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Abstract

We study the fundamental limits of communications over multi-layer wireless networks where each node has only
limited knowledge of the channel state information. In particular, we consider the scenario in which each
source-destination pair has only enough information to perform optimally when other pairs do not interfere. Beyond
that, the only other information available at each node is the global network connectivity. We propose a transmission
strategy that solely relies on the available limited knowledge and combines coding with interference avoidance. We
show that our proposed strategy goes well beyond the performance of interference avoidance techniques. We
present an algebraic framework for the proposed transmission strategy based on which we provide a guarantee of
the achievable rate. For several network topologies, we prove the optimality of our proposed strategy by providing
information-theoretic outer-bounds.

1 Introduction
In dynamic wireless networks, optimizing system effi-
ciency requires channel state information (CSI) in order
to determine what resources are actually available. This
information is acquired through feedback channel which
is subject to several constraints such as delay, limited
capacity, and locality. Consequently, in large-scale wireless
networks, keeping track of the channel state information
for making optimal decisions is typically infeasible due to
the limitations of feedback channels and the significant
overhead it introduces. Thus, in the absence of centraliza-
tion of channel state information, nodes have limited local
views of the network and make decentralized decisions
based on their own local view of the network. The key
question is how optimal decentralized decisions perform
in comparison to the optimal centralized decisions.
In this paper, we consider multi-source multi-

destination multi-layer wireless networks, and we seek
fundamental limits of communications when sources
have limited local views of the network. To model local
views at wireless nodes, we consider the scenario in
which each source-destination (S-D) pair has enough
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information to perform optimally when other pairs do
not interfere. Beyond that, the only other information
available at each node is the global network connectivity.
We refer to this model of local network knowledge as
1-local view [1]. The motivation for this model stems
from coordination protocols such as routing which
are often employed in multi-hop networks to discover
source-destination routes.
Our performance metric is normalized sum capacity

defined in [2] which represents the maximum fraction of
the sum capacity with full knowledge that can be always
achieved when nodes have partial network knowledge. To
better understand our objective, consider a multi-source
multi-destination multi-layer wireless network. For each
S-D pair, we define the induced subgraph by removing
all other S-D pairs and the links that are not on a path
between the chosen S-D pair. Our objective is to deter-
mine theminimumnumber of time slotsT that is required
for each S-D pair to reconstruct any transmission snap-
shot in their induced subgraph over the original network.
Normalized sum capacity is simply equal to one over T.
Our main contributions are as follows. We propose an

algebraic framework that defines a transmission scheme
that only requires 1-local view at the nodes and com-
bines coding with interference avoidance scheduling. The
scheme is a combination of three main techniques: (1) per
layer interference avoidance, (2) repetition coding to allow
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overhearing of the interference, and (3) network coding to
allow interference neutralization.
We then characterize the achievable normalized sum

rate of our proposed scheme and analyze its optimal-
ity for some classes of networks. We consider two-layer
networks: (1) with two relays and any number of source-
destination pairs, (2) with three source-destination pairs
and three relays, and (3) with folded-chain structure
(defined in Section 5).We also show that the gain from our
proposed scheme over interference avoidance schedul-
ing can be unbounded in L-nested folded-chain networks
(defined in Section 5).
A related line of work was started by [3] which assumes

wireless nodes are aware of the topology but not the
channel state information. In this setting, all nodes have
the same side information whereas in our work, nodes
have partial and mismatched knowledge of the chan-
nel state information. The problem is then connected to
index coding, and topological interference management
scheme (TIM) is proposed. There are many results e.g.,
[4–9]) that follow a similar path of [3]. We generalize
the problem to multi-hop networks and design our com-
munication protocol accordingly, but TIM is designed
for single-hop networks. Moreover, our formulation pro-
vides a continuous transition from no CSI to full CSI
(by having more and more hops of knowledge) whereas
[3] focuses only on the extreme case of no channel state
information.
Many other models for imprecise network information

have been considered for interference networks. These
models range from having no channel state information
at the sources [10–13], delayed channel state information
[14–19], mismatched delayed channel state knowledge
[20–22], or analog channel state feedback for fully con-
nected interference channels [23]. Most of these works
assume fully connected network or a small number of
users. For networks with arbitrary connectivity, the first
attempt to understand the role of limited network knowl-
edge was initiated in [24, 25] in the context of single-layer
networks. The authors used a message-passing abstrac-
tion of network protocols to formalize the notion of local
view. The key result of [24, 25] is that local-view-based
(decentralized) decisions can be either sum rate optimal
or can be arbitrarily worse than the global-view (central-
ized) sum capacity. In this work, we focus on multi-layer
setting and we show that several important additional
ingredients are needed compared to the single-layer
scenario.
It is worth noting that since each channel gain can range

from zero to a maximum value, our formulation is similar
to compound channels [26, 27] with one major differ-
ence. In the multi-terminal compound network formula-
tions, all nodes are missing identical information about
the channels in the network whereas in our formulation,

the 1-local view results in asymmetric and mismatched
information about channels at different nodes.
The rest of the paper is organized as follows. In

Section 2, we introduce our network model and the new
model for partial network knowledge. In Section 3 via
a number of examples, we motivate our transmission
strategies and the algebraic framework. In Section 4, we
formally define the algebraic framework and we charac-
terize the performance of the transmission strategy based
on this framework. In Section 5, we prove the optimal-
ity of our strategies for several network topologies. Finally,
Section 6 concludes the paper.

2 Problem formulation
In this section, we introduce our model for the wire-
less channel and the available network knowledge at the
nodes. We also define the notion of normalized sum
capacity which will be used as the performance metric for
the strategies with partial network knowledge.

2.1 Network model and notations
We describe the two channel models we use in this paper,
namely, the linear deterministic model and the Gaussian
model. In both models, a network is represented by a
directed graph

G = (V , E , {wij}(i,j)∈E) (1)

where V is the set of vertices representing nodes in the
network, E is the set of directed edges representing links
among these nodes, and {wij}(i,j)∈E represents the channel
gains associated with the edges.
Out of the |V| nodes in the network,K nodes are sources

and K nodes are destinations. We label these source
and destination nodes by Sis and Dis respectively, i =
1, 2, . . . ,K . The remaining |V| − 2K nodes are relay nodes
which facilitate the communication between sources and
destinations. We can simply refer to a node in V as Vi, i =
1, 2, . . . , |V|. In this work, we focus on two-layer networks.
The two channel models used in this paper are as

follows:

1. The linear deterministic model [28]: In this model,
there is a non-negative integer, wij = nij, associated
with each link (i, j) ∈ E which represents its gain. Let
q be the maximum of all the channel gains in this
network. In the linear deterministic model, the
channel input at node Vi at time t is denoted by

XVi [t]=[XVi1
[t] ,XVi2

[t] , . . . ,XViq [t]]
T ∈ F

q
2. (2)

The received signal at node Vj at time t is denoted by

YVj [t]=[YVj1 [t] ,YVj2 [t] , . . . ,YVjq [t]]
T ∈ F

q
2, (3)
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and is given by

YVj [t]=
∑

i:(i,j)∈E
Sq−nijXVi [t], (4)

where S is the q × q shift matrix and the operations
are in F

q
2. If a link between Vi and Vj does not exist,

we set nij to be zero.
2. The Gaussian model: In this model, the channel gain

wij is denoted by hij ∈ C. The channel input at node
Vi at time t is denoted by XVi [ t]∈ C, and the
received signal at node Vj at time t is denoted by
YVj [ t]∈ C given by

YVj [t]=
∑

i
hijXVi [t]+Zj[t], (5)

where Zj[ t] is the additive white complex Gaussian
noise with unit variance. We also assume a power
constraint of 1 at all nodes, i.e.,

lim
n→∞

1
n
E

( n∑

t=1
|XVi [ t] |2

)
≤ 1. (6)

A route from a source Si to a destination Dj is a set of
nodes such that there exists an ordering of these nodes
where the first one is Si, the last one is Dj, and any two
consecutive nodes in this ordering are connected by an
edge in the graph.

Definition 1 Induced subgraph Gij is a subgraph of G
with its vertex set being the union of all routes (as defined
above) from source Si to a destination Dj, and its edge set
being the subset of all edges in G between the vertices of Gij.

We say that S-D pair i and S-D j are non-interfering if Gii
and Gjj are two disjoint induced subgraphs of G.
The in-degree function din(Vi) is the number of in-

coming edges connected to node Vi. Similarly, the out-
degree function dout(Vi) is the number of out-going edges
connected to node Vi. Note that the in-degree of a source
and the out-degree of a destination are both equal to 0.

The maximum degree of the nodes in G is defined as

dmax = max
i∈{1,...,|V|} (din(Vi), dout(Vi)) . (7)

2.2 Partial network knowledgemodel
We now describe our model for partial network knowl-
edge that we refer to as 1-local view:

• All nodes have full knowledge of the network
topology (V , E) (i.e., they know which links are in G,
but not necessarily their channel gains). The network
topology knowledge is denoted by side information SI;

• Each source, Si, knows the gains of all the channels
that are in Gii, i = 1, 2, . . . ,K . This channel
knowledge at a source is denoted by LSi .• Each node Vi (which is not a source) has the union of
the information of all those sources that have a route
to it, and this knowledge at node is denoted by LVi .

This partial network knowledge is motivated by the fol-
lowing argument. Suppose a network with a single S-D
pair and no interference. In such a network, one expects
the S-D pair to be able to communicate optimally (or
close to optimal) and our model guarantees this baseline
performance. In fact, our model assumes the minimum
knowledge needed at different nodes such that each S-D
pair can communicate optimally in the absence of inter-
ference. Moreover, our assumption is backed by message
passing algorithm which is how CSI is learned in wireless
networks.
For a depiction, consider the network in Fig. 1a. Source

S1 has the knowledge of the channel gains of the links that
are denoted by solid arrows in Fig. 1a. On the other hand,
relay A has the union of the information of sources S1 and
S2. The partial knowledge of relay A is denoted by solid
arrows in Fig. 1b.

Remark 1 Our formulation is a general version of com-
pound channel formulation where nodes have mismatched
and asymmetric lack of knowledge.

a b
Fig. 1 a The partial knowledge of the channel gains available at source S1 is denoted by solid arrows and b the partial knowledge of the channel
gains available at relay A
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2.3 Performance metric
Our goal is to find out the minimum number of time slots
such that all induced subgraphs can be reconstructed as if
there is no interference. It turns out the aforementioned
objective is closely related to the notion of normalized
sum capacity introduced in [2]. Here, we define the notion
of normalized sum capacity which is going to be our met-
ric for evaluating network capacity with partial network
knowledge. Intuitively, normalized sum capacity repre-
sents the maximum fraction of the sum capacity with full
knowledge that can be achieved when nodes have partial
network knowledge.
Consider the scenario in which source Si wishes to reli-

ably communicate message Wi ∈ {1, 2, . . . , 2NRi} to des-
tination Di during N uses of the channel, i = 1, 2, . . . ,K .
We assume that the messages are independent and chosen
uniformly. For each source Si, let message Wi be encoded
as XN

Si
using the encoding function ei(Wi|LSi , SI) which

depends on the available local network knowledge, LSi ,
and the global side information, SI.
Each relay in the network creates its input to

the channel, XVi , using the encoding function
fVi [t]

(
Y (t−1)
Vi

|LVi , SI
)

which depends on the available
network knowledge, LVi , and the side information,
SI, and all the previous received signals at the relay
Y (t−1)
Vi

= [
YVi [ 1] ,YVi [2] , . . . ,YVi [t − 1]

]
. A relay strategy

is defined as the union of all encoding functions used
by the relays, {fVi [ t] (Y (t−1)

Vi
|LVi , SI)}, t = 1, 2, . . . ,N and

Vi ∈⋃L−1
j=1 Vj.

Destination Di is only interested in decoding Wi, and
it will decode the message using the decoding function
Ŵi = di(YN

Di
|LDi , SI) where LDi is destination Di’s network

knowledge. We note that the local view can vary from
node to node.

Definition 2 A Strategy SN is defined as the set of: (1)
all encoding functions at the sources, (2) all decoding func-
tions at the destinations, and (3) the relay strategy for
t = 1, 2, . . . ,N, i.e.,

SN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ei(Wi|LSi , SI) i = 1, 2, . . . ,K
fVi [t]

(
Y (t−1)
Vi

|LVi , SI
)
t = 1, 2, . . . ,N
and Vi ∈⋃L−1

j=1 Vj
di(YN

Di
|LDi , SI) i = 1, 2, . . . ,K

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

(8)

An error occurs when Ŵi �= Wi, and we define the
decoding error probability, λi, to be equal to P(Ŵi �= Wi).
A rate tuple (R1,R2, . . . ,RK ) is said to be achievable if
there exists a set of strategies {Sj}Nj=1 such that the decod-
ing error probabilities λ1, λ2, . . . , λK go to zero asN → ∞
for all network states consistent with the side information.

Moreover, for S-D pair i, we denote the maximum achiev-
able rate with full network knowledge by Ci. The sum
capacity Csum is the supremum of

∑K
i=1 Ri over all pos-

sible encoding and decoding functions with full network
knowledge.
We now define the normalized sum rate and the nor-

malized sum capacity.

Definition 3 ([2]) Normalized sum rate of α is said to be
achievable if there exists a set of strategies {Sj}Nj=1 such that
following holds. As N goes to infinity, strategy SN yields a
sequence of codes having rates Ri at source Si, i = 1, . . . ,K,
satisfying

K∑

i=1
Ri ≥ αCsum − τ

such that error probabilities at the destinations, λ1, · · · λK ,
go to zero for all the network states consistent with the side
information and for a constant τ that is independent of the
channel gains.

Definition 4 ([2]) Normalized sum capacity α∗ is
defined as the supremum of all achievable normalized sum
rates α. Note that α∗ ∈ [ 0, 1].

Remark 2 While the results of this paper may appear
pessimistic, they are much like any other compound chan-
nel analysis which aims to optimize the worst case scenario.
We adopted the normalized capacity as our metric which
opens the door for exact (or near-exact) results for several
cases as we will see in this paper. We view our current
formulation as a step towards the general case, much like
the commonly accepted methodology where channel state
information is assumed known perfectly in first steps of a
new problem (MIMO, interference channels, scaling laws),
even though that assumption is almost never possible.

3 Motivating examples
Before diving into the main results, we use a sequence
of examples to understand the mechanisms that allow us
outperform interference avoidance with only 1-local view.
We first consider the single-layer network depicted in

Fig. 2a. Using interference avoidance, we can create the
induced subgraphs of all three S-D pairs as shown in
Fig. 2b in three time slots. Thus, with interference avoid-
ance, one can only achieve α = 1

3 which is the same as
TDMA. However, we show that it is possible to recon-
struct the three induced subgraphs in only two time slots
and to achieve α = 1

2 with 1-local view.
Consider the linear deterministic model and the

induced subgraphs of all three S-D pairs as shown in
Fig. 2b. We show that any transmission strategy over
these three induced subgraphs can be implemented in the
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a b
Fig. 2 a A network in which coding is required to achieve the normalized sum capacity and b the induced subgraphs

original network by using only two time slots such that
all nodes receive the same signal as if they were in the
induced subgraphs. This would immediately imply that a
normalized sum rate of 1

2 is achievable1.
To do so, we split the communication block into two

time slots of equal length. Sources S1 and S2 transmit
the same codewords as if they are in the induced sub-
graphs over first time slot. Destination D1 receives the
same signal as it would have in its induced subgraph, and
destination D3 receives interference from source S2.
Over second time slot, S3 transmits the same codeword

as if it was in its induced subgraph and S2 repeats its
transmit signal from the first time slot. Destination D2
receives its signal interference-free. Now, if destination
D3 adds its received signals over the two time slots, it
recovers its intended signal as depicted in Fig. 3. In other
words, we used interference cancellation at destination
D3. Therefore, all S-D pairs can effectively communicate
interference-free over two time slots.
We can view this discussion in an algebraic framework.

To each source Si, we assign a transmit vector TSi of size
2 × 1 where 2 corresponds to the number of time slots. If
the entry at row t is equal to 1, then Si communicates the

codeword for Di during time slot t, i = 1, 2, 3, and t = 1, 2.
In our example, we have

TS1 =
(
1
0

)
, TS2 =

(
1
1

)
, TS3 =

(
0
1

)
. (9)

To each destination Di, we assign a receive matrix RDi
of size 2 × 2 where each row corresponds to a time slot
and each column corresponds to a source that has a route
to destination Di. More precisely, RDi is formed by con-
catenating the transmit vectors of the sources that are
connected to Di. In our example, we have

RD1 = (TS1TS3

) = t = 1
t = 2

S1 S3(
1 0
0 1

)
, (10)

RD2 = t = 1
t = 2

S1 S2(
1 1
0 1

)
, RD3 = t = 1

t = 2

S2 S3(
1 0
1 1

)
.

From the receive matrices in (10), we can easily check
whether each destination can recover its corresponding
signal or not. For instance, fromRD1 , we know that in time
slot 1, the signal from S1 is received interference-free. A
similar story is true for the second pair andRD2 . FromRD3 ,

Fig. 3 Achievability strategy for the network depicted in Fig. 2
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we see that in time slot 2, the signal from S3 is received
with interference from S2. However, with a linear row-
operation, we can create a row where the only 1 appears
in the column associated with S3. More precisely,

RD3 (1, :) ⊕ RD3 (2, :) = S2 S3
(0 1).

where RD3 (t, :) denotes row t of matrix RD3 . Thus, each
destination can recover its intended signal interference-
free over two time slots. More precisely, we require

Si Sj
(1 0) ∈ rowspan

(
RDi

)
, i, j ∈ {1, 2, 3}, j �= i. (11)

This example illustrated that with only 1-local view, it
is possible to reconstruct the three induced subgraphs in
only two time slots using (repetition) coding at the sources
and go beyond interference avoidance and TDMA. In the
following example, we show that more sophisticated ideas
are required to beat TDMA in multi-layer networks.
Consider the two-layer network of Fig. 4a. Under the lin-

ear deterministic model it is straightforward to see that by
using interference avoidance or TDMA, it takes three time
slots to reconstruct the induced subgraphs of Fig. 4b–d,
which results in a normalized sum rate of α = 1

3 .
We now show that using repetition coding at the sources

and linear coding at the relays, it is possible to achieve α =
1/2 and reconstruct the three induced subgraphs in only
two time slots. This example was first presented in [1].
Consider any strategy for S-D pairs 1, 2, and 3 as illus-

trated in Fig. 4b–d. In the first layer, we implement the
achievability strategy of Fig. 3 illustrated in Fig. 5. As it
can be seen in this figure, at the end of the second time
slot, each relay has access to the same received signal as if
it was in the diamond networks of Fig. 4b–d.

In the second layer during the first time slot, relays V1
and V2 transmit X1

V1
and X1

V2
, respectively, whereas V3

transmits X2
V3

⊕ X3
V3

as depicted in Fig. 6. Destination D1
receives the same signal as Fig. 4b. During the second
time slot , relays V2 and V3 transmit X2

V2
and X2

V3
, respec-

tively, whereas V1 transmits X1
V1

⊕ X3
V1
. Destination D2

receives the same signal as Fig. 4c. If destination D3 adds
its received signals over the two time slots, it recovers the
same signal as Fig. 4d. Therefore, each destination receives
the same signal as if it was only in its corresponding dia-
mond network over two time slots. Hence, a normalized
sum rate of α = 1

2 is achievable.
Again, this strategy can be viewed in an algebraic frame-

work. We assign a transmit vector TSi of size 2 × 1 to
source Si:

TS1 =
(
1
0

)
, TS2 =

(
1
1

)
, TS3 =

(
0
1

)
. (12)

To each relay Vj we assign a receive matrix RVj of size
2× 2 where each row corresponds to a time slot, and each
column corresponds to a source that has a route to that
relay. RVj is formed by concatenating the transmit vectors
of the sources that are connected to Vj. In our example, we
have

RV1 = t = 1
t = 2

S1 S3(
1 0
0 1

)
, RV2 = t = 1

t = 2

S1 S2(
1 1
0 1

)
,

RV3 = t = 1
t = 2

S2 S3(
1 0
1 1

)
. (13)

From the receive matrices in (14), we can easily check
whether each relay has access to the same received signals
as if it was in the diamond networks of Fig. 4b–d.

Fig. 4 a A two-layer network in which we need to incorporate network coding to achieve the normalized sum capacity, b–d the induced subgraphs
of S-D pairs 1, 2, and 3, respectively
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Fig. 5 Achievability strategy for the first layer of the network in Fig. 4a

We also assign a transmit matrix TVj of size 2 × 2 to
relay Vj where each column corresponds to a S-D pair i
such that Vj ∈ Gii. If the entry at row t and column Si of
this transmit matrix TVj is equal to 1, then the relay com-
municates the signal it has for S-D pair i at time t. In our
example, we have

TV1 = t = 1
t = 2

S1 S3(
1 0
1 1

)
, TV2 = t = 1

t = 2

S1 S2(
1 0
0 1

)
,

TV3 = t = 1
t = 2

S2 S3(
1 1
1 0

)
. (14)

If in row t more than one 1 appears, then the relay cre-
ates the linear combination of the signals it has for the S-D
pairs that have a 1 in their column and transmits it. For
instance, relay V1 during time slot 2 transmits X1

V1
⊕ X3

V1
.

To each destination Di, we assign a received matrix RDi
of size 2 × 4 where each row corresponds to a time slot,
and each column corresponds to a route from a source
through a specific relay (e.g., S1 : V1). In fact,RDi is formed

by concatenating (and reordering columns of) the trans-
mit matrices of the relays that are connected to Di. In our
example, we have

RD1 = t = 1
t = 2

S1:V1 S1:V2 S2:V2 S3:V1(
1 1 0 0
1 0 1 1

)
,

RD2 = t = 1
t = 2

S1:V2 S2:V2 S2:V3 S3:V3(
1 0 1 1
0 1 1 0

)
,

RD3 = t = 1
t = 2

S1:V2 S2:V2 S2:V3 S3:V3(
1 1 0 1
1 1 1 0

)
. (15)

From the receive matrices in (15), we can verify whether
each destination can recover its corresponding signals or
not. For instance, from RD1 , we know that in time slot 1,
the signals from S1 through relays V1 and V2 are received
interference-free. From RD3 , we see that at each time slot,
one of the two signals that D3 is interested in is received.
However, with a linear row operation, we can create a row
where 1s only appear in the columns associated with S3.

Fig. 6 Achievability strategy for the second layer of the network in Fig. 4a
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More precisely,

RD3 (1, :) ⊕ RD3 (2, :) (16)

= S1:V1 S2:V3 S3:V1 S3:V3
( 0 0 1 1 ),

or equivalently
S1:V1 S2:V3 S3:V1 S3:V3

( 0 0 1 1 ) ∈ rowspan
(
RD3

)
.

Thus, each destination can recover its intended signal
interference-free and a normalized sum rate of α = 1

2 is
achievable.

4 An algebraic framework
In this section, given T ∈ N, we define a set of condi-
tions that if satisfied, all induced subgraphs can be recon-
structed in T time slots. Consider a two-layer wireless
network G = (V , E , {wij}(i,j)∈E) with K source-destination
pairs and |V| − 2K relay nodes. We label the sources as
S1, . . . , SK , the destinations as D1, . . . ,DK , and the relays
as V1, . . . ,V|V|−2K . We also need the following definitions:

Definition 5 We assign a number NVj to relay Vj defined
as

NVj

= ∣∣{i|Vj ∈ Gii

}∣∣ , (17)

and we assign a number NDj to destination Dj defined as

NDj

=

K∑

i=1

(
number of routes from Si to Dj

)
. (18)

In this section, we assign matrices to each node in G and
the only difference between the linear deterministicmodel
and the Gaussian model is the entries to these matrices:

1. For the linear deterministic model, all entries to these
matrices are in binary field (i.e., either 0 or 1);

2. For the Gaussian model, all entries to these matrices
are in {−1, 0, 1}.

We now describe the assignment of the matrices. Fix
T ∈ N.

• We assign a transmit vector TSi of size T × 1 to
source Si where each row corresponds to a time slot.

• To each relay Vj, we assign a receive matrix RVj of
size T × din(Vj), and we label each column with a
source that has a route to that relay. The entry at row
t and column labeled by Si in RVj is equal to the entry
at row t of TSi .• We assign a transmit matrix TVj of size T × NVj to
each relay where each column corresponds to a S-D
pair i where the relay belongs to Gii.

• Finally, to each destination Di, we assign a receive
matrix RDi of size T × NDi where each column

corresponds to a route from a source Sj through a
specific relay Vj′ and is labeled as Sj : Vj′ . The entry at
row t and column labeled by Sj : Vj′ in RDi is equal to
the entry at row t and column labeled by Sj of TVj′ .

An assignment of transmit and receive matrices to the
nodes in the network is valid if the following conditions
are satisfied:
C.1 For i = 1, 2, . . . ,K :

Rank
(
TSi

) = 1. (19)

C.2 For any relay Vj, using linear row operations RVj can
be transformed into a matrix in which if Vj ∈ Gii, then
∃ � such that all entries in row � are zeros except for the
column corresponding to source Si.
C.3 For destination Di, using linear row operations RDi

can be transformed into a matrix in which ∃ � such that
the �th row has only 1s in the columns corresponding to
source Si, i = 1, 2, . . . ,K .

Remark 3 It is straightforward to show that a neces-
sary condition for C.3 is for each TVj to have full col-
umn rank. This gives us a lower bound on T which is
maxVj

∣∣{i|Vj ∈ Gii
}∣∣. Moreover, TDMA is always a lower

bound on the performance of any strategy and thus pro-
vides us with an upper bound on T. In other words, we
have

max
Vj

∣∣{i|Vj ∈ Gii
}∣∣ ≤ T < K . (20)

Theorem 1 For a K-user two-layer network G =
(V , E , {wij}(i,j)∈E) with 1-local view if there exists a valid
assignment of transmit and receive matrices, then all
induced subgraphs can be reconstructed in T time slots and
a normalized sum rate of α = 1

T is achievable.

Proof We first prove the theorem for the linear deter-
ministic model, and then, we provide the proof for the
Gaussian model.
Network G has K S-D pairs. Consider the K-induced

subgraphs of all S-D pairs, i.e., Gjj, j = 1, 2, . . . ,K . We
show that any transmission snapshot over these induced
subgraphs can be implemented in G over T time slots such
that all nodes receive the same signal as if they were in
their corresponding induced subgraphs.
Linear deterministic model. Consider a transmission

snapshot in the K-induced subgraphs in which:

• Node Vi (similarly a source) in the induced subgraph
Gjj transmits Xj

Vi
,

• Node Vi (similarly a destination) in the induced
subgraph Gjj receives

Y j
Vi

=
∑

i′:(i′,i)∈E
Sq−ni′iXj

Vi′ . (21)
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Transmission strategy. At any time slot t:

• Source Si transmits

XSi [ t]= TSi(t)X
i
Si , (22)

• Each relay Vj transmits

XVj [ t]=
K∑

i=1
TVj(t, Si)Xi

Vj , (23)

where t = 1, . . . ,T , and TVj(t, Si) is the entry at row t
and the column corresponding to Si of TVj .

Note that condition C.1 guarantees that each source
transmits its signal at least once. At any time instant t relay
Vi (similarly a destination) receives

YVi [ t]=
∑

i′:(i′,i)∈E
Sq−ni′iXVi′ [ t], t = 1, . . . ,T , (24)

where summation is performed in F
q
2.

Reconstructing the received signals. Based on the
transmission strategy described above, we need to show
that at any node Vi received signal Y j

Vi
can be obtained.

Condition C.2 guarantees that using linear row opera-
tions, RVj can be transformed into a matrix in which if
Vi ∈ Gjj, then ∃ � such that all entries in row � are zeros
except for the column corresponding to source Sj. Note
that linear operation in the linear deterministic model is
simply the XOR operation. We note that two 1s in the
same column of a receive matrix represent the same sig-
nals and the same channel gains. Thus, Vi is able to cancel
out all interference by appropriately summing the received
signals at different time slots.
Similar argument holds for any destinationDi. However,

since it is possible that there exist multiple routes from Si
to Di, more than a single 1 might be required after the row
operations. In fact, condition C.3 guarantees that using
linear row operations, destination Di can cancel out all
interfering signals and only observe the intended signals
from Si.
Gaussian model. The proof presented above holds for

the Gaussian channel model with some modifications.
First, the operations should be in real domain and the row
operations are now either summation or subtraction. At
any time slot t relay Vj transmits:

XVj [t]=
1

√
βt,Vj

K∑

i=1
TVj(t, Si)Xi

Vj (25)

where t = 1, . . . ,T . To satisfy the power constraint at the
nodes, we need βt,Vj to be the number of non-zero entries
in row t of TVj .
Moreover, we need to show that with the row operations

performed on received and transmit signals, the capacity
of the reconstructed induced subgraphs is “close” to the

capacity of the induced subgraphs when there is no inter-
ference. The following lemma shows that the capacity of
the reconstructed induced subgraphs is within a constant
number of bits of the capacity of the induced subgraphs
with no interference. This constant is independent of the
channel gains and transmit power P.

Lemma 1 Consider amulti-hop complex Gaussian relay
network with one source S and one destination D repre-
sented by a directed graph

G = (V , E , {hij}(i,j)∈E)

where {hij}(i,j)∈E represents the channel gains associated
with the edges.
We assume that at each receive node the additive

white complex Gaussian noise has variance σ 2. We
also assume a power constraint of P at all nodes, i.e.,
limn→∞ 1

nE
(∑n

t=1 |XVi [t] |2
) ≤ P. Denote the capacity of

this network by C(σ 2,P). Then, for all T ≥ 1, T ∈ R, we
have

C(σ 2,P) − τ ≤ C(Tσ 2,P/T) ≤ C(σ 2,P), (26)

where τ = |V| (2 logT + 17
)
is a constant independent of

the channel gains, P, and σ 2.

Proof First note that by increasing noise variances and
by decreasing the power constraint, we only decrease the
capacity. Hence, we have C(Tσ 2,P/T) ≤ C(σ 2,P). To
prove the other inequality, we use the results in [28]. The
cut-set bound C̄ is defined as

C̄(σ 2,P) = max
p({Xj}Vj∈V )

min
�∈	D

I(Y�c ;X�|X�c), (27)

where 	D = {� : S ∈ �,D ∈ �c} is the set of all S-D
cuts. 2 Also, C̄i.i.d(σ

2,P) = min�∈	D log |I + P
σ 2G�G∗

�| is
the cut-set bound evaluated for i.i.d. N (0,P) input distri-
butions, and G� is the transfer matrix associated with the
cut �, i.e., the matrix relating the vector of all the inputs
at the nodes in �, denoted by X�, to the vector of all the
outputs in �c, denoted by Y�c , as in Y�c = G�X� + Z�c

where Z�c is the noise vector. In [28], it has been shown
that

C̄i.i.d(σ
2,P) − 15|V| ≤ C(σ 2,P) ≤ C̄i.i.d(σ

2,P) + 2|V|,
(28)

where |V| is the total number of nodes in the network.
Similarly, we have

C̄i.i.d(Tσ 2,P/T) − 15|V| ≤ C(Tσ 2,P/T)

C(Tσ 2,P/T) ≤ C̄i.i.d(Tσ 2,P/T) + 2|V|. (29)

Now, we will show that

C(σ 2,P) − C(Tσ 2,P/T) ≤ |V| (2 logT + 17
)
. (30)
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For any S-D cut, � ∈ 	D, P
σ 2G�G∗

� is a positive semi-
definite matrix. Hence, there exists a unitary matrix U
such that UGdiagU∗ = P

σ 2G�G∗
� where Gdiag is a diagonal

matrix. Refer to the non-zero elements inGdiag as gii’s. We
have:

log |I + P
σ 2G�G∗

�| − log |I + P
T2σ 2G�G∗

�|

= log |I + UGdiagU∗| − log |I + 1
T2UGdiagU∗|

= log |UU∗ +UGdiagU∗| − log |UU∗ + 1
T2UGdiagU∗|

= log
(|U||I+Gdiag ||U∗|)−log

(
|U||I+ 1

T2Gdiag ||U∗|
)

= log |I + Gdiag | − log |I + 1
T2Gdiag |

= tr log
(
I + Gdiag

)− tr log
(
I + 1

T2Gdiag

)

=
∑

i
log
(
1 + gii

)−
∑

i
log
(
1 + 1

T2 gii
)

=
∑

i
log
(

1 + gii
1 + 1

T2 gii

)

(a)≤
∑

i
lim

gii→∞ log
(

1 + gii
1 + 1

T2 gii

)

=
∑

i
logT2 ≤ 2|V| logT , (31)

where (a) follows from the fact that 1+gii
1+ 1

T2
gii

is monotoni-

cally increasing in gii.
Now suppose that min�∈	D log |I + P

T2σ 2G�G∗
�| =

log |I + P
T2σ 2G�′G∗

�′ |. Hence, from (31), we have

min
�∈	D

log |I + P
σ 2G�G∗

�| − min
�∈	D

log |I+ P
T2σ 2G�G∗

�|

= min
�∈	D

log |I + P
σ 2G�G∗

�| − log |I + P
T2σ 2G�′G∗

�′ |

≤ log |I + P
σ 2G�′G∗

�′ | − log |I + P
T2σ 2G�′G∗

�′ |
(a)≤ 2|V| logT , (32)

where (a) follows from (31). From (28) and (29), we have

C(σ 2,P) − C(Tσ 2,P/T) ≤ min
�∈	D

log |I + P
σ 2G�G∗

�|

−min
�∈	D

log |I+ P
T2σ 2G�G∗

�|+17|V|(a)≤|V| (2 logT+17) ,
(33)

where (a) follows from (32). Therefore, we get

C(σ 2,P) − τ ≤ C(Tσ 2,P/T) ≤ C(σ 2,P), (34)

where τ = |V| (2 logT + 17
)
is a constant independent of

the channel gains, P, and σ 2.

5 Optimality of the strategies
In this section, we consider several classes of networks and
derive the minimum number of time slots such that all
induced subgraphs can be reconstructed as if there is no
interference present. In other words, we characterize the
normalized sum capacity of such networks.

5.1 Single-layer folded-chain networks
We start by considering a single-layer network motivated
by the downlink cellular system similar to the one in Fig. 7.

Definition 6 A single-layer (K ,m) folded-chain (1 ≤
m ≤ K) network is a single-layer network with K S-D pairs.
In this network, source Si is connected to destinations with
ID’s 1 + [{(i − 1)+ + (j − 1)}modK

]
where i = 1, . . . ,K,

j = 1, . . . ,m and (i − 1)+ = max{(i − 1), 0}.

Figure 8 is the single-layer (3, 2) folded-chain network
corresponding to the downlink cellular system of Fig. 7.
The following theorem characterizes the normalized sum
capacity of such networks.

Theorem 2 The normalized sum capacity of a single-
layer (K ,m) folded-chain network with 1-local view is
α∗ = 1

m.

To achieve the normalized sum capacity of a single-
layer (K ,m) folded-chain network with 1-local, we need to
incorporate repetition coding at the sources. We note that
a single-layer (K ,K) folded-chain network is a K user fully
connected interference channel, and in that case, with

Fig. 7 Downlink cellular network with three base stations and three
destinations
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Fig. 8 The corresponding network G for the downlink cellular system
illustrated in Fig. 7

1-local view, interference avoidance achieves the normal-
ized sum capacity of 1/K .

Proof Achievability: We provide a valid assignment of
transmit and receive matrices to the nodes with T = m.
Then, by Theorem 1, we know that a normalized sum rate
of 1

m is achievable.
Suppose m < K < 2m (we will later generalize the

achievability scheme for arbitrary K ), let m′ = K − m. To
each source Si, i = 1, . . . ,K , we assign a transmit vector
TSi such that:

TSi(j) = 1 ⇔ j ≤ i ≤ j + m′, j = 1, . . . ,m. (35)

Remark 4 For single-layer folded-chain networks, the
assignment of the transmit vectors in (35) is the same for
the linear deterministic model and the Gaussian model.

This assignment satisfies conditions C.1-C.3:

• C.1 is trivially satisfied since for any source Si, there
exists at least one value of j such that TSi(j) = 1.

• C.2 is irrelevant since we have a single-layer network,
and no relay is present.

• C.3 is satisfied since for 1 ≤ i ≤ m, RDi has a single 1
in row i and the column labeled as Si, and for
m < i < 2m, the summation of rows

i − m + 1, . . . , i − 1, i of RDi has a single 1 in the
column labeled as Si.

Since conditions C.1-C.3 are satisfied, from Theorem 1,
we know that we can achieve α = 1

m .
For general K, the achievability works as follows. Sup-

pose,K = c(2m−1)+r, where c ≥ 1 and 0 ≤ r < (2m−1),
we implement the scheme for S-D pairs 1, 2, . . . , 2m − 1
as if they are the only pairs in the network. The same
for source-destination pairs 2m, 2m + 1, . . . , 4m − 2, etc.
Finally, for the last r S-D pairs, we implement the scheme
withm′ = max{r −m+ 1, 1}. This completes the proof of
achievability.
Converse: Assume that a normalized sum rate of α is

achievable3. We show that α ≤ 1
m . Consider a single-layer

(K ,m) folded-chain network in which the channel gain of
a link from Si to destinations i, i + 1, . . . ,m is equal to n ∈
N (for the linear deterministic model) and h ∈ C (for the
Gaussian model), i = 1, 2, . . . ,m, and all other channel
gains are equal to zero. See Fig. 9 for a depiction.

Fig. 9 Channel gain assignment in a single-layer (K ,m) folded-chain
network. All solid links have capacity n (for the linear deterministic
model) and h (for the Gaussian model), and all dashed links have
capacity 0
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Destination Dm after decoding and removing the con-
tribution of Sm has the same observation (up to the noise
term) as Dm−1. Thus, Dm is able to decode Wm−1. With a
recursive argument, we conclude that

n

⎛

⎝
∑

j=1,2,...,m
Rj − εn

⎞

⎠ ≤ H
(
Yn
m|LDm , SI

)
. (36)

TheMAC capacity at destination Dm in the linear deter-
ministic model gives us

m(αn − τ) ≤ n ⇒ (mα − 1)n ≤ dτ . (37)

Since this has to hold for all values of n, and α and τ are
independent of n, we get α ≤ 1

m . For the Gaussian model,
the MAC capacity at Dm gives us

m(α log(1 + |h|2) − τ) ≤ log(1 + m × |h|2), (38)

which results in

(mα − 1) log(1 + |h|2) ≤ log(m) + mτ . (39)

Since this has to hold for all values of h, and α and τ are
independent of h, we get α ≤ 1

m . This completes the proof
of Theorem 2.

5.2 K × 2 × K networks
We move to two-layer networks and start with a special
class of networks defined below.

Definition 7 AK×2×K network is a two-layer network
(as defined in Section 2.1) with |V| − 2K = 2.

We establish the normalized sum capacity of such net-
works in the following theorem.

Theorem 3 The normalized sum capacity of a K×2×K
network with 1-local view is α∗ = 1/dmax where dmax is
defined in (7).

Proof The result for K = 1 is trivial, so we assume K >

1. We refer to the two relays as A1 and A2, see Fig. 10.
Achievability: We divide the S-D pair IDs into three

disjoint subsets as follows:

• Ji is the set of all the S-D pair IDs such that the
corresponding source is connected only to relay Ai,
i = 1, 2;

Fig. 10 Illustration of a K × 2 × K network

• J12 is the set of all the other S-D pair IDs. In other
words, J12 is the set of all the S-D pair IDs where the
corresponding source is connected to both relays.

Without loss of generality assume that din(A2) ≥
din(A1) and rearrange sources such that

J1 = {1, 2, . . . , din(A1)} ,
J2 = {din(A1) + 1, . . . , din(A1) + din(A2)} ,
J12 = {din(A1) + din(A2) + 1, . . . ,K} . (40)

We pick the smallest member of J1 and the smallest
member of J2, and we set the first entry of the corre-
sponding transmit vectors equal to 1 and all other entries
equal to zero. We remove these members from J1 and
J2. Then, we pick two smallest members of (updated) J1
and J2 and we set the second entry of the corresponding
transmit vectors equal to 1 and all other entries equal to
zero. We continue this process until J1 is empty. For any
remaining S-D pair ID j, we set the jth entry of the corre-
sponding transmit vector equal to 1 and all other entries
equal to zero.
In the second layer, we divide S-D pair IDs based on

the connection of destinations to relays, i.e., J ′
i is the set

of all the S-D pair IDs such that the corresponding des-
tination is connected to relay Ai, i = 1, 2, and J ′

12 is the
set of all the other S-D pair IDs. To Ai, we assign a trans-
mit matrix of size T × (J ′

i + J ′
12
)
, i = 1, 2, as described

below.
Without loss of generality assume that dout(A2) ≥

dout(A1). We pick one member of J ′
1 and one member

of J ′
2 randomly, and in the first row of TA1 and TA2 , we

set the entry at the column corresponding to the picked
indices equal to 1 and all other entries in those rows equal
to zero. We remove these members from J ′

1 and J ′
2. We
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then pick one member of (updated) J ′
1 and one member

of (updated) J ′
2 randomly, and in the second row of TA1

and TA2 , we set the entry at the column corresponding to
the picked indices equal to 1 and all other entries in those
rows equal to zero. We continue this process until J ′

1 is
empty.
We then pick one of the remaining S-D pair IDs (mem-

bers of J ′
12 and the remaining members of J ′

2), and we
assign a 1 in the next available row and to the column
corresponding to the picked index in the corresponding
transmit matrix. We set all other entries in those rows
equal to zero. We continue the process until no S-D pair
ID is left.
Condition C.1 is trivially satisfied. The correspond-

ing transmission strategy in this case would be a “per
layer” interference avoidance, i.e., if in the first hop,
two sources are connected to the same relay, they
do not transmit simultaneously, and if in the second
hop, two destinations are connected to the same relay,
they are not going to be served simultaneously. There-
fore, since the scheme does not allow any interfer-
ence to be created, no row operations on the receive
matrix is required and conditions C.2 and C.3 are
satisfied.
Note that according to the assignment of the vectors and

matrices, we require

T = max {din(A2), dout(A2)} = dmax. (41)

Hence, from Theorem 1, we know that a normalized sum
rate of α = 1

dmax
is achievable.

Remark 5 For K × 2 × K networks, the assignment of
the transmit vectors and matrices is the same for the linear
deterministic model and the Gaussian model.

Converse: Assume that a normalized sum rate of α

is achievable, we show that α ≤ 1
dmax

. It is suffi-
cient to consider two cases: (1) dmax = din(A1) and
(2) dmax = dout(A1). Here, we provide the proof for
case (1) and we postpone the proof for case (2) to
Appendix B.
The proof is based on finding a worst-case scenario.

Thus, to derive the upper bound, we use specific assign-
ment of channel gains. Consider Dj for j ∈ J1, any such
destination is either connected to relay A1 or to both
relays. If it is connected to both, then set the channel
gain from relay A2 equal to 0. Follow similar steps for the
members of J2.
Now, consider Dj for j ∈ J12, such destination is either

connected to only one relay or to both relays. If such
destination is connected to both relays, assign the channel

gain of 0 to one of the links connecting it to a relay (pick
this link at random).
For all other links in the network, assign a channel gain

of n ∈ N (in the linear deterministic model) and h ∈ C (in
the Gaussian model). With this channel gain assignment,
we have:

∀ j ∈ J1 : H
(
Wj|Yn

A1 , LA1 , SI
) ≤ nεn, (42)

where εn → 0 as n → ∞. Thus, relay A1 is able to decode
all messages coming from sources corresponding to the
members of J1.
A similar claim holds for relay A2 and all messages

coming from J2. Relays A1 and A2 decode the mes-
sages coming from members of J1 and J2, respectively,
and remove their contributions from the received signals.
After removing the contributions from members of J1
and J2, relay A1 can decode the message of members in
J12, i.e.,

∀ � ∈ J12 : H
(
W�|Yn

A1 ,X
n
j∈J1 , LA1 , SI

)
≤ nεn. (43)

Thus, each relay is able to decode the rest of the mes-
sages (in the linear deterministic case, relays have the
same received signals and in the Gaussian case, they
receive the same codewords with different noise terms).
This means that relay A1 is able to decode all the messages
from J1 and J12, i.e.,

∑

j∈(J1∪J12)

H
(
Wj|Yn

A1 , LA1 , SI
) ≤ nεn, (44)

which in turn implies that

n

⎛

⎝
∑

j∈(J1∪J12)

Rj − εn

⎞

⎠ ≤ H
(
Yn
A1 |LA1 , SI

)
. (45)

Note that din(A1) = |J1| + |J12|.
Given the assumption of 1-local view, in order to achieve

a normalized sum rate of α, each source should transmit
at a rate greater than or equal to αn − τ (in linear deter-
ministic model) for some constant τ . This is due to the
fact that from each source’s point of view, it is possible that
the other S-D pairs have capacity 0. Therefore, in order to
achieve a normalized sum rate of α, it should transmit at
a rate of at least αn − τ . The MAC capacity at relay A1
gives us

din(A1)(αn − τ) ≤ n ⇒ (din(A1)α − 1)n ≤ din(A1)τ .
(46)
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Since this has to hold for all values of n, and α and τ are
independent of n, we get α ≤ 1

din(A1) .
In the Gaussian case, each source should transmit at a

rate greater than or equal to α log(1+|h|2)− τ since from
each source’s point of view, it is possible that the other
S-D pairs have capacity 0. From theMAC capacity at relay
A1, we get

din(A1)
(
α log(1 + |h|2) − τ

) ≤ log
(
1 + din(A1) × |h|2) ,

(47)

which results in

din(A1)
(
α log

(
1+ |h|2)−τ

)≤ log(din(A1))+log
(
1+×|h|2) .

(48)

Hence, we have

(din(A1)α −1) log(1+|h|2) ≤ log(din(A1))+din(A1)τ .
(49)

Since this has to hold for all values of h, and α and τ are
independent of h, we get α ≤ 1

din(A1) .
Combining the argument presented above with the

result in Appendix B, we get

α ≤ 1
dmax

. (50)

This completes the proof of the converse.

5.3 3 × 3 × 3 networks
In this subsection, we consider two-layer networks with
three source-destination pairs and three relays. We face
networks in which we need to incorporate network cod-
ing techniques to achieve the normalized sum capacity
with 1-local view. The coding comes in the form of rep-
etition coding at sources and a combination of repetition
and network coding at relays.

Definition 8 A 3× 3× 3 network is a two-layer network
(as defined in Section 2.1) with K = 3 and |V| − 2K = 3.

Theorem 4 The normalized sum capacity of a 3× 3× 3
network with 1 local view, α∗ is equal to

1. 1 if and only if Gii ∩ Gjj = ∅ for i �= j.
2. 1/3 if and only if one of the graphs in Fig. 11 is a

subgraph of the network connectivity graph G.
3. 1/2 otherwise.

Fig. 11 a–c The normalized sum capacity of a 3× 3× 3 network with
1-local view, α∗ , is equal to 1/3 if and only if one of the graphs in this
figure is a subgraph of G

As we show in this section, the transmission strategy is
a combination of three main techniques:

1. Per layer interference avoidance
2. Repetition coding to allow overhearing of the

interference
3. Network coding to allow interference neutralization

Remark 6 From Theorems 3 and 4, we conclude that for
all single-layer, K × 2 × K, and 3 × 3 × 3 networks with
1-local view, the normalized sum capacity α∗ = 1/K (i.e.,
TDMA) is optimal if and only if when all channel gains
are equal and non-zero, then there exists a node that can
decode all messages. We refer to such node as an “omni-
scient” node. We believe this observation holds for much
more general network connectivities with 1-local view or in
fading networks with no channel state information at the
transmitters. However, this is a different line of research
and it is beyond the scope of this paper. Omniscient nodes
are studied in [29, 30] in the context of two-source two-
destination multi-layer wireless networks where they dic-
tate the asymptotic (in terms of power) behavior of these
networks.

Proof Achievability: The achievability proof for net-
works in category (a) is trivial as there is no interference
present in such networks. For networks in category (b),
a simple TDMA achieves a normalized sum rate of 1/3.
Thus, we only need to prove the result for networks in
category (c).
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Suppose none of the graphs in Fig. 11 is a subgraph of
G and that the network does not fall in category (a). This
immediately implies dmax = 2.
We have the following claim for such networks.

Claim For a 3 × 3 × 3 network with dmax = 2, the
only connectivity that results in a per layer fully connected
conflict graph is the one shown in Fig. 12.

If the per layer conflict graphs are not fully con-
nected and the network does not fall in category (a),
then a normalized sum rate of α = 1/2 is eas-
ily achievable. Moreover, from claim 1, we know that
with dmax = 2, the folded-chain structure of Fig. 12
exists in at least one of the layers. In Section 3, we
showed that a normalized sum rate of α = 1/2 is
achievable.
We note that these cases can be easily described within

the algebraic framework of Section 4. In fact, if the folded-

Fig. 12 The only connectivity that results in a per layer fully
connected conflict graph in a 3 × 3 × 3 network with dmax = 2

chain structure of Fig. 12 exists in at least one of the
layers, as shown in Section 3, the transmission can be
expressed as a valid assignment of transmit and receive
matrices. However, if the per layer conflict graphs are
not fully connected and the network does not fall in
category (a), then the scheme is a per layer interfer-
ence avoidance which can be easily expressed in terms
of a valid assignment of transmit and receive matrices.
Finally, we note that for all 3 × 3 × 3 networks, the
assignment of the transmit vectors and matrices is the
same for the linear deterministic model and the Gaussian
model.
Converse: The forward direction of the proof for net-

works in category (a) is trivial as there is no interference
present in such networks. For the reverse direction as
shown in Lemma 3 Appendix A, for any network that does
not fall into category (a), an upper bound of 1/2 on the
normalized sum capacity holds. Moreover, Lemma 3 also
provides the outer-bound for networks in category (c).
Thus, we only need to consider 3 × 3 × 3 networks in
category (b).
For 3 × 3 × 3 networks in category (b), we first

consider the forward direction. One of the graphs in
Fig. 11 is a subgraph of the network connectivity graph
G, say the graph in Fig. 11b. Assign channel gain of
n ∈ N (in linear deterministic model) and h ∈ C (in
Gaussian model) to the links of the subgraph and chan-
nel gain of 0 to the links that are not in the graph of
Fig. 11b.
With this assignment of the channel gains, we have

H
(
Wi|Yn

Ai , LAi , SI
) ≤ nεn, i = 1, 2, 3. (51)

Basically, each destination Di is only connected to relay
Ai, and each relay Ai has all the information that des-
tination Di requires in order to decode its message,
i = 1, 2, 3. Thus, relay A1 can decode W1. After
removing the contribution of S1, relay A1 is able to
decode W2. Continuing this argument, we conclude
that

n

⎛

⎝
3∑

j=1
Rj − εn

⎞

⎠ ≤ H
(
Yn
A1 |LA1 , SI

)
. (52)

The MAC capacity at relay A1, for the linear determin-
istic model, gives us

3(αn − τ) ≤ n ⇒ (3α − 1)n ≤ dτ . (53)

Since this has to hold for all values of n, and α and τ are
independent of n, we get α ≤ 1

3 . For the Gaussian model,
the MAC capacity at relay A1 gives us
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3(α log(1 + |h|2) − τ) ≤ log(1 + 3 × |h|2), (54)

which results in

(3α − 1) log(1 + |h|2) ≤ log(3) + 3τ . (55)

Since this has to hold for all values of h, and α and τ are
independent of h, we get α ≤ 1

3 . The proof for the graphs
in Fig. 11a, c is very similar.
For the reverse direction, if none of the graphs in Fig. 11

is a subgraph of the network connectivity graph G, a nor-
malized sum rate of α = 1

2 is achievable and optimal. This
completes the converse proof.

5.4 Folded-chain networks
We now consider a class of networks for which we need
to incorporate network coding in order to achieve the
normalized sum capacity with 1-local view. This class
is the generalization of the networks in Section 5.1 to
two layers.

Definition 9 A two-layer (K ,m) folded-chain network
(1 ≤ m ≤ K) is a two-layer network with K S-
D pairs and K relays in the middle. Each S-D pair i
has m disjoint paths, through relays with indices 1 +[{(i − 1)+ + (j − 1)}modK

]
where i = 1, . . . ,K, j =

1, . . . ,m.

Theorem 5 The normalized sum capacity of a two-layer
(K ,m) folded-chain network with 1-local view is α∗ = 1

m.

Proof Achievability: The result is trivial for m = 1. For
m = K , the upper bound of α = 1

K can be achieved
simply by using TDMA. Similar to Theorem 2, suppose
m < K < 2m. The extension to the general case
would be similar to Theorem 2. Here, we describe how
to construct a valid assignment of transmit and receive
matrices.
The assignment of the transmit vectors in the first

layer is identical to that of Theorem 2 as given in (35).
We note that each relay can recover all incoming sig-
nals with this assignment. For the second layer, we have
K + 1 steps.

• Steps 1 through m: Our goal is to provide destination
Di, 1 ≤ i ≤ m, during time slot i with its desired sig-
nal without any interference. Therefore, row i of any relay

connected to Di has a single 1 in the column associated
with S-D pair i and 0s elsewhere;

• Stepsm + 1 through K : During step i,m + 1 ≤ i ≤ K ,
our goal is to provide destination Di with its desired signal
(interference will be handled later). To do so, consider the
transmit matrix of any relay connected to sfDi; and place
a single 1 in the column associated with S-D pair i and the
row with the smallest index and least number of 1s;

• Step K + 1: During this step, our goal is to resolve
interference and goes through the following loop:

1. Let Lj denote the set of row indices for which there
exists at least 1 in the column associated with S-D
pair j of the transmit matrix of a relay connected to
Dj,m + 1 ≤ j ≤ K ;

2. Set j = m + 1. For any j′ �= j, j′ = 1, 2, . . . ,K , if

∑

p:Vp connected to Dj

∑

�∈Lj

TVp
(
�, Sj′

) �= 0, (57)

then make this summation 0 making any of the
TVp

(
�, Sj′

)
’s that is not previously assigned equal to

14;
3. Set j = j + 1; If j > K and during the previous loop

no change has occurred, then set all entries that are
not yet defined equal to zero and terminate;
otherwise, go to line 2 of the loop.

We now describe the K + 1 steps via an example of
(5, 3) two-layer folded-chain network of Fig. 13. In Fig. 14,
we have demonstrated the evolution of the relays’ trans-
mit matrices at the end of steps m, K, and K + 1. For this
example, the loop in step K + 1 is repeated three times.
It is easy to verify condition C.3 for destination D1, D2,

and D3. We have provided RD4 in (56), and as we can see,
by adding the first and the second row, we can have a row
that has only 1s in the columns corresponding to source
S4. Similarly, we can show that the condition holds for D5.
Converse: Assume that a normalized sum rate of α is

achievable, i.e., there exists a transmission strategy with 1-
local view, such that for all channel realizations, it achieves
a sum rate satisfying

RD1 =
S1 : V1 S2 : V4 S3 : V4 S3 : V5 S4 : V1 S4 : V4 S4 : V5 S5 : V1 S5 : V5

t = 1
t = 2
t = 2

⎛

⎜⎝
1 1 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 1
1 0 1 1 1 0 0 1 0

⎞

⎟⎠ ,
(56)
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Fig. 13 A (5, 3) two-layer folded-chain network

K∑

i=1
Ri ≥ αCsum − τ , (58)

with error probabilities going to zero as N → ∞ and for
some constant τ ∈ R independent of the channel gains.
Consider the first layer of the two-layer (K ,m) folded-

chain network, where the channel gain of a link from
source i to relays i, i + 1, . . . ,m is equal to n ∈ N (for the
linear deterministic model) and h ∈ C (for the Gaussian
model), i = 1, 2, . . . ,m, and all the other channel gains
are equal to zero. In the second layer, we set the channel
gain from relay i to destination i equal to n (for the linear
deterministicmodel) or h (for the Gaussianmodel), and all
other channel gains equal to 0, i = 1, 2, . . . ,m. See Fig. 15
for a depiction.
With this configuration, each destination Di is only con-

nected to relay Ai, and each relay Ai has all the information
that destinationDi requires in order to decode its message,
i = 1, . . . ,m. We have

H
(
Wi|Yn

Ai , LAi , SI
) ≤ nεn, i = 1, . . . ,m. (59)

At relay Am after decoding and removing the contri-
bution of Sm, relay Am is able to decode Wm−1. With a

Fig. 14 The evolution of the relays’ transmit matrices at the end of stepsm, K, and K+1. For this example, the loop in step K+1 is repeated three times
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Fig. 15 Channel gain assignment in a two-layer (K ,m) folded-chain
network. All solid links have capacity n (for the linear deterministic
model) and h (for the Gaussian model), and all dashed links have
capacity 0

recursive argument, we conclude that

n

⎛

⎝
∑

j=1,2,...,m
Rj − εn

⎞

⎠ ≤ H
(
Yn
Am |LAm , SI

)
. (60)

The MAC capacity at relay Am for the linear determin-
istic model gives us

m(αn − τ) ≤ n ⇒ (mα − 1)n ≤ dτ . (61)

Since this has to hold for all values of n, and α and τ are
independent of n, we get α ≤ 1

m . For the Gaussian model,
the MAC capacity at relay Am gives us

m(α log(1 + |h|2) − τ) ≤ log(1 + m × |h|2), (62)

which results in

(mα − 1) log(1 + |h|2) ≤ log(m) + mτ . (63)

Since this has to hold for all values of h, and α and τ are
independent of h, we get α ≤ 1

m .

5.5 Gain of coding over interference avoidance: nested
folded-chain networks

In this subsection, we show that the gain from using
coding over interference avoidance techniques can be
unbounded. To do so, we first define the following class of
networks.

Definition 10 An L-nested folded-chain network is a
single-layer network with K = 3L S-D pairs, {S1, . . . , S3L}

and {D1, . . . ,D3L}. For L = 1, an L-nested folded-chain
network is the same as a single-layer (3, 2) folded-chain
network. For L > 1, an L-nested folded-chain network is
formed by first creating three copies of an (L − 1)-nested
folded-chain network. Then,

• The i-th source in the first copy is connected to the
i-th destination in the second copy, i = 1, . . . , 3L−1,

• The i-th source in the second copy is connected to
the i-th destination in the third copy, i = 1, . . . , 3L−1,

Fig. 16 A 2-nested folded-chain network
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• The i-th source in the third copy is connected to the
i-th destination in the first copy, i = 1, . . . , 3L−1.

Figure 16 illustrates a 2-nested folded-chain network.

Consider an L-nested folded-chain network. The con-
flict graph of this network is fully connected, and as a
result, interference avoidance techniques can only achieve
a normalized sum rate of

( 1
3
)L. However, we know that for

a single-layer (3, 2) folded-chain network, a normalized
sum rate of 1

2 is achievable.
Hence, applying our scheme to an L-nested folded-chain

network, a normalized sum rate of
( 1
2
)L is achievable. For

instance, consider the 2-nested folded-chain network in
Fig. 16. We show that any transmission strategy over the
induced subgraphs can be implemented in the original

network by using only four time slots such that all nodes
receive the same signal as if they were in the induced
subgraphs.
To achieve a normalized sum rate of α = ( 1

2
)2, we split

the communication block into four time slots of equal
length. During time slot 1, sources 1, 2, 4, and 5 transmit
the same codewords as if they are in the induced sub-
graphs. During time slot 2, sources 3 and 6 transmit the
same codewords as if they are in the induced subgraphs,
and sources 2 and 5 repeat their transmit signal from the
first time slot. During time slot 3, sources 7 and 8 trans-
mit the same codewords as if they are in the induced
subgraphs, and sources 4 and 5 repeat their transmit sig-
nal from the first time slot. During time slot 4, source 9
transmits the same codewords as if it is in the induced
subgraph, and sources5, 6, and8repeat their transmit signal.

Fig. 17 a Achievable normalized sum rate of coding and interference avoidance in an L-nested folded-chain network and b the performance gain
of coding scheme over interference avoidance
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It is straightforward to verify that with this scheme, all
destinations receive the same signal as if they were in
the induced subgraphs. Hence, a normalized sum rate of
α = ( 1

2
)2 is achievable for the network in Fig. 16. There-

fore, the gain of using coding over interference avoidance
is
( 3
2
)L which goes to infinity as L → ∞. See Fig.17 for a

depiction. As a result, we can state the following lemma.

Lemma 2 Consider an L-nested folded-chain network.
The gain of using MCL scheduling over MIL scheduling is( 3
2
)L which goes to infinity as L → ∞.

The scheme required to achieve a normalized sum rate
of α = ( 1

2
)L for an L-nested folded-chain network can

be viewed as a simple extension of the results presented
in Section 4. In a sense instead of reconstructing a sin-
gle snapshot, we reconstruct L snapshots of the network.
The following discussion is just for the completion of the
results.
To each source Si, we assign a transmit vector TSi of size

(LT) × 1 where each row corresponds to a time slot. If we
denote the transmit signal of node Si in the �th snapshot
by X�

Si
, then if TSi(j) = 1 and cT + 1 ≤ j < (c + 1)T for

c = 0, 1, . . . , L− 1, then Si communicates Xc+1
Si

. The other
transmit and receive matrices can be described similarly.
Conditions C.2 and C.3 have to be satisfied for submatri-
ces of RVj corresponding to rows cT + 1, cT + 2, . . . , (c +
1)T − 1 for c = 0, 1, . . . , L − 1.

6 Conclusions
In this paper, we studied the fundamental limits of com-
munications over multi-layer wireless networks where
each node has limited channel state information. We
developed a new transmission strategy for multi-layer
wireless networks with partial channel state informa-
tion (i.e., 1-local view) that combines multiple ideas
including interference avoidance and network cod-
ing. We established the optimality of our proposed
strategy for several classes of networks in terms of
achieving the normalized sum capacity. We also demon-
strated several connections between network topol-
ogy, normalized sum capacity, and the achievability
strategies.
So far, we have only studied cases with 1-local view.

One major direction is to characterize the increase
in normalized sum capacity as nodes learn more and
more about the channel state information. We also
focused on the case in which wireless nodes know
the network connectivity globally, but the actual val-
ues of the channel gains are known for a subset of
flows. Another important direction would be to under-
stand the impact of local connectivity knowledge on
the capacity and to develop distributed strategies to

optimally route information with partial connectivity
knowledge.

Endnotes
1 Since in two time slots, any transmission strategy

for the diamond networks can be implemented in the
original network, we can implement the strategies that
achieve the capacity for any S-D pair i with full net-
work knowledge, i.e., Ci, over two time slots as well.
Hence, we can achieve 1

2 (C1 + C2 + C3). On the other
hand, we have Csum ≤ C1 + C2 + C3. As a result,
we can achieve a set of rates such that

∑3
i=1 Ri ≥

1
2Csum, and by the definition of normalized sum rate, we
achieve α = 1

2 .
2A cut � is a subset of V such that S ∈ �,D /∈ �, and

�c = V \ �.
3 The result for m = 1 is trivial since we basically have

an interference-free network.
4 If TVp

(
�, Sj′

)
is not yet assigned a 0 or 1, treat it as 0 in

the summation.

Appendix A: Outer-bound of 1/2 for networks with
interference
Lemma 3 In a K-user multi-layer network (linear deter-

ministic or Gaussian) with 1-local view if there exists a
path from Si to Dj, for some i �= j, then the normalized sum
capacity is upper-bounded by α = 1/2.

Proof Consider a path from source Si to destination Dj,
i �= j, i, j ∈ {1, . . . ,K}. Assign channel gain of n ∈ N

(for the linear deterministic model) and h ∈ C (for the
Gaussian model) to all edges in this path. For each one
of the two S-D pairs i and j, pick exactly one path from
the source to the destination and assign channel gain of n
(for the linear deterministic model) or h (for the Gaussian
model) to all edges in these paths. Assign channel gain of
0 to all remaining edges in the network G. See Fig. 18 for
an illustration.
In order to guarantee a normalized sum rate of α

with 1-local view, each source has to transmit at a rate
greater than or equal to αn − τ (for the linear deter-
ministic model) or α log(1 + |h|2) − τ (for the Gaussian
model). This is due to the fact that from each source’s
point of view, it is possible that the other S-D pairs have
capacity 0.
Suppose this rate is feasible, i.e., destinations Di and Dj

are able to decode Wi and Wj, respectively. Since there
exists a path from source Si to destination Dj, i �= j,
i, j ∈ {1, . . . ,K}, we can find a node V∗ ∈ V such that
V∗ ∈ Gij and V∗ ∈ Gjj, see Fig. 18. Node V∗ is able to
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Fig. 18 A path exists from source S1 to destination D2; all solid edges
have capacity n (for linear deterministic model) or h (for the Gaussian
model) and the rest have capacity 0

decode Wj since it has more information than destination
Dj. Node V∗ decodes Wj and removes it from the received
signal. Now, for the Gaussian model, it has statistically the
same received signal as node V̄ (a node in Gii and in the
same layer as V∗) and for the linear deterministic model, it
has the same received signal as node V̄. Node V̄ is able to
decodeWi since it has more information than destination
Di., as a result, V∗ is also able to decode Wi. This means
that there exists a node V∗ ∈ V that can decode both Wi
and Wj.
Hence, the MAC capacity at V∗ in the linear determinis-

tic model gives us

2αn − 2τ ≤ n ⇒ (2α − 1)n ≤ 2τ . (64)

Since this has to hold for all values of n, and α and τ are
independent of n, we get α ≤ 1

2 .
For the Gaussian model, the MAC capacity at V∗

gives us

2(α log(1 + |h|2) − τ) ≤ log(1 + 2|h|2), (65)

which results in

(2α − 1) log
(
1 + |h|2) ≤ 1 + 2τ . (66)

Since this has to hold for all values of h, and α and τ are
independent of h, we get α ≤ 1

2 .

Appendix B: Converse proof for case (2) of
Theorem 3
Converse proof for case (2): If a destination is only
connected to relay A2, assign channel gain of 0 to the
link from A2 to such destination. Set all the other chan-
nel gains equal to n ∈ N (in the linear deterministic
model) and equal to h ∈ C (in the Gaussian model). We
claim that with this channel gain assignment, a destination
connected to both relays should be able to decode all mes-
sages (note that with our choice of channel gains, there

is no message for destinations that are only connected to
relay A2).
Destinations that are connected to both relays receive

the exact same signal (in the linear deterministic model)
and the same codewords plus different noise terms (in the
Gaussianmodel). Therefore, since each one of them is able
to decode its message, then it should be able to decode
the rest of the messages intended for destinations that
are connected to both relays. They decode and remove
such messages from the received signal. The remaining
signal is the same codeword (plus different noise term in
Gaussian model) received at the destinations that are only
connected to relay A1. Therefore, those messages are also
decodable at a destination that is connected to both relays.
We assume 1-local view at the sources; therefore, to

achieve a normalized sum rate of α, each source should
transmit at a rate greater than or equal to αn − τ (in lin-
ear deterministic model). This is due to the fact that from
each source’s point of view, it is possible that the other
S-D pairs have capacity 0; therefore, in order to achieve
a normalized sum rate of α, it should transmit at a rate
of at least αn − τ . The above argument alongside the
MAC capacity at a destination connected to both relays,
results in

dout(A1)(αn−τ) ≤ n ⇒ (dout(A1)α−1)n ≤ dout(A1)τ .
(67)

Since this has to hold for all values of n, and α and τ are
independent of n, we get α ≤ 1

dout(A1) .
In the Gaussian case, each source should transmit at a

rate greater than or equal to α log(1+|h|2)−τ , since from
each source’s point of view, it is possible that the other S-
D pairs have capacity 0. Similar to the linear deterministic
case, we get

dout(A1)
(
α log(1 + |h|2) − τ

) ≤
log
(
1+dout(A1)×|h|2) ,

(68)

or equivalently

(dout(A1)α−1) log
(
1 + |h|2) ≤ log(dout(A1))+dout(A1)τ .

(69)

Since this has to hold for all values of h, and α and τ are
independent of h, we get α ≤ 1

dout(A1) .
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