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Abstract

Carrier aggregation (CA) is considered to be a potential technology in next generation wireless communications.
While boosting system throughput, CA has also put forward challenges to the resource allocation problems. In this
paper, we firstly construct the energy efficiency optimization problem and prove that the function is strictly quasi
concave. Then we propose a binary search-based power allocation algorithm to solve the strictly quasi concave
optimization problem. Simulation results show that the proposed algorithm can greatly improve the system energy
efficiency while keeping low computation complexity.
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1 Introduction
The next generation wireless communication system
should meet the characteristic of 1G+ bits per second
data rate to meet the requirements of various high-
speed multimedia applications. To achieve this goal, the
use of a larger bandwidth for transmission becomes the
most direct way to boost transmission rate. But a large
segment of continuous spectrum is not available easily
for most of the wireless network operators due to the
practical constraints, which makes the effective use of a
plurality of non-continuous frequency spectrum a viable
alternative option. The international standardization
organization, for example 3GPP, has carried out research
on spectrum expansion technologies, which is called car-
rier aggregation (CA) [1]. With CA, multiple spectrum
fragments, whether continuous or not, can be aggre-
gated together to be used by single user, which can
substantially improve single user’s peak data rate.
Thanks to its high spectral efficiency, except for cogni-
tive radios [2, 3], millimeter-wave communication [4], it
is likely that carrier aggregation technology will also play
an important role in future 5G wireless networks.
Though CA technology has significantly improved the

system throughput, it has also increased the complexity of
resource scheduling for the network. In addition, due to
that multiple component carriers are used by the UE sim-
ultaneously, more transmission power will be consumed

by the eNodeB as well as by the UE [5]. Therefore,
energy-saving problem cannot be ignored for carrier
aggregation and it is necessary to reduce the extra energy
consumed by CA operation, thus reduce the carbon
emission and contribute to green communication. Up to
now, there are few researches on energy efficiency
optimization algorithm focusing on power allocation in
carrier aggregation systems. With respect to energy effi-
ciency optimization for CA systems, there are mainly two
kinds of algorithms. For the first one, it is assumed that
the collection of resource blocks occupied by each user is
known [6] and then the power allocation is performed.
For the second one, the users’ target data rate is con-
straint, and then the power and resource block are jointly
allocated [7]. Because of these non-practical assumptions,
these two kinds of optimization methods cannot be
applied to the practical systems.
In this paper, we have proposed a binary search-based

power allocation scheme for CA systems, which can
greatly improves the energy efficiency of carrier aggrega-
tion system while keep low computation complexity at
the base station.

2 System model and problem formulation
2.1 System model
Consider a single cell network model with a total of K users
and N CCs. Each CC is composed of M PRBs each with
bandwidth B. Define K ¼ 1; 2;…;Kf g, N ¼ 1; 2;…;Nf g,
and ℳ = {1, 2, … ,M} as the user set, CC set, and PRB set,
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respectively. Indicator variable ck , n ,m ∈ {0, 1} is used to in-
dicate the relationships among the CCs, the users, and the
PRBs, where value “1” indicates that PRB # m of CC # n is
allocated to user # k and value “0” indicates the opposite.
There is a rule that each PRB can only be assigned to single
user at any moment.
According to the Shannon formula, the throughput

that user # k can obtain from PRB # m of CC # n can be
written as:

rk;n;m ¼ Blog2 1þ pk;n;m � gk;n;m
BN0

! 
ð1Þ

where pk , n ,m ≥ 0 is the transmit power of the base sta-
tion, gk , n ,m is the channel gain, and N0 is additive white
Gaussian noise(AWGN) power spectral density.
Based on Eq. 1 and the definition of ck , n ,m, we can

obtain the total system throughput by summing up the
transmission rate of all the users as following:

R ¼
XK
k¼1

XN
n¼1

XM
m¼1

rk;n;m � ck;n;m ð2Þ

The power consumption of the base station is the sum
of the power consumption of each user on each resource
block of each carrier, which can be expressed as follows:

PBS ¼
XK
k¼1

XN
n¼1

XM
m¼1

pk;n;m � ck;n;m ð3Þ

where pk , n ,m is the base station’s transmit power on
PRB # m of CC # n for user k.
In addition to transmit power, there is also other

extra power consumption at the base station, such as
the energy consumption of air conditioning and cool-
ing facilities. Considering that this kind of power con-
sumption is irrelevant to the radio transmission and is
steady during a long period of time, we model it as a
constant PC. Without losing generality, the energy
efficiency is defined as the number of bits that are
transmitted per joule:

ηEE ¼ R
PBS þ PC

ð4Þ

According to Eqs. 2, 3, and 4, we can obtain the
energy efficiency optimization problem for carrier
aggregation system, which is modeled as problem P:

P : max

XK
k¼1

XN
n¼1

XM
m¼1

rk;n;m � ck;n;m

PBSþPC

st:

PBS≤Pmax C1ð ÞXK
k¼1

ck;n;m≤1; ∀n;m C2ð Þ

XN
n¼1

τ
XM
m¼1

ck;n;m

 !
≤T ; ∀k C3ð Þ

ck;n;m∈ 0; 1f g; pk;n;m≥0;∀k; n;m C4ð Þ
ð5Þ

where Pmax is the maximum transmit power of the base
station. Function τ(x) is defined as following:

τ xð Þ ¼ 1; x > 0
0; x ¼ 0

�
ð6Þ

The constraint condition C2 limits the maximum
number of CCs that each user can aggregate simultan-
eously. It is specified that by 3GPP that the largest num-
ber of CCs each user can aggregate should be no more
than 5 [1]. Therefore, throughout this paper, the value of
T is set to less than or equal to 5. The constraint condi-
tion C4 guarantees the effectiveness of the indicator
variable as well as the transmit power.

2.2 Problem analysis
Because of the existence of 0–1 indicating variables, the
scope of the constrained optimization problem pre-
sented in 5 is not convex. At the same time, since the
base station’s transmit power, PBS, appears both in the
numerator and in the denominator of the optimization
objective function, the optimization objective function is
not convex. According to the above observations, the
optimization problem as given in Eq. 5 is not a convex
optimization problem, and it is not solved by convex
optimization theory.
To solve this kind of non-convex optimization prob-

lem, reference [8] adopted a fixed value of base station
transmission power and expanded the range of indicator
variable ck , n ,m from discrete value of 0 or 1 to continu-
ous real numbers that range in [0, 1], and then convex
optimization theory was used to solve the problem [9].
Since too many approximate operations are used in the
above schemes, the accuracy of the solution is not fine
enough. Furthermore, the total number of resource
blocks is much larger for 5G carrier aggregation systems
than that of the LTE systems, so the computing com-
plexity of the scheme is too high and it cannot be effect-
ively applied in the realistic 5G communication systems.
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Assume that the total transmit power of the base sta-
tion is a fixed value, which is denoted by PBS, then the
optimization problem presented by Eq. 5 is reduced to a
resource allocation optimization problem that under
fixed given transmit power value.

Rmax PBSð Þ ¼ max
XK
k¼1

XN
n¼1

XM
m¼1

rk;n;m � ck;n;m

st:

XK
k¼1

XN
n¼1

XM
m¼1

pk;n;m � ck;n;m ¼ PBS C1ð Þ

XK
k¼1

ck;n;m≤1; ∀n;m C2ð Þ

XN
n¼1

τ
XM
m¼1

ck;n;m

 !
≤T ; ∀k C3ð Þ

ck;n;m∈ 0; 1f g; pk;n;m≥0; ∀k; n;m C4ð Þ
ð7Þ

where Rmax(PBS) represents the maximum data rate of
the carrier aggregation system under determined PBS
value. The definition of ck , n ,m, rk , n ,m, and τ function
are the same with that of optimization problem (Eq. 5).
On the basis of Eq. 7, we define the optimal energy

efficiency of the carrier aggregation system under
determined base station transmit power PBS, which is:

ηmax
EE PBSð Þ≜Rmax PBSð Þ

PBS þ PC
ð8Þ

Based on the above analysis, we can see that the
optimization problem (Eq. 5) is equivalent to solving the
following constraint optimization problem:

η�EE ¼ max
0≤PBS≤Pmax

ηmax
EE PBSð Þ ð9Þ

where the constraint conditions are the same with
that in the optimization problem (Eq. 7). For the
newly constructed optimization problem (Eq. 9), the
most direct method is traversing all of the possible
base station transmit power values to obtain the op-
timal power allocation scheme that has the highest
energy efficiency using water-filling theorem. At last,
find the power allocation scheme that has the
highest energy efficiency from all possible power
allocation schemes, then the optimization problem is
solved.

3 Power allocation scheme
Considering that the base station’s transmission
power, PBS, has real value, if we aim at traversing all
PBS values at equal intervals in [0, Pmax], the step

must be set small enough to ensure sufficient accur-
acy. That is to say, we should solve the optimization
problem for a large number of transmit power values.
Obviously, the complexity of the algorithm is too
high, so we need to optimize it with low complexity
method.
Through in-depth analysis of the optimization prob-

lem (Eq. 9), we find that ηmax
EE PBSð Þ is a strictly quasi

concave function on PBS (please see Appendix for the
proof ). It means that ηmax

EE PBSð Þ has only one local op-
timal solution, and the local optimal solution is also
global optimal. For this kind of optimization prob-
lems, the literature [8] proposed an iterative algo-
rithm based on extreme point idea, which adopted a
large number of approximate operations that greatly
increased the algorithm’s time and space overhead.
Considering this, we in this paper propose a binary
search-based power allocation algorithm (BSPAA),
which can provide high precision without too much
iterations.
Assume that the number of users in the system is K and

the user set is K ¼ 1; 2;…;Kf g. Since the resource alloca-
tion scheme has already been determined, it is not neces-
sary to distinguish which component carrier each resource
block belongs to, i.e., we can consider all of the resource
blocks as a set, which is denoted as N ¼ 1; 2;…;Nf g. De-
fined pk , n as the transmission power allocated to user #k
on resource block #n and ck , n as the indication whether
the resource block #n is assigned to user #k, where value 1
represents “yes” and value “0” represents “no”.
According to the Shannon formula, the transmission

rate of the user #k on the resource block #n can be rep-
resented by the following formula:

rk;n ¼ Blog2 1þ pk;n � gk;n
BN0

! 
ð10Þ

where gk , n is the channel gain of user #k on resource
block n. B is the bandwidth of a single resource block
and N0 is the Gauss white noise.
According to the Eq. 10, we can get the total downlink

transmission rate of the carrier aggregation system:

R ¼
XK
k¼1

XN
n¼1

rk;n � ck;n ð11Þ

According to above analysis, the energy efficiency
optimization problem under fixed base station’s
transmit power and determined resource block allo-
cation scheme is equivalent to the optimization of
the downlink transmission rate of the system, there-
fore we can get the following mathematical model:
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max
XK
k¼1

XN
n¼1

rk;n � ck;n

st:XK
k¼1

ck;n≤1; ∀n C1ð Þ

XK
k¼1

XN
n¼1

pk;n ¼ P C2ð Þ

ð12Þ

where rk , n is given by Eq. 10. Constraint C1 shows that
one resource block can only be assigned to at most one
user. Constraint C2 shows that the total transmit power
of the base station is equal to the sum of the transmit
power on all of the resource blocks.
Considering the above optimization problem, be-

cause the resource allocation scheme has been deter-
mined, the constraint C1 can be satisfied at any case
and the above optimization problem can be reduced
to the following form:

max
XK
k¼1

XN
n¼1

rk;n � ck;n

st:

XK
k¼1

XN
n¼1

pk;n ¼ P C1ð Þ

ð13Þ
It is clear that above optimization problem is a typical

convex optimization problem, and the constraint condi-
tion is equality, so we can solve the problem by water
-filling theorem [10]. Defined λk as the Lagrange multi-
plier of user #k, then we can get the transmission power
allocated to user #k on resource block #n:

p�k:n ¼
1
λk

−
N0

gk;n

 !þ
ð14Þ

In Eq. 14, x+ equals to x when x is larger than 0,
and x+ equals to 0 when x is less than or equal to 0.
The Lagrange multiplier, λk, must satisfy the following
inequality:

XK
k¼1

1
λk

−
N0

gk;n

 !þ
¼ P ð15Þ

It can be seen from Eqs. 14 and 15 that the optimal
power allocation scheme can be solved as long as the
value of Lagrange multiplier is determined. The solution
of the Lagrange multiplier is usually achieved by binary
search method, and the specific steps can be found in
[10], which is not addressed in detail here.

Binary search algorithm can determine the total
transmission power of the base station while water-
filling can solve the problem of power allocation under
fixed transmission power and determined resource allo-
cation scheme. Combining binary search algorithm and
water-filling method, we can adopt BSPAA algorithm to
achieve the optimal resource allocation results, which is
as follows:

step1. Use GCSRAA algorithm to get the optimal
resource allocation scheme A.

step2. Initialize all the parameters, including the lower
limit of transmission power Plo = 0, the upper
limit of transmission power Phi = 0, and the
transmit power adjustment step Δ.

step3. Set the initial transmit power of the base station
to Pcur = (Phi + Plo)/2.

step4. Using water-filling based power allocation
algorithm to calculate ηEE(Pcur − Δ), ηEE(Pcur),
and ηEE(Pcur +Δ), i.e., the energy efficiency under
the condition that the base station transmit
power is Pcur −Δ, Pcur, and Pcur +Δ, respectively.

step5. If the energy efficiency values obtained in step3
satisfy the following inequality:

ηEE Pcur−Δð Þ≤ηEE Pcurð Þ
ηEE Pcur þ Δð Þ≤ηEE Pcurð Þ ð16Þ

it means that the energy efficiency under transmit power
Pcur is higher than that under transmit power Pcur − Δ
and Pcur +Δ, so it can be declared that Pcur is the global
optimal solution if the adjustment step Δ is fine enough,
then jump to step6.
Else if the energy efficiency values obtained in step3

satisfy the following inequality:

ηEE Pcur−Δð Þ≤ηEE Pcurð Þ
ηEE Pcur þ Δð Þ≥ηEE Pcurð Þ ð17Þ

it means that the energy efficiency value is increasing
under transmit power Pcur, i.e., the local optimal solution
is larger than Pcur, so we can update the lower limit of
the transmission power to Pcur and then jump to step3.
Else if the energy efficiency values obtained in step3

satisfy the following inequality:

ηEE Pcur−Δð Þ≥ηEE Pcurð Þ
ηEE Pcur þ Δð Þ≤ηEE Pcurð Þ ð18Þ

it means that the energy efficiency value is decreasing
under transmit power Pcur, i.e., the local optimal solution
is smaller than Pcur, so we can update the upper limit of
the transmission power to Pcur and then jump to step3.
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step6. The algorithm ends. The current base station
transmit power is the optimal value, and the
corresponding power allocation scheme and
resource allocation scheme are also the optimal
strategy.

The algorithm is expressed in a flow chart as depicted
in Fig. 1.

4 Numerical results
This chapter focuses on the performance and complexity
analysis of the binary search-based power allocation
scheme for carrier aggregation systems, to prove that the
BSPAA algorithm can obtain fairly good results with
lower complexity. The basic parameters used in the
simulation are shown in Table 1. In this paper, two kinds
of classical resource allocation algorithms for carrier
aggregation system are evaluated and compared: nonlinear

programming resource allocation algorithm (NPRAA)
[11] and Markov-based carrier selected and resource
allocation algorithm (MCSRAA). In order to simplify the
simulation results, the normalized system energy effi-
ciency is adopted in the following simulations.
Figure 2 shows the relationship between the energy ef-

ficiency of the system and the value of the base station
transmission power under different constant extra power
consumption values. In the simulation, the transmission
power of the base station is exhaustively searched with
0.1 W search interval. As can be seen from the diagram,
the energy efficiency of the system is a strictly quasi con-
cave function of the base station transmission power.
When the base station transmission power is about
10 W, the optimal system energy efficiency can be ob-
tained. For the reason that the value of the additional
power consumption is constant and independent to
other system parameters, it cannot be optimized, so the

Fig. 1 Energy efficiency optimization algorithm for carrier aggregation systems
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bigger its value is, the smaller the energy efficiency can
be obtained by the proposed algorithm.
Figure 3 shows the relationship between the system

energy efficiency and the number of component carriers
that can be occupied by a single user in a carrier aggre-
gation system with total of 5 users. For users working in
carrier aggregation mode, the more component carriers
a user can occupy, the more resource blocks it can be
assigned, and the higher transmission rate can be ob-
tained, which can significantly improve the energy effi-
ciency of the whole system. Therefore, all the three
curves show an upward trend for the three cases that
different maximal CCs a user can occupy simultan-
eously. In addition, the more carrier frequencies are used
in the system, the more available resource blocks there

will be, so the user is more likely to be assigned to
more resources and the energy efficiency value in-
creases faster.
Figure 4 shows the relationship between the system

energy efficiency and the transmission power of the base
station, where the number of users is 5 and the max-
imum number of component carriers per user can
occupy is also 5. As can be seen from the figure, the
optimal performance can be achieved when the base
station transmission power is about 10 W for 5, 10, and
15 carrier frequency cases, which is consistent with the
observations obtained from Fig. 2. When the base sta-
tion transmit power is small, increasing the transmission
power of the base station can increase the power on the
resource blocks assigned to the user and the transmis-
sion rate can be increased accordingly, which can im-
prove the energy efficiency of the whole system. When
the base station transmission power exceeds a certain
value, the number of available resources in the system
will be limited. Therefore, the energy efficiency of the
system tends to be stable when increasing the transmis-
sion power of the base station. Based on the analysis of
Fig. 4, it can be concluded that the higher the number of
available carriers in the system, the higher the energy
efficiency of the system will be.
Figure 5 shows the relationship between the system

energy efficiency and the number of component carriers
that single user can occupy simultaneously, where there
are 15 available carrier frequencies and the base station
transmission power is 10 W. For carrier aggregation
users, the more component carriers a user can occupy,

Fig. 2 System energy efficiency v.s. transmit power

Table 1 Simulation parameters

Parameters Value

Carrier frequency 3.5 GHz

Cell layout 1 layer, 3 sectors

Channel model SCME model

Scenario Urban macro

Carrier bandwidth 20 MHz

Maximal transmit power 49 dBm

Minimum BS-UE distance 35 m

Cell range expansion parameter 0 dB

Service type Full buffer

TTI length 1 ms

TTI number 5000

Gao et al. EURASIP Journal on Wireless Communications and Networking  (2017) 2017:140 Page 6 of 10



the more resource blocks can be assigned, and the
higher transmission rate can be obtained, thereby the
energy efficiency of the system can be significantly im-
proved. Therefore, all the three curves show an upward
trend. In addition, it can be seen from the figure that the
energy efficiency optimization algorithm BSPAA pro-
posed in this paper has achieved an average performance
improvement of 11% compared with the NLPRAA

algorithm, and an average performance improvement of
25% is obtained with respect to the MCSRAA algorithm.
It can be concluded that the energy efficiency op-
timization algorithm proposed can get better results
than the existing energy efficiency optimization algo-
rithm, and has higher energy efficiency.
Figure 6 shows the computational complexity com-

parison between the energy efficiency optimization

Fig. 4 System energy efficiency v.s.BS transmit power with different number of available carrier frequencies

Fig. 3 System energy efficiency v.s. maximal CC that single user can occupy simultaneously
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algorithm and the other two baseline algorithms. For the
optimization algorithm proposed in this paper, because
the resource allocation algorithm and the power allocation
algorithm are executed independently, the total iteration
number of the algorithm is the sum of that for the two
sub algorithms. As can be seen from the figure, the algo-
rithm proposed in this paper can reach 90% of the optimal
performance after about 300 iterations, and the optimal
performance can be obtained after about 400 iterations.
However, the other two baseline algorithms can only

achieve the optimal solution after 600 iterations, and the
energy efficiency is far worse than the algorithm proposed
in this paper. Therefore, it can be proved that the pro-
posed algorithm can achieve better optimization results
while ensuring low computation complexity.

5 Conclusions
This paper presents the problem of power allocation in
carrier aggregation systems. Energy efficiency is adopted
as the evaluation metric, and it is found that the

Fig. 6 System energy efficiency v.s. iteration times

Fig. 5 System energy efficiency v.s. maximal CC that a single user can occupy simultaneously
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function of energy efficiency optimization is strictly
quasi concave, which cannot be solved easily with trad-
itional optimization method. We propose a binary
search-based power allocation scheme, which can sig-
nificantly improve the system energy efficiency while
keeping low computation complexity. Future work will
consider jointly optimization of component carrier selec-
tion, radio resource allocation, and power allocation to
further improve the system performance.

6 Appendix
Firstly, we give the definition of strictly quasi concave
function: for function F(x)and independent variable x,
define the super set of x as Sα≜ xjF xð Þ≥α; x≥0f g, where α
is a real number greater than 0. For any x1∈Sα , x2∈Sα ,
and any real number in the interval (0, 1), if βx1 þ 1−βð Þ
x2∈Sα holds, then the function F(x) is strictly concave
on x.
We will prove that ηmax

EE PBSð Þ is a strictly quasi concave
function on PBS according to the definition of strictly
quasi concave function. The certification process is as
following:
Let the super set of independent variable PBS for func-

tion ηmax
EE PBSð Þ be Sα≜ PBSjηmax

EE PBSð Þ≥α; PBS≥0
� �

, where
α is a real number greater than 0 and the definition of
PBS is the same as above. According to the Eqs. 4, 5, 6,
and 7, we substitute the expression ηmax

EE PBSð Þ into Sα

and perform a series of simplification and transposition,
we can get Sα ¼ PBSjRmax PBSð Þ−αPBS−αPC≥0; PBS≥0f g .
Let PBS1 ; PBS2∈Sα , and β be any real number in the inter-
val (0, 1), next we will prove that βPBS1 þ 1−βð ÞPBS2 also
belongs to Sα.
For ηmax

EE PBSð Þ, we have:

ηmax
EE βPBS1 þ 1−βð ÞPBS2ð Þ ¼ Rmax βPBS1 þ 1−βð ÞPBS2ð Þ

−α βPBS1 þ 1−βð ÞPBS2ð Þ−αPC

ð19Þ
We can see from Eqs. 4–1) that Rmax(PBS) and PBS are

logarithmic, so Rmax(PBS) is a strictly convex function on
PBS, therefore we can get the following inequality:

Rmax βPBS1 þ 1−βð ÞPBS2ð Þ≥Rmax βPBS1ð Þ þ Rmax 1−βð ÞPBS2ð Þ
ð20Þ

Substitute Eq. 20 into the Eq. 19, we can have the
following inequality:

Rmax βPBS1 þ 1−βð ÞPBS2ð Þ−α βPBS1 þ 1−βð ÞPBS2ð Þ−αPC≥
Rmax βPBS1ð Þ þ Rmax 1−βð ÞPBS2ð Þ−α βPBS1 þ 1−βð ÞPBS2ð Þ−αPC

ð21Þ
Based on the inequality (Eq. 21) and inequality

(Eq. 19), the following inequalities are obtained:

ηmax
EE βPBS1 þ 1−βð ÞPBS2ð Þ≥Rmax βPBS1ð Þ þ Rmax 1−βð ÞPBS2ð Þ

−α βPBS1 þ 1−βð ÞPBS2ð Þ−αPC

ð22Þ

By splitting, transposing, and merging operations to the
inequality (Eq. 22), we can get the following inequalities:

Rmax βPBS1 þ 1−βð ÞPBS2ð Þ−α βPBS1 þ 1−βð ÞPBS2ð Þ−αPC≥

Rmax βPBS1ð Þ−αβPBS1−αβPCð Þ þ
Rmax 1−βð ÞPBS2ð Þ−α 1−βð ÞPBS2−α 1−βð ÞPCð Þ

ð23Þ
Because Rmax(PBS) and PBS are logarithmic, for any real

number 0 < β < 1, we have:

Rmax βPBSð Þ≥βRmax PBSð Þ ð24Þ
Substitute Eq. 24 into the inequality Eq. 23, we can get

the following inequality:

Rmax βPBS1 þ 1−βð ÞPBS2ð Þ−α βPBS1 þ 1−βð ÞPBS2ð Þ−αPC≥

β Rmax PBS1ð Þ−αPBS1−αPCð Þ þ 1−βð Þ Rmax PBS2ð Þ−αPBS2−αPCð Þ
ð25Þ

Because PBS1 ; PBS2∈Sα , i.e., both of PBS1 and PBS2
belong to the super set Sα defined above, the following
inequality holds:

β Rmax PBS1ð Þ−αPBS1−αPCð Þ≥0
1−βð Þ Rmax PBS2ð Þ−αPBS2−αPCð Þ≥0 ð26Þ

Substitute Eq. 26 into the formula Eq. 25,we can get
the following inequality:

Rmax βPBS1 þ 1−βð ÞPBS2ð Þ−α βPBS1 þ 1−βð ÞPBS2ð Þ−αPC≥0

ð27Þ
So it is proved that βPBS1 þ 1−βð ÞPBS2∈Sα , that is to

say, βPBS1 þ 1−βð ÞPBS2 also belongs to super set Sα ,
which proves the strictly quasi concave characteristic of
ηmax
EE PBSð Þ on PBS. Therefore, ηmax

EE PBSð Þ is a strictly quasi
concave function on PBS.
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