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Abstract

In this paper, we present a game-theoretic approach for the purpose of deriving the problem of joint beamforming
and power control in cognitive radio (CR) multiple-input multiple-output (MIMO) broadcast channels (CR MIMO-BCs),
where the primary users (PUs) coexist with the secondary users (SUs) and they share the same spectrum. The
cognitive base station (CBS), which is equipped with multiple antennas, is capable of transmitting data to the SU’s
multiple-antenna receiver by employing the technology of beamforming. The proposed approach is an application of
separable games, which are formally stated by the subgames of beamforming and power control. Furthermore, based
on the model of noncooperative separate games, separable cost functions for the parameters of beamforming and
power control are also proposed, showing that these cost functions are convex. Therefore, the convex theory of a
noncooperative game can be employed to investigate the best response strategies as well as existence of Nash
equilibrium solutions. Finally, we propose an iterative algorithm to achieve the optimal Nash equilibrium of the
proposed joint beamforming subgame and power control subgame. Numerical results verify both the convergence
and the tracking properties of the proposed algorithm for variant scenarios.
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1 Introduction
The radio spectrum available for wireless communication
is extremely scarce due to the widely deployed wireless
devices and services. On the other hand, recent studies
and measurements have shown that most of the allocated
bands are used inefficiently or underutilized [1–3]. In
order to address the aforementioned challenges, a cogni-
tive radio (CR) technology has recently been proposed for
the purpose of dramatically improving spectrum utiliza-
tion and supporting more new services [4]. In cognitive
radio networks (CRNs), the licensed spectrum can be
shared with secondary users (SUs), provided that they do
not cause harmful interference to primary users (PUs). In
order to support this spectrum reuse functionality, SUs
are permitted to transmit once they detect a spectrum
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hole [5, 6]. Such schemes usually work when the spec-
trum is severely underutilized, or otherwise, SUs might
not have sufficient opportunities to get channel access.
Once PUs are found to be active, SUs must vacate the
channels. Therefore, the secondary throughput would be
significantly constrained, and the secondary systemwould
suffer from a long latency.
As a spectral-efficient technology, multiple-input

multiple-output (MIMO) is capable of providing extra
spatial dimensions for signal transmission. MIMO
technology can be employed by CRNs for the purpose
of reducing interference at the PU and satisfying the
demand of high data rate at the SU through carefully
designing transmit/receive beamforming [7, 8]. As a
result, SUs may access the licensed spectrum without
causing harmful interference at the PUs, even if the PUs
are also using the same spectrum at the same time. How-
ever, an additional spatial resource inherent in MIMO
systems becomes a challenging task in the design of effi-
cient spectrum-sharing, although this technology offers
several advantages to enhance the system performances.
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Furthermore, CR spectrum-sharing imposes several new
challenging issues on MIMO systems [9]. First, the idea of
spectrum-sharing allows simultaneous transmissions of
PUs and SUs, provided that the quality of service (QoS)
of PUs is guaranteed. Secondly, the primary systems can-
not deliberately provide their channel estimation to the
secondary systems [10]. The aforementioned challenges
may impose difficulty on pre-interference cancelation at
the SU’s transmitter side.
CR MIMO broadcast channels (CR MIMO-BCs) have

become a topic of increasing research interest for CRNs
in recent years [11–13], with secondary systems coex-
isting with the primary systems. Unlike conventional
MIMO-BCs, in CR MIMO-BCs, there exist interfer-
ence between the PU link and the SU link as well as
the multiple SUs’ interference. Furthermore, in order to
protect the primary transmission, the total-power con-
straint and the individual-interference-power constraint
for each primary receiver are considered. Since beam-
forming and power control techniques play an important
role in interference suppression and power constraint
in CR MIMO-BCs, a joint beamforming and power
control scheme over CR MIMO-BCs was proposed to
minimize the transmit power while satisfying signal-to-
interference-plus-noise ratio (SINR) targets for the SUs
and maintaining an acceptable interference level to the
PUs [14]. The development of the scheme relies cru-
cially on the BCmultiple-access channel (BC-MAC) dual-
ity result [15, 16], which is only valid for the problem
with a single-sum-power constraint. In [17], the prob-
lem of joint transmit beamforming and power control was
considered in CR MIMO-BCs, with the cognitive multi-
antenna base station (BS) being assumed to satisfy the
QoS constraints of the served SUs while protecting one
primary receiver from interference. It is also assumed
that the number of single-antenna users is less than that
deployed at the BS. Consequently, SUs may access the pri-
mary spectrum without causing harmful interference to
the PUs.
For the case of non-zero-interference-power constraint

in CR MIMO-BCs, both the SUs’ SNR constraints and
the PUs’ interference power constraints usually result in
quadratically constrained quadratic programming prob-
lems, which may not be directly solved by convex tools,
especially when there is a rank constraint. Semidefinite
programming (SDP) relaxation can be used to convert
the aforementioned problem into a convex optimization
problem by dropping the rank constraint, consequently
generating a local optimum [18]. It is shown in [19] that
under certain conditions, a new solution can be generated
from the one obtained by SDP relaxation without ruin-
ing the constraints or changing the objection function.
Actually, most of the resulting problems of joint beam-
forming and power control are inherently non-convex,

and consequently, no global optimality of an efficient solu-
tion can be guaranteed theoretically [20]. Nonetheless,
in [20], sufficient conditions were presented to constrain
some design parameters, making the joint beamforming
and power control problem become convex. Furthermore,
in [21], a semi-distributed algorithm was proposed to
obtain a local optimal solution to this problem. However,
in general scenarios, the obtained local optimum may
not be feasible for the original problem because its rank
usually does not meet the solution’s requirement. As a
result, approximation approaches may be used to generate
a feasible solution [22–26].
In this paper, we model the problem of joint power con-

trol and beamforming in CR MIMO-BCs as a noncoop-
erative game. Note that the noncooperative game theory
for economists has been extensively investigated in terms
of how rational players do not cooperate and interact in
order to reach their goals. Lately, noncooperative game
theory has also been widely applied to communications
system. For example, in [27], joint Code Division Multi-
ple Access (CDMA) codeword and power adaptation was
formulated as a separable game in MIMO CR networks,
with two corresponding subgames, i.e., the power con-
trol subgame and the codeword control subgame, being
played. Furthermore, we also formulate separable games1
to solve the problem of joint power control and beam-
forming. Based on the proposed noncooperative separate
game model, separable cost functions for beamforming
and power control parameters are also derived, showing
that these cost functions are convex. Furthermore, we use
the convex theory of the noncooperative game to inves-
tigate the best response strategies as well as existence
of the Nash equilibrium solutions. The best response
strategies of users are then obtained by constrained min-
imization of the user cost function subject to constraints
on user SINR and beamforming vector. The correspond-
ing algorithm is derived using a game-theoretic approach
in which separable cost functions with respect to beam-
forming and power are defined, such that joint beamform-
ing and power adaptation is formulated as a separable
game.
The rest of this paper is organized as follows: In

Section 2, we describe the system model and problem
statement. In Section 3, we present joint beamforming
and power control as a noncooperative game. Section 4
provides numerical simulation results and discussions.
Finally, conclusions are drawn in Section 5.
Notations: Scalar is denoted by a lowercase letter. Vec-

tor and matrix are denoted by a boldface lowercase letter
and a boldface uppercase letter, respectively. Ip denotes
the p × p identity matrix. ‖·‖ represents the Euclidean
norm of a vector. sgn[ ·] denotes sign function. For a
matrix S, tr(S), rank(S), SH , and ST denote its trace, rank,
Hermitian matrix, and transpose matrix, respectively.
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diag(s1, s2, · · · , sn) denotes a diagonal matrix with diago-
nal elements given by s1, s2, · · · , sn. For a matrix S, S ≥ 0
denotes the S is positively semidefined. {·} denotes the
subset.

2 Systemmodel and problem statement
In this paper, we present an alternative approach to
dealing with a variable number of active users and/or
QoS requirements in a CDMA system. More specifi-
cally, we consider the system model of CR MIMO-BCs,
as shown in Fig. 1, where the cognitive base station
(CBS) and K SUs share the spectrum with N PUs, with
the Nt-antenna CBS sending independent information
signals to K-different SUs. Without loss of generality,
each SU is assumed to have Nr (Nr ≤ Nt) antennas.
Without loss of generality, both the primary base sta-
tion (PBS) and PUs are assumed to be equipped with
a single antenna. We assume that there is only one PU
(N = 1) and that it is enough to demonstrate the key
aspects of spectrum-sharing while avoiding unnecessary
complications [28, 29], while it is pertinent to investi-
gate the general scenario where multiple PU and SU links
coexist [30].
In CR MIMO-BCs, due to the coupled structure of the

transmitted signals, the BC optimization problems are
usually non-convex and thus cannot be solved directly.
To tackle this difficulty, the non-convex BC problem is
transformed into a convex MAC problem via a so-called
BC-MAC duality relationship [31]. Under a single sum-
power constraint or a set of a linear power constraint, the
problem of BC can be solved as a minimax optimization
problem in its dual MAC setting [32]. The block diagram

of BC-MAC duality relationship for the transmission pro-
cess is shown in Fig. 2.
The signal x ∈ CM×1 transmitted by the CBS is

given by [33]

x =
K∑

k=1
sk

√pkuk = UPs, (1)

where s = [ s1, s2, · · · sK ]T , with sk denoting the data
stream for the kth SU (SUk) and satisfying E[ |sk|2]=
1, P = diag{√p1,

√p2, · · ·√pK }, with pk denoting the
transmitted power allocated to SUk, U =[u1,u2, · · ·uK ]∈
C
Nt×K is the downlink beamformermatrix, with uk stand-

ing for the beamformer vector of the SUk with ‖uk‖2 = 1.
Furthermore, we assume that a perfect CSI of primary and
secondary links is available at the CBS. The received signal
rk ∈ C

Nr×1 at the SUk is given by

rk = Hkx + gks0
√pp + nk

= Hksk
√pkuk︸ ︷︷ ︸

desired signal

+Hk

⎛

⎝
K∑

l=1,l �=k
sl
√plul

⎞

⎠ + s0
√ppgk + nk

︸ ︷︷ ︸
interference+noise

,

(2)

whereHk ∈ C
Nr×Nt denotes the channel between the CBS

and SUk. The vector nk ∈ C
Nr×1 is the additive white

Gaussian noise (AWGN), where nk ∼ CN(0, σ 2I). Param-

Fig. 1 The system model for CR MIMO-BCs. The CBS has Nt antennas, and each SU is equipped with Nr antennas. The PBS and PU are equipped with
a single antenna, respectively
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Fig. 2 Block diagram of BC-MAC duality relationship for the transmission process

eters pp and s0 denote the PBS transmission power and
transmission data stream, respectively. Letting gk repre-
sent the channel power gain vector from PBS to the SUk,
the right-hand side of (2) can be decomposed into three
terms: the first term is the desired signal from CBS to the
SUk, whereas the second and third terms denote the inter-
ference plus noise from the PBS and noise, respectively.
Similarly, the receive signal at the PU from PBS to PU can
be written as

rp = √ppgps0 + hTp x + np

= √ppgps0︸ ︷︷ ︸
desired signal

+hTp
K∑

k=1
sk

√pkuk + np
︸ ︷︷ ︸

Interference+noise

, (3)

where hp denotes the channel power gain vector from the
CBS to the PU and np is an AWGN item.
In (2), the covariance matrix Zk of the interference plus

noise is given by

Zk = E
[
zkzTk

]
=

K∑

l=1,l �=k
plHkuluTl H

T
k + ppgkgTk + nknTk ,

(4)

where zk = Hk

(
K∑

l=1,l �=k
sl
√plul

)
+ s0

√ppgk + nk . Since

the combined interference and noise is not white anymore
(its covariance is shown in (4)), the optimal maximum
likelihood (ML) detector is equivalent to whitening the
received signal, followed by applying the ML detector
designed for white noise [33, 34]. We can thus whiten the
received signal at the SUk by multiplying z−1/2

k with rk :

r̃k = Z−1/2
k

rk = Z−1/2
k

Hkbk
√pkuk

+ Z−1/2
k

· zk = H̃kbk
√pkuk + z̃k ,

(5)

where H̃k and z̃k are a transformed MIMO channel
matrix and Gaussian white noise after the whiten-
ing transformation, respectively. Note that the
noise-whitening filter should satisfy the condition of

E
[
z̃k z̃Tk

] = E
[
Z−1/2

k
zk ·

(
Z−1/2

k
zk
)T] = INr . The singu-

lar value decomposition (SVD) [35] of H̃k is defined as

H̃k = Uk�kVH
k , (6)

where �k ∈ C
Nr×Nt is a real-valued diagonal matrix and

can be partitioned into

�k =
[

�̂ρk×ρk 0ρk×(Nt−ρk)

0(Nr−ρk)×ρk 0(Nr−ρk)×(Nt−ρk)

]
. (7)

Furthermore, ρk = rank
(
H̃k

)
denotes the rank of

the SUk-transformed MIMO channel matrix, which is
equivalent to the number of non-zero singular values and
satisfies ρk ≤ min (Nt ,Nr). Substituting (7) into (5), we
can obtain

r̄k = �kbk
√pkūk + z̄k , (8)

Taking the partitions in (7) into account, the last (Nr−ρk)
zero components in the received signal r̄k can be ignored.
Furthermore, the last (Nt − ρk) components of the trans-
formed beamforming vector are also set to zero for the
purpose of avoiding wasting transmit power on those
dimensions of zero singular values.
Thus, we focus only on those dimensions corresponding

to strictly positive singular values of H̃k . To reduce dimen-
sionality to the rank of H̃k , we take the first ρk elements in
r̄k and obtain

r̂k = [
Iρk 0ρk×(Nr−ρk)

]
r̄k = �̂ksk

√pk
[
Iρk 0ρk×(Nt−ρk)

]
ūk

+ [
Iρk 0ρk×(Nr−ρk)

]
z̄k = �̂ksk

√pkûk + ẑk ,
(9)
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where ûk = [
Iρk0ρk×(Nt−ρk)

]
ūk and ẑk = [

Iρk 0ρk×(Nr−ρk)
]

z̄k . We can invert the channel in (9) to obtain the equiva-
lent expression [36]

r̂k,inv = �̂−1
k r̂k = bk

√pkûk + �̂−1
k ẑk . (10)

The received signal r̂k,inv by matching the filtering is
then given by

yk = ûTk · r̂k,inv = bk
√pk︸ ︷︷ ︸

desire dsignal

+ ûTk �̂−1
k ẑk︸ ︷︷ ︸

interference+noise

, (11)

where the right-hand side of (11) comprises two terms:
the first term is the desired signal and the second term
denotes interference plus noise. The SINR at SUk can be
derived as

γk(uk ,p) = pk
ûTk �̂−1

k ẑk ẑTk �̂−T
k ûk

= pk
ûTk �̂−2

k ûk
= pk

ik
,

(12)

where ik = ûTk �̂−2
k ûk is the interference function that

depends explicitly on the SUk beamformer ûk as well as all
the other users’ beamformer ûl and power pl, ∀l �= k, but
does not depend on SUk power.
In this setup, individual SUsmay adjust their beamform-

ing vector and powers in order to meet a set of specified
target SINRs {γ ∗

1 , γ ∗
2 , · · · , γ ∗

K } with minimum transmit-
ted power. The target SINRs must be admissible and
satisfy [37, 38]

K∑

k=1

γ ∗
k

1 + γ ∗
k

< Nt , (13)

where Nt is the CBS antenna numbers and denotes the
signal space of dimension.
Game theory provides a powerful framework for ana-

lyzing the problem of competitive utility maximization
in wireless communication systems and could indicate
whether a stable point, i.e., NE point, exists. A noncooper-
ative game is2 formally defined by using the set of players,
the sets of strategies (or actions) that each player may take,
and the individual player utility or cost functions.
In general, cost functions for a wireless system depend

on the transmission power as well as QoS desired by a
given user in the system. In CR MIMO-BCs, due to inter-
ference from other SUs and PU, the SU’s transmission
power needs to pay off a higher price for the purpose of
achieving the abovementioned goal. On the other hand,
the SU’s transmission at optimal power will minimize the
amount of interference. Therefore, the cost function of the
SUk can be defined as

Jk
(
pk ,

�u
)

= pk
(
ik + λ

∣∣∣hTp uk
∣∣∣
2
)
, (14)

where λ is the pricing factor. Note that a higher λ

implies that the SUs will pay off a higher price. Due

to the condition of uk = Vkūk = Vk
[
ûk0(Nt−ρk)×1

]T =[
V̂Nt×ρkVNt×(Nt−ρk)

] [
ûk0(Nt−ρk)×1

]T = V̂Nt×ρk ûk , the
cost function of the SUk in (14) can be rewritten as

Jk
(
pk , ûk

) = pk ·
(
ik + λ ·

∣∣∣hTp V̂ûk
∣∣∣
2
)

= pk
(
ûTk �̂−2

k ûk + λ · ûTk V̂ThphTp V̂ûk
)

= pk ûTk
(
�̂−2

k + λ · V̂ThphTp V̂
)
ûk = pk︸︷︷︸

fk(pk)

ûTk Sk ûk︸ ︷︷ ︸
gk(ûk)

,

(15)

where Sk = �̂−2
k + λ · V̂ThphTp V̂ is the correlation matrix

of the interference plus noise.

3 Joint beamforming and power control as a
noncooperative separable game

According to the separable game definition [39, ch. 11],
the cost function in (15) is separable with respect to the
parameters beamforming and power control, leading to a
separable game with two separate subgames: beamform-
ing subgame and power control subgame.

3.1 Noncooperative beamforming subgame
In the proposed noncooperative game, the SUs’ power
are fixed and individual SUs are capable of adjust-
ing their beamforming in their corresponding strategy
spaces tominimize their corresponding cost function. The
noncooperative beamforming subgame (NPBS) can be
modeled as

NPBS =
[
�,

{
�uk

}
, {Jk (·)}

]
, (16)

where the components of NBPS are given as follows.

1. Players SUk: k ∈ � = {1, 2, · · · ,K}.
2. Action spaces:

{
�uk

}
is the set of beamforming

strategies for SUk.
3. Cost functions: {Jk (·)} is the cost function that maps

the SUk beamforming spaces for fixed power control.

The cost function of NPBS is defined as

min Jk
(
pk , ûk

) |P=fixed , s. t. ûTk ûk = 1. (17)

Here, our aim is to investigate the existence of a Nash
equilibrium for NPBS as well as identify the best response
strategies for SUs. Before establishing the uniqueness of
the Nash equilibrium for NPBS, we state the following
formal definitions [40, 41]:
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Definition 1 (Nash equilibrium of NPBS) : The beam-
forming matrix

�

U =[�u1,
�u2, · · · �uK ] is a Nash equilibrium

of NPBS if, for every SUk, we have

Jk
(

�u1, · · · ,�uk−1,
�uk ,

�uk+1, · · · �uK
)

≤ Jk
(

�u1, · · · ,�uk−1,
�u

′
k ,

�uk+1, · · · �uK

)
, ∀�u

′
k ∈

{
�uk

}
.

(18)

Definition 2 (Best response for NPBS) : The best
response strategy of SUk beamforming to the other SUs is
the set

Bûk
k =

{
�uk ∈

{
�uk

} ∣∣∣Jk
(

�u1, · · · ,�uk−1,
�uk ,

�uk+1, · · · �uK
)

≤ Jk
(

�u1,· · ·,�uk−1,
�u

′
k ,

�uk+1,· · ·�uK

)
, ∀�u

′
k ∈

{
�uk

}}
.

(19)

Definition 3 (Convex game) : If the best response func-
tion of SUk is a standard function, then NE in this game
will be unique. The corresponding game is convex for
non-empty, closed, and bounded convex set {�uk}, if the
cost function of each SUk is in �uk for every fixed �u l,
where l �= k.
For a fixed SU’s power, the cost function in (17) is a

quadratic form in the beamforming vector �uk . Taking the
second-order derivative of the cost function with respect
to �uk , we get

∂2Jk
∂û2k

= 2pkSk , (20)

where Sk is a positive definite matrix. Evidently, the cost
function of NPBS is also convex. According to the results
proved in Theorem 1 in [42], for concave games, we can
extend in a straightforward way to prove the existence of
a Nash equilibrium point for convex games [38]. As a con-
sequence, we establish the existence of the equilibrium
point for NPBS. In order to solve the best response of the
NPBS Nash equilibrium, we defined the SUk Lagrangian
function as

Lûkk
(
ûk ,αk

) = Jk + αk
(
ûTk ûk − 1

)

= pkûTk Skûk + αk
(
ûTk ûk − 1

)
,

(21)

where αk is the Lagrange multipliers. Taking the first-
order derivative with respect to the beamformer �uk , it
leads to the eigenvector equation

∂Lûkk
∂ûk

= 2pkSkûk + 2αkûk . (22)

Let (22) equal to zero, the best response function of the
NPBS Nash equilibrium is given by

Skûk = −αk
pk

ûk , (23)

where the best response strategy of NPBS is the eigenvec-
tor �

ν k , corresponding to the minimum eigenvalue of Sk .
Thus, at the Nash equilibrium, all SUs beamforming will
be the minimum eigenvectors of Sk . In order to investigate
whether the minimum eigenvector strategy is optimal for
the SUk cost function or not, we use the Taylor series to
expand the Lagrangian function around the point which
satisfies the necessary Karush-Kuhn-Tucker (KKT) condi-
tions [38, 43]. In this expansion, the term containing the
first derivative is equal to zero, provided that the higher
order terms are neglected. Therefore, we only prove that
the second-order term of (21) in the Taylor expansion
is positive and satisfies the KKT conditions. The second
derivative of (21) is given by

Dûk
k = (−1)

∣∣∣∣∣∣∣∣

∂2Lûkk (ûk ,αk)
∂û2k

∂2Lûkk (ûk ,αk)
∂ûk∂αk(

∂2Lûkk (ûk ,αk)
∂ûk∂αk

)T
∂2Lûkk (ûk ,αk)

∂α2
k

∣∣∣∣∣∣∣∣

= (−1)
∣∣∣∣
2pkSk + 2αk 2ûk

2ûTk 0

∣∣∣∣ = 4 > 0, (24)

which is positive and satisfies the KKT conditions [32, 34].
Hence, the Nash equilibrium point with respect to the
constrained minimization of the SUk cost function is
optimum.

3.2 Noncooperative power control subgame
In the proposed noncooperative game, the SUs’ beam-
forming vectors are assumed to be fixed, and individual
SUs adjust their power in their corresponding strategy
spaces for the purpose of minimizing their corresponding
cost function. The noncooperative beamforming subgame
(NPCS) can be modelled as

NPCS = [
�, {pk}, {Jk (·)}] , (25)

where the components of the NPCS are given in the list as
follows.

1. Players SUk: l ∈ � = {1, 2, · · · ,K}.
2. Action spaces:

{
pk
}
is the set of power control

strategies for SUk.
3. Cost functions: {Jk (·)} is the cost function that maps

the SUk power control spaces for fixed beamforming
vectors.

The cost functions of NPCS is defined as

min Jk
(
pk , ûk

) ∣∣ûk=fixed s. t. pk = γ ∗
k · ik , (26)

where γ ∗
k is the SUk target SINR. In order to investigate

the existence of a Nash equilibrium for NPCS and identify



Zhang et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:137 Page 7 of 12

the best response strategies for SUs, we can define the SUk
Lagrangian function as

Lpkk (pk ,βk) = Jk + βk
(
pk − γ ∗

k · ik
)

= pkûTk Skûk + βk
(
pk − γ ∗

k · ik
)
,

(27)

where βk is a Lagrange multiplier. Taking the first-order
derivative with respect to the multiplier βk , we obtain

∂Lpkk
∂βk

= pk − γ ∗
k · ik = 0, (28)

which is a necessary condition for the constrained
optimization problem (26), indicating that the SUk-
transmitted power should match its target SINR by giving
the interference function ik , i.e.,

pk = γ ∗
k · ik , (29)

where the best response function of NPCS is obtained
from (29), and then γ ∗

k · ik is the Nash equilibrium point.
Similar to (24), we can use the Taylor series to expand
the Lagrangian function around the Nash equilibrium
point as [34]

Dpk
k = (−1)

∣∣∣∣∣∣∣∣

∂2Lpkk (pk ,βk)
∂p2k

∂2Lpkk (pk ,βk)
∂pk∂βk(

∂2Lpkk (pk ,βk)
∂pk∂βk

)T
∂2Lpkk (pk ,βk)

∂β2
k

∣∣∣∣∣∣∣∣

= (−1)
∣∣∣∣
0 1
1 0

∣∣∣∣ = 1 > 0.

(30)

In this case, the cost function of NPCS is a convex func-
tion, which is linear in pk . Thus, following [44], there exists
a Nash equilibrium. This is also optimal corresponding to
the best response strategy, which is capable of updating
power to match the target SINR.

3.3 Iterative algorithm
In this section, our proposed algorithm employs incre-
mental updates for beamforming vectors and transmitted
powers, which are designed to reduce interference at
downlink receivers subject to specified SINR and beam-
forming constraints.We firstly model the joint beamform-
ing and power control subgame (JBPS) as

JBPS =
[
�,

{
�uk × pk

}
, {Jk (·)}

]
. (31)

To find a Nash equilibrium for JBPS, we must con-
sider the two subgames (NPBS and NPCS) to assure
their corresponding best response strategies. However,
direct application of the best response strategies is not
guaranteed to converge to the optimal Nash equilibrium,
although multiple Nash equilibrium points for the JBPS
are possible to be achieved. Moreover, these best response
strategies may cause large-angle deviation during updat-
ing of beamforming vectors and/or abrupt power control

changes to meet the target SINRs. It is thus not desir-
able for a practical system, because it may increase error
probability at the receiver or even lead to connection loss
from the transmitter to the receiver. From a practical per-
spective, a more desirable approach can be employed to
vary the SUs’ beamforming and power control in small
increments.
In order to avoid the minimum eigenvector being far

away in signal space from the current beamforming vec-
tor, we use an incremental update that adapts the user
beamforming vector in the direction of the minimum
eigenvector. Hence, the beamforming vectors update of
SUk at step n of the algorithm can be given by

ûk (n + 1) = ûk (n) + mβνk (n)∥∥ûk (n) + mβνk (n)
∥∥ , (32)

where β (called beamforming pricing factor) is a constant
andm = sgn[ ûTk (n) νk(n)].
From (29), the transmitted power corresponding to user

k should match its target SINR. After the beamform-
ing update in (32), the power value matching the desired
target SINR is given by

pk(n + 1) = γ ∗
k ûk (n + 1)T Sk−2ûk (n + 1) , (33)

In order to avoid abrupt variations, the power control
updates of SUk at step n of the algorithm using a gradient-
based approach and the corresponding power control
algorithm in small increments are given by

pk(n + 1) − pk (n) = μ
(
γ ∗
k ik (n) − pk (n)

)
, (34)

where μ (0 < μ < 1) (called power pricing factor)
is a constant. The joint beamforming and power control
update algorithm is given in Table 1.

4 Numerical results and simulations
In this section, numerical simulation results are pro-
vided to validate the proposed theoretical analysis and
examine the performance of our proposed algorithms
for various scenarios simultaneously. In CR MIMO-BCs,
the channels are subject to Rayleigh fading with zero
mean and unity variance. Furthermore, 10,000 chan-
nel matrices are generated with Monte Carlo simula-
tions. We consider the CBS with six antennas (Nt =
6) and the five SUs each equipped with four antennas
(Nr = 4), and the noise covariance matrix is defined
as Wk = 0.1I4. In addition, the power control matrix
and the target SINRs are initialized as P = 0.1I5 and
γ ∗ = {2, 1.9, 1.8, 1.7, 1.5}, respectively, where the target
SINRs for SUs are set to satisfy the admissibility condi-
tion in (13). Note that the following parameter values are
used in all numerical simulations unless stated otherwise:
μ = 0.5, β = 0.5, λ = 0.1, and ε = 10−6.
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Table 1 The joint beamforming and power control update algorithm

1. Initial data: beamforming vectors ûk , power control pk , channel matrices Hk , and target SINRs γ ∗
k for SUk, noise covariance matrix W, constants β , μ

and tolerance ε.

2. Whitening the received signal at the SUk, using the rank of SUk-transformed MIMO channel matrix ρk = rank
(
H̃k

)
to calculate �̂−2

k , calculating Sk (n)

and the eigenvector
�
uk corresponding to the minimum eigenvalue of Sk . At the same time, using (32) to update ûk .

3. If ρk < Nt , adding zeros to obtain N-dimension matrix ūk , and then using uk = Vkūk to obtain original beamforming vectors.

4. Using (33) to update power.

5. If satisfy |Jk(n + 1) − Jk(n)| ≤ ε, where ε (ε > 0) is also a small-valued positive number in practice to represent an infinitely small quantity, iteration
continues. Otherwise, go to step 2.

6. Iteration termination if the optimal condition (24) is true, then stop, an optimal Nash equilibrium has been reached. Otherwise, go to step 2. Where
checking the optimal condition (24) ensures the optimal Nash equilibrium is reached and the algorithm does not stop in a suboptimal fixed point.

In Fig. 3, we examine the convergence speed of the
proposed algorithm. It is well known the optimal beam-
forming signal can be obtained through the zero-forcing
algorithm[45]. As observed from Fig. 3, after several iter-
ations, the proposed algorithm converges to the optimal
SINRs, and it can achieve better performance than zero-
forcing algorithm. Evidently, the proposed algorithm has
a fast converge speed.
Figures 4, 5, and 6 show the variations of SUs’ power,

SINRs, and cost functions for variable target SINRs. These
features are useful in CR MIMO-BCs, where different
QoS requirements may lead to the target SINR variation.
We assume that the system starts with P = 0.1I5 and
γ ∗ = {2, 1.9, 1.8, 1.7, 1.5}, making aNash equilibrium (NE)
configuration be achieved at iteration 10. We then vary
the first SU’s target SINR γ ∗

1 = 2 to new value γ ∗
1 = 1,

leading the algorithm to reach a new NE configuration at
iteration 35. Finally, we change SINR γ ∗

1 = 1 back to its
old value γ ∗

1 = 2, and the system transitions back to the
original set of target values between 30 iterations and 50
iterations. As a consequence, we can observe the system
transitions from one optimal configuration to another one
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S
IN

R
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Zero−forcing algorithm

Fig. 3 The comparison of the proposed algorithm and zero-forcing
algorithm for the target SINRs

for variable target SINRs. The algorithm can also track
variable target SINRs or a variable number of active users
in the system and is therefore useful for dynamic wireless
systems with varying QoS requirements. The beamform-
ing matrices of the proposed algorithm are respectively
obtained as follows:

S1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.7585 0.0837 −0.3258 0.5741 −0.2577
−0.3080 0.2390 −0.6237 −0.5845 0.0622
0.2925 −0.0904 −0.4672 0.1468 −0.5583
0.3001 0.3993 0.1157 0.3617 −0.3332
0.3601 −0.8310 −0.4280 0.3427 0.5017

−0.1564 0.2789 −0.3000 0.2428 0.5052

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.7557 0.0850 −0.3626 0.5656 −0.1272
−0.3072 0.2521 −0.6666 −0.5906 −0.0184
0.3024 −0.1541 −0.4034 0.1056 −0.6227
0.2922 0.3103 0.1750 0.3596 −0.3516
0.3706 −0.8515 −0.4002 0.3415 0.5217

−0.1428 0.2892 −0.2659 0.2724 0.4470

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(35)

Figures 7, 8, and 9 show the variations of SUs’ power,
SINRs, and cost functions for a variable number of SUs.
We start with five SUs, with different target SINRs γ ∗ =
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Fig. 4 The variations of SUs’ power versus the number of iterations for
variable target SINRs
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Fig. 5 The variations of SINRs versus the number of iterations for
variable target SINRs

{2, 1.9, 1.8, 1.7, 1.5} being considered. The SUs’ beamform-
ing matrix is initialized randomly, with the SUs’ power
matrix being taken as P = 0.1I5. We then assume SU5
to be inactive. The remaining active SUs keep the same
target SINR as γ ∗ = {2, 1.9, 1.8, 1.7}, which satisfies the
admissibility condition in (13). After that, we assume SU5
to be active in the system, so that the number of SUs
becomes five again, and the same target SINR as before
γ ∗ = {2, 1.9, 1.8, 1.7, 1.5} can be obtained. We note that
the system remains in a optimal configuration until iter-
ation 28 when user 5 is dropped from the system. This
implies an increase of user SINRs above their corre-
sponding targets due to decreasingmultiuser interference.
Moreover, we can observe that the proposed algorithm
finally converges towards the unique NE configuration
for a variable number of SUs. The proposed algorithm is
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Fig. 6 The variations of cost functions versus the number of iterations
for variable target SINRs
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Fig. 7 The variations of SUs’ power versus the number of iterations for
a variable number of SUs

illustrated with numerical examples obtained from simu-
lations which illustrate convergence and tracking proper-
ties of the algorithm for different scenarios This change in
system configuration triggers the adaptation stage of the
algorithm, which yields beamforming matrix S3.

S3 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.7229 0.0788 −0.3522 0.5833
−0.3171 0.1763 −0.6329 −0.5777
0.2716 −0.0232 −0.4429 0.2020
0.2871 0.5249 0.1137 0.3563
0.4435 −0.7910 −0.4277 0.3389

−0.1548 0.2468 −0.2889 0.2083

⎤

⎥⎥⎥⎥⎥⎥⎦
. (36)

As is the case with incremental algorithms, the conver-
gence speed of the algorithm depends on the values of
the corresponding increments specified by the algorithm
constants β and μ. We performed extensive simulations
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Fig. 8 The variations of SINRs versus the number of iterations for a
variable number of SUs
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Fig. 9 The variations of cost functions versus the number of iterations
for a variable number of SUs

of the proposed algorithm to study convergence to the
optimal Nash equilibrium. Figures 10 and 11 illustrate the
average number of ensemble iterations for the purpose of
converging to the optimal NE with varying β and μ. We
ran 1000 trials of the algorithm and recorded the num-
ber of ensemble iterations for convergence. It is observed
that convergence to the optimal NE is mostly determined
by the μ rather than β . Moreover, it can be seen that the
optimal NE is reached in less than 20 ensemble iterations
under constants of β = 0.5 and μ = 0.5 in all considered
scenarios.
Figure 12 shows the variations of the total interference

to PU versus the pricing factor λ. As expected, the total
interference to PU is a monotonically decreasing func-
tion of λ. This is because SU will pay off a higher price
to improve its QoS due to the interference from the other
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Fig. 10 The average number of ensemble iterations for convergence
to the optimal NE for varying β and fixed μ = 0.5
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Fig. 11 The average number of ensemble iterations for convergence
to the optimal NE for varying μ and fixed β = 0.5

SUs and PU. Furthermore, we can also observe that the
total interference to PU is minimized at λ = 0.06 and the
minimum interference of PUwill remain unchanged while
λ increases.

5 Conclusions
In this paper, the problem of joint beamforming and
power control in CR MIMO-BCs has been formulated
as a noncooperative separable game, which can be fur-
ther divided into a beamforming subgame and power
control subgame. We have investigated the best response
strategies of NE solutions in terms of its corresponding
subgames: in NPBS, players’ power control strategies are
fixed and they are subject to KKT conditions to update
their beamforming strategies. In NPCS, on the other
hand, players’ beamforming strategies are fixed and they
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Fig. 12 The variations of the total interference to PU versus the power
pricing factor λ
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update only their power control strategies subject to tar-
get SINRs. It is shown that the best response function
of NPBS can be formulated, with SUk beamforming vec-
tor corresponding to the minimum eigenvector of the
matrix Sk , whereas the best response function of NPCS is
derived to enable the transmission with a power control
that corresponds to the desired target SINR. Furthermore,
we have proposed an iterative algorithm to achieve the
optimal Nash equilibrium of JBPS. The proposed algo-
rithm is capable of tracking the variation of target SINRs
and/or number of SUs in the system and is therefore useful
for dynamic wireless systems with varying QoS require-
ment. Finally, the proposed algorithmmay achieve a faster
convergence speed by setting different parameter β and
μ values.

Endnotes
1 Separable games are a specific class of noncooperative

games where the player’s cost is a separable function of
their strategic choices [34, 39].

2 The game is noncooperative in the sense that a given
player is interested only in minimization of its individual
cost function, without paying attention to how its actions
affect the other players.
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