads troubleshooting experts
to take appropriate recovery actions to solve the faults.
In addition, the proposed method can be applied to

other radio access technologies since the thresholds for
the metrics in the classification tree are calculated using
percentiles. Considering that degradation is associated to
extreme values of these metrics, the thresholds are auto-
matically adapted to the radio access technology of the
dataset. However, beyond the particular range of the met-
rics, it is important that the metrics are equivalent to
those utilized in this paper in order to detect the consid-
ered faults. For example, to identify the problem of lack
of coverage, a metric related to the signal strength should
be used.

Further work is required to identify, in an automated
manner, what values of throughput are considered to
be abnormally low in a certain network based on other
metrics. In particular, to calculate the threshold for the
throughput metric, automatic learning techniques can be
applied to the datasets, replacing the sensitivity analysis.
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