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Abstract

Although the Micro Electro Mechanical System (MEMS) sensors are capable of providing short-term high positioning
accuracy, every positioning result significantly depends on the historical ones, which inevitably leads to the long-term
error accumulation. The Bluetooth Low Energy (BLE) is independent of the accumulative error, but the positioning
accuracy is suffered by the irregular jump error resulted from the Received Signal Strength Indicator (RSSI) jitter.
Considering the requirement of accurate, seamless, and consecutive positioning by the existing commercial systems,
we propose a new integrated BLE and MEMS Wireless (BMW) system for multi-floor positioning. In concrete terms, first
of all, the way of fingerprint database construction with the reduced workload is introduced. Second, the fingerprint
database is denoised by the process of affinity propagation clustering, outlier detection, and RSSI filtering. Third, the
robust M estimation-based extended Kalman filter is applied to estimate the two-dimensional coordinates of the
target on each floor. Finally, the barometer data are used to calculate the height of the target. The extensive
experimental results show that the proposed system can not only restrain the accumulative error caused by the
MEMS sensors but also eliminate the irregular jump error from the BLE RSSI jitter. In an actual multi-floor environment,
the proposed system is verified to be able to achieve the Root Mean Square (RMS) positioning error within 1 m.
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1 Introduction
At present, the indoor positioning has broad application
such as searching the cars and elevators in underground
parking lot and pushing advertisements or discounts to
the customers in large shopping malls. The Global Navi-
gation Satellite System (GNSS) [1–3] well meets the pre-
cision requirement of outdoor positioning, but in indoor
environment, its performance may drastically deterio-
rate due to the serious signal blocking and multipath
effect. In response to this compelling problem, a batch
of researchers put forward a variety of indoor position-
ing systems based on the Bluetooth Low Energy (BLE)
[4], Ultra Wideband (UWB) [5], Radio Frequency Iden-
tification (RFID) [6], Micro Electro Mechanical System
(MEMS) sensors [7], and Wireless Local Area Network
(WLAN) [8, 9].

*Correspondence: wangbin-cq@foxmail.com
1Chongqing Key Lab of Mobile Communications Technology, Chongqing
University of Posts and Telecommunications, Chongqing 400065, China
Full list of author information is available at the end of the article

The hardware cost, range limitation, and long-term
error accumulation limit the development of the con-
ventional positioning systems. Among them, the MEMS
sensors can be used to perform the Pedestrian Dead
Reckoning (PDR) [7, 10] by using the inertia and heading
information though it contains the accumulative error.
The BLE Received Signal Strength Indicator (RSSI)-based
positioning system can meet the requirement of low
power, low cost, and no accumulative error though the
RSSI jitter caused by multipath effect may seriously
decrease the positioning accuracy.
In recent decade, various integrated systems have been

significantly concerned to improve positioning accuracy
[11, 12]. The systems [13–15] using Kalman and parti-
cle filter to achieve the WLAN/MEMS fusion positioning
reduce the accumulative error of MEMS sensors, but they
fail to constrain the WLAN RSSI jitter. To solve the RSSI
jitter problem, the authors in [16] build the observation
equation of the RSSI according to the signal propagation
model, which is difficult to be constructed in the complex
indoor environment. In [17], the authors design an indoor
positioning system by fusing the WLAN and Magnetic
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Angular Rate and Gravity (MARG) data to solve the prob-
lems of RSSI jitter and accumulative error. However, this
system cannot achieve the three-dimensional positioning,
which is significantly required by the current commercial
applications.
This paper presents a new integrated BMW system

for multi-floor positioning. First of all, the fingerprint
database is optimized by using the affine propagation clus-
tering, outlier detection, and RSSI filtering algorithms.
Specifically, the fingerprint denoising is performed to
reduce the probability of large errors of BLE positioning,
and then, the gait detection approach is used to estimate
the walking speed and heading angle of the target based
on the extended Kalman filter (EKF). Second, the robust
EKF is designed to restrain the accumulative error caused
by the MEMS sensors, as well as eliminate the irregular
jump error from the BLE RSSI jitter. Finally, according
to the barometer data and geographical location informa-
tion, the height of the target is calculated to achieve the
multi-floor positioning.

2 Related work
In this section, we will briefly introduce some related work
in three aspects of fast fingerprint database construction,
fusion positioning, and multi-floor positioning and also
address the corresponding limitations.

Fast fingerprint database construction Although the
fingerprint positioning has been studied for a long time,
it still cannot be applied widely since its offline phase
generally spends a huge amount of time on finger-
print database construction. By using the conventional
approaches, the target area is calibrated with a batch of
equally spaced grids, and then, the fingerprints are col-
lected at the grids point-by-point [18, 19]. The involved
time cost rises significantly with the increase of environ-
mental size, which hinders the development of fingerprint
positioning. In [20], the authors propose to construct
an incomplete fingerprint database with realistic cover-
age gaps, and meanwhile study the performance of sev-
eral interpolation and extrapolation approaches used for
recovering the missing fingerprints. In [21], according to
the distribution of Reference Points (RPs) with respect
to each Wi-Fi Access Point (AP), the signal propagation
model is constructed as a function of spatial structure,
which can be used to construct the fingerprint database
quickly.

Fusion positioning At present, the common single posi-
tioning systems are difficult to adapt to the complex
indoor environment. In response to this compelling prob-
lem, a variety of fusion positioning systems are designed
to compensate for the shortcomings of each single one.
In [22], the data fusion from both the proprioceptive and

exteroceptive sensors, like the odometer, Global Position-
ing System (GPS), Light Detection and Ranging (LIDAR),
and vision, as well as the knowledge of road map is con-
sidered to perform the fusion positioning. In [23], the
authors conduct data fusion by integrating the RSSI and
Time difference of Arrival (TDOA) measurements to esti-
mate the superior locations of the target. Specifically,
by employing the nonparametric estimation approach,
which is robust to the variations of measurement noise
and quantization, it is addressed that the fusion position-
ing is more robust and higher accurate and has lower
implementation cost.

Multi-floor positioning Themainstream of indoor posi-
tioning systems mainly focuses on the horizontal coor-
dinate estimation, whereas little research has been done
on the vertical coordinate estimation. In [24], the authors
propose a WiFi-based indoor positioning system that
takes both the characteristics of trilateration and scene
analysis into account. The authors in [25] rely on the path
loss model to construct a light fingerprint radio map to
find the target floor. However, these systems are applied
to only determine the floor on which the target is most
probably located, but they cannot estimate the accurate
locations of the target.

3 System description
3.1 System framework
As shown in Fig. 1, our system contains four modules,
BLE fingerprint positioning module, speed and heading
calculation module, EKF module, and height calculation
module. According to the output of accelerometer, gyro-
scope, and magnetometer, the gait detection and quater-
nion calculation are carried out to estimate the walking
speed and heading angle of the target, which will be sent
to the PDR to perform localization. Then, the localiza-
tion results by the PDR andWeighted KNearest Neighbor
(WKNN) are selected as the input of the EKF to obtain
the two-dimensional coordinates of the target. After that,
based on the output of barometer, two-dimensional posi-
tioning result, and geographical location information, the
height of the target is inferred.

3.2 BLE fingerprint positioning
BLE fingerprint positioning includes two phases, offline
phase and online phase. The main tasks of offline phase
are the coordinate calibration and fingerprint database
construction with respect to the target environment. In
addition, the affinity propagation clustering, outlier detec-
tion, and RSSI filtering are carried out to eliminate the
large errors as well as optimize each sub-database. The
main task of online phase is to match the newly collected
RSSI data against the fingerprint database to obtain the
positioning result. This process is shown in Fig. 2.
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Fig. 1 Framework of BLE/MEMS fusion positioning system

3.2.1 Fast fingerprint database construction
The data in the conventional fingerprint database are col-
lected point-by-point, which limits the application of fin-
gerprint positioning due to the requirement of huge time
cost. In response to this compelling problem, we propose a
new fast fingerprint database construction approach. First
of all, the floor plan of the target environment is imported
into the terminal as a map. Second, the map is repre-
sented by a batch of straight lines (labeled with dash blue
lines) with the starting and ending points (labeled with red
triangles), as shown in Fig. 3.
Supposing that the pixel size of the map is mmapx by

mmapy and the actual size of the target environment isMx

byMy, we can obtain the relations of the pixels and actual
locations in (1).

{
Xi = xmapi ∗ Mx

mmap
+ X0

Yi = ymapi ∗ My
mmap

+ Y0
(1)

where (X0,Y0) is the actual origin location, which is rep-
resented by (0, 0) in the map. (xmapi , ymapi) and (Xi,Yi) are
the coordinates of the ith point in themap (with the length
mmapx and widthmmapy) and actual environment (with the
lengthMx and widthMy) respectively.

Fig. 2 Process of BLE fingerprint positioning
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Fig. 3 Floor plan imported into the terminal

We construct the standard fingerprint database by

{
Xi = X0 + Lstep_x ∗ ii ∈ 1, · · · , |Xend−X0|

Lstep_x
Yj = Y0 + Lstep_y ∗ jj ∈ 1, · · · , |Yend−Y0|

Lstep_y
(2)

where Lstep_x and Lstep_y are the physical intervals in the X
and Y directions, respectively, in the actual environment,
which are normally set as Lstep_x = Lstep_y.
By taking the walking path from (x0, y0) to (xend, yend)

(in Fig. 3) as an example, a volunteer starts walking after
labeling (x0, y0) on the screen of the terminal and then
labels (xend, yend) on the screen of the terminal when
he/she stops walking. During the walk, (xi, yi) is notated
as the ith location, which is calculated by

⎧⎪⎪⎨
⎪⎪⎩

xi = x0 +
i∑

n=1
vn ∗ sin(θn) + εxi

yi = y0 +
i∑

n=1
vn ∗ cos(θn) + εyi

(3)

where vn and θn are the walking speed and heading.
εxi = vi sin(θi)∑

vi sin(θi)
(L sin(�1) − Lpdr sin(�2)) and εyi =

vi cos(θi)∑
vi cos(θi) (L cos(�1) − Lpdr cos(�2)) are the error com-

pensation in the X and Y directions respectively. L and

Lpdr =
N∑
i=1

vi are the actual distance and the estimated one

by the PDR from the starting to ending locations.�1 is the
heading of (xend, yend) relative to (x0, y0).�2 is the heading
of (xN , yN ) relative to (x0, y0).
Since the RSSI in standard fingerprint database may be

lost when the walking speed is too fast, we propose to rely
on the interpolation approach to estimate the lost RSSI by
propagation modeling, as shown in Fig. 4.
We use the propagation model below to describe the

relations of the RSSI and distance from each anchor to the
terminal.

Pd = −10Nt log d + Pd0 (4)

where Pd0 is the RSSI with 1-m distance from the anchor.
d is the distance from the anchor to terminal. Nt is the
path loss exponent.
Figure 5 shows two groups of test points indicating the

variation of RSSI with respect to the distance from an
anchor to the terminal. As can be seen from Fig. 6, the
constructed propagation model matches the variation of
RSSI well when the distance is within 10 m.
We randomly select Nm terminal locations to train the

path loss exponent for each anchor by⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Pd1 = −10N1 log ‖D1 − D0‖2 + Pd0
Pd2 = −10N2 log ‖D2 − D0‖2 + Pd0

...
Pdi = −10Ni log ‖Di − D0‖2 + Pd0

...
Pdm = −10Nm log ‖Dm − D0‖2 + Pd0

(5)

Fig. 4 RSSI interpolation
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Fig. 5 Variation of RSSI with respect to the distance

where the notation “‖•‖2” represents the 2-norm opera-
tion. D0 is the anchor location. Di is the ith location of the
terminal. Pdi is the RSSI at Di. We calculate N = ∑

Ni/m
as the path loss exponent. Thus, the lost RSSI at Di+1 is
estimated by

Pdi+1 = −10N log ‖Di+1 − D0‖2 + Pd0 (6)

3.2.2 Outlier detection
We rely on the affinity propagation clustering [26] to
classify the off-line RSSI data and then construct each
cluster as a sub-database, as shown in Table 1. In online
phase, we match the newly collected RSSI data to the
cluster center of each sub-database and then select the
sub-database with the best matching to perform posi-
tioning. To achieve this goal, we define density(x, k) and
relative_density(x, k) as the density and relative density

Fig. 6 Result of propagation modeling

Table 1 Pseudo-code of sub-database construction

Algorithm: Sub-database construction

Data: Raw fingerprint database

Result: sub-databases

1 cluster ← AP_Cluster (input);

2 for each clusteri ∈ clusters do

3 for each pointj ∈ clusteri do

4 if relative_density
(
pointj

)
>Threshold

5 Outliers are reassigned to the nearest neighbor;

6 back to Step 1;

7 end

8 end

9 Obtain the cluster center;

10 end

11 Construct each cluster as a sub-database;

[27] of the newly collected RSSI x with respect to its k
nearest neighbors respectively.

density(x, k) =
⎛
⎜⎝

∑
y∈N(x,k)

distance(x, y)

|N(x, k)|

⎞
⎟⎠

−1

(7)

relative_density(x, k) = density(x, k)∑
y∈N(x,k)

density(y,k)
|N(x,k)|

(8)

where distance(x, y) is the distance between x and y.
N(x, k) is the set of k nearest neighbors with respect to
x.
∣∣N(x, y)

∣∣ is the number of RSSI data in N(x, k).The
pseudo-code of sub-database construction is shown in
Table 1.
clusteri is the ith cluster. pointj is the jth point. Thresh-

old is the threshold of relative density.

3.3 Speed and heading estimation
We integrate the data from the 3-axis accelerometer, 3-
axis gyroscope, and 3-axis magnetometer to estimate the
walking speed and heading of the target (Fig. 7). First of
all, the median and mean filters are fused to eliminate
the device noise. Second, the low-pass filtering is per-
formed on the output of 3-axis accelerometer to detect the
gait and consequently estimate the walking speed. Finally,
the data from the 3-axis accelerometer, 3-axis gyroscope,
and 3-axis magnetometer are combined with the posture
matrix [28] to estimate the heading.

3.3.1 Speed estimation
We calculate the step size of the kth step by Pk =
CSk 4

√
Anormmax − Anormmin , where the maximum and min-

imum acceleration respectively are Anormmax and Anormmin .
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Fig. 7 Process of speed and heading estimation

The parameter CSk is trained by using the Back Propa-
gation (BP) neural network [29, 30]. Specifically, the step
frequency FSk and heightHSk are selected as the input and
CSk is selected as the output to train the coefficients Vij
and Wj. The number of neurons on hidden layer is 11, as
shown in Fig. 8.
With the pedestrian walking, the output of accelerom-

eter Anorm =
√
a2xb + a2yb + a2zb generally changes in

sinusoid mode [28], where axb , ayb , and azb are the out-
put of accelerometer in X, Y, and Z directions respectively.
A step is detected when Anorm reaches a local maximum
higher than a given threshold A0. By setting the sam-
pling frequency as fs and number of samples between two

Fig. 8 Structure of BP neural network

adjacent maximum as �N , the time duration of the kth
step is tk = �N

fs and the corresponding estimated speed is

vk = Pk
tk

= Pkfs
�N

(9)

3.3.2 Heading estimation
We define the carrier and geographic reference coordi-
nate systems as x-y-z and ENU, where E, N, and U axes
point to the geographic east, north, and sky directions,
respectively, as shown in Fig. 9.
The coordinate transformation from the carrier to geo-

graphic reference coordinate systems is described as⎡
⎣ xb
yb
zb

⎤
⎦ = Tb

n (q)

⎡
⎣ xn
yn
zn

⎤
⎦ (10)

where Tb
n (q) is the posture matrix. q = q0+q1i+q2j+q3k

is the quaternion.
[
xb yb zb

]T and
[
xn yn zn

]T are the
coordinates of the target in the carrier and geographic ref-
erence coordinate systems respectively. According to the
relations of the posture matrix and quaternion [31], we
have

Tb
n (q)

=
⎡
⎣ q20 + q21 − q22 − q23 2(q1q2 + q0q3)

2(q1q2 − q0q3) q20 − q21 + q22 − q23
2(q1q3 + q0q2) 2(q2q3 − q0q1)

2(q1q3 − q0q2)
2(q2q3 + q0q1)

q20 − q21 − q22 + q23

⎤
⎦

(11)

Using the rigid body angular differential equation, we
obtain

dq
dt

= 1
2
q ⊗ w (12)

where w = 0+wxi+wyj+wzk is the angular velocity rota-
tion quaternion. wx, wy, and wz are the angular velocities

Fig. 9 Geographic reference coordinate system
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in X, Y, and Z directions in the carrier coordinate system.
The notation “⊗” represents the quaternion multiplica-
tion, which is also used in [31]. We rewrite the formula
above in matrix form as

dq
dt

= 1
2

⎡
⎢⎢⎣

0
wx
wy
wz

−wx
0
−wz
wy

−wy
wz
0
−wx

−wz
−wy
wx
0

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
q0
q1
q2
q3

⎤
⎥⎥⎦= 1

2�(w)�q

(13)

We discretize the formula above as

{ �qm+1 = (
I + 1

2� (wTs)
) �qm, m = 0, 1, · · ·

�q0 = �q(0) (14)

where Ts is the sampling interval. I is the unit matrix. �q(0)
is the initial quaternion. m is the index of samples. We
normalize the quaternion as

�qm = �qm∥∥�qm∥∥ = �qm√
q20 + q21 + q22 + q23

(15)

The posture matrix can be updated based on the quater-
nion obtained in (12). However, the quaternion may not
be accurate due to the error of the gyroscope. To solve this
problem, we construct the quaternion equations of status
and observation as follows.

{ �qm+1 = Am�qm + Wm
Ym+1 = h(�qm+1,Vm+1)

(16)

where Am = (
I + 1

2� (wTs)
)
is the transition matrix of

status. Wm is the process noise. Vm+1 is the observation
noise. The observation variable Ym+1 is calculated by

Ym+1 =
[
am+1
cm+1

]

=
[
Tb
n (�qm+1) 0

0 Tb
n (�qm+1)

] [
g
L

]
+ Vm+1

(17)

where am+1 = [
axb ayb azb

]T and cm+1 =[
cxb cyb czb

]T are the output of accelerometer and mag-
netometer, respectively, in the carrier coordinate system.
g = [

0 0 1
]T is the normalized output of accelerometer

when the target is static in the geographic reference
coordinate system. L = [

0 by bz
]T is the output of mag-

netometer in the geographic reference coordinate system,
in which by =

√
c2xb + c2yb and bz = czb . Based on (14), we

can calculate that

�m+1 = ∂h(�qm+1,Vm+1)
∂�qm+1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−2q2 2q3
2q1 2q0
2q0 −2q1

2(q3by − q2bz) 2(q2by + q3bz)
2(q0by + q1bz) −2(q1by − q0bz)

−2(q1by − q0bz) −2(q0by + q1bz)
−2q0 2q1
2q3 2q2

−2q2 2q3
2(q1by − q0bz) 2(q0by + q1bz)
2(q2by + q3bz) −2(q3by − q2bz)
2(q3by − q2bz) 2(q2by + q3bz)

⎤
⎥⎥⎥⎥⎥⎥⎦

(18)

Finally, the heading of the target is estimated by

ϕ = arctan
(

− 2(q1q2 + q0q3)
q20 + q21 − q22 − q23

)
(19)

3.4 Robust EKF
3.4.1 EKF
Wechoose the geographic east and north directions, walk-
ing speed, and heading to construct the equation of status
below.

Xt = f (Xt−1,Wt−1)

=

⎡
⎢⎢⎣
1 0 sin(ϕt−1) 0
0 1 cos(ϕt−1) 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
Et−1
Nt−1
vt−1
ϕt−1

⎤
⎥⎥⎦

+Wt−1

(20)

where Xt = [Et Nt vt ϕt]T. Et−1 and Nt−1 are the geo-
graphic east and north directions, respectively, at moment
t − 1. vt−1 and ϕt−1 are the walking speed and head-
ing, respectively, in the geographic reference coordinate
system at moment t − 1. Wt−1 is the Gaussian white
noise with zero mean at moment t − 1. E

[
WiWT

j

]
=

Q(i, j)δij, i, j = 1, · · · , o, in which o is the number of esti-
mation variables, δij is the Kronecker function, and Q is
the covariance matrix of process noise.
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The output of BLE fingerprint positioning and the esti-
mated speed and heading are selected as the observation
variable to construct the equation of observation below.

Zt = h(Xt ,Vt)

=

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
Et
Nt
vt
ϕt

⎤
⎥⎥⎦+ Vt

(21)

where Zt = [
Eblet Nble

t vmems
t ϕmems

t
]T. Eblet and Nble

t are
the geographic east and north directions by the BLE fin-
gerprint positioning at moment t. vmems

t and ϕmems
t are

the estimated speed and heading, respectively, by using
the MEMS sensors at moment t. Vt is the Gaussian white
noise with zero mean at moment t. E

[
V (i)VT (j)

] =
R(i, j)δij, i, j = 1, · · · , n, in which n is the number of
observation variables and R(R > 0) is the covariance
matrix of observation noise.

3.4.2 Robustness enhancement
Considering that the change of the weighting factors of
the IGG3 [32] is slight, we first define the IGG3 weight
function below to enhance the robustness of the EKF. We
first define the IGG3 weight function below.

p̄i =

⎧⎪⎨
⎪⎩
pi
pi k0|ui|

(
k1−|ui|
k1−k0

)2
0

k0 <

|ui| ≤ k0
|ui| ≤ k1
|ui| > k1

(22)

where pi and p̄i are the ith diagonal elements in the weight
matrix P = R−1 and equivalence weight matrix P̄ respec-
tively. k0 ∈ [1, 1.5] and k1 ∈ [2.5, 3] are the weights. The
normalized residual vector ui is calculated by

ui = vi
σvi

(23)

where vi is the ith element in the n× 1-dimensional resid-
ual vector of observation V. σvi = σ0√qvi

, in which qvi is the
reciprocal of vi and σ0 is the variance factor [32].
Then, we apply the M estimation approach to enhance

the robustness of the EKF. The main difference between
the conventional EKF and robust one is the updating of
filter gain, as shown below.

K̄ (t) = P (t, t − 1)HT (t)×[
H (t)P (t, t − 1)HT (t) + R̄ (t)

]−1 (24)

where K̄ (t) is the filter gain at moment t. P (t, t − 1) is the
one-step prediction of the matrix of error covariance at
moment t. H (t) is the matrix of observation at moment t.
R̄ (t) = B̄−1

t is the covariance matrix of observation noise,
in which B̄t is the equivalent weight matrix.

3.5 Height estimation
3.6 Pressure measure
The principle of barometric pressure measure is that the
atmospheric pressure in the gravitational field decreases
as the height increases [33]. Thus, the altitude of the target
can be estimated by using the barometric pressure mea-
sured by the barometer. When the height of gravity, H,
is less than 11 km, the standard pressure formula can be
described as

H = 44330.76
[
1 −

(
Ps

101.325

)0.190255
]

(25)

where Ps is the pressure value.
Finally, the height of the target is estimated by

h = R × H
R − H

(26)

where R = 6356766 m is the radius of earth. Since R 
 H ,
we can obtain R

R−H ≈ 1 and h ≈ H .

3.7 Algorithm design
The walking pattern in indoor environment can be sim-
ply divided into walking flat, upstairs, and downstairs. In
our system, we rely on the output of barometer to deter-
mine the walking pattern of the target and then count
the number of steps to estimate the height of the target,
as shown in Table 2. In this table, ht−1 and hstair stand
for the height of the target at moment t and step height
respectively.

3.8 System implementation
Figure 10 shows the schematic diagram of the proposed
system. The BLE anchor broadcasts the packets in a real-
time manner. A smartphone equipped with the BLE and
MEMS modules is selected as the target. Both the BLE

Table 2 Pseudo-code of height estimation

Algorithm: Height estimation

Data: Positioning_result (x, y);

Result: Height of the target;

1 if (x, y) is located in the staircase

2 if Pressure value rises

3 ht = ht−1 + hstair ;

4 else if Pressure value drops

5 ht = ht−1 − hstair ;

6 else

7 ht = ht−1;

8 end

9 else

10 ht = ht−1;

11end
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Fig. 10 Schematic diagram of the proposed system

Fig. 11 Interface of positioning server

Fig. 12 BLE anchors
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Fig. 13 Hardware configuration

Fig. 14 Interface of Android Studio software

Fig. 15 Interface of Eclipse software platform
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Fig. 16 Interface of database management

Fig. 17 Floor plan of the lower floor

Fig. 18 Floor plan of the upper floor

Fig. 19 Photos of the actual environment
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Fig. 20 Display on terminal side

and MEMS data are packaged and transmitted to the
positioning server through the 4G network, and then,
the estimated locations of the target are displayed by the
server, as shown in Fig. 11.

3.8.1 Hardware platform
The CC2540 chip of Texas Instruments (TI) is selected as
the BLE anchor with the broadcast frequency 10 Hz and
power 0 dBm, as shown in Fig. 12.
The target is installed with the Android 6.0 operating

system and designed to support the BLE, accelerometer,
magnetometer, and barometer modules. The positioning
and web servers are based on the Windows 7 operating
system with the processor of Intel (R) Core (TM) i3-416
CPU @ 3.60GHz, as shown in Fig. 13.

3.8.2 Software platform
The APP used to collect the data from the BLE andMEMS
sensors as well as access the positioning server is devel-
oped by Android Studio software, and the corresponding
algorithms are written on the Eclipse software platform in
JAVA (Figs. 14 and 15). The MySQL database and Apache
Web server are selected to save the positioning result and
show them through the PHP and JavaScript (Fig. 16).

4 Experimental results
Two adjacent floors in a building are selected as the exper-
imental environment, as shown in Figs. 17 and 18. There
are 11 BLE anchors, namely Anchor 1, · · · , 11, fixed in tar-
get environment and the 514 RPs (marked with bullet) are
uniformly calibrated with the interval of 0.6 m. Figure 19
shows some photos of the actual environment. The posi-
tioning result can be displayed on both the terminal and
server sides, as shown in Figs. 20 and 21.
Figures 22 and 23 show the result of fingerprints cluster-

ing without and with denoising. The process of denoising
increases the probability of merging the physically adja-
cent RPs into the same cluster.
Although the irregular jump error of BLE positioning

may exceed 10 m, the ultimate error by fusion positioning
will converge into a small value as the time going on. By
taking the result in Fig. 24 as an example, the error of ini-
tial positioning is over 13 m, but the one almost decreases
to less than 2 m when the timestamp is over 100 s.
We continue to compare the performance of the pro-

posed and conventional positioning algorithms by using
the MEMS or BLE solely. Figure 25 shows the result of
locations tracking by different algorithms on a floor. The
real trajectory starts from point A, along Anchor 3 and
Anchor 6, along Anchor 4 and Anchor 3, and back to point
A (see Fig. 25).
The result of locations tracking on two different floors

is also shown in Fig. 26. In this test, the real trajectory is

Fig. 21 Display on server side
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Fig. 22 Fingerprints clustering without denoising

Fig. 23 Fingerprints clustering with denoising

Fig. 24 Error variation of fusion positioning

Fig. 25 Locations tracking on a floor

Fig. 26 Results in 3D view

Fig. 27 Projection result in Y-Z plane view
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Fig. 28 CDF of positioning errors

selected from point A, along Anchor 3 and point B, going
upstairs to point C, along Anchor 8 and Anchor 7, and
ending at point D (see Figs. 26 and 27).
As can be seen from Fig. 26, the large accumulative error

of MEMS positioning exists, while the BLE positioning is
suffered by the irregular jump error and cannot be accu-
rate enough when the target is located in the staircase.
In contrast, the proposed fusion positioning algorithm
can restrain the accumulative error of MEMS position-
ing as well as eliminate the irregular jump error of BLE
positioning. In addition, it is also verified that the pro-
posed algorithm is featured with good height resolution,
which makes the system more robust to the actual indoor
multi-floor positioning.
Figures 27 and 28 show the Cumulative Density Func-

tion (CDF) of errors and the error at each test point
respectively. From these figures, we can find that the posi-
tioning errors by using the BLE or MEMS solely are much
larger than the one of the proposed fusion positioning.
In addition, different percentile errors of fusion, BLE, and
MEMS positioning are also illustrated in Table 3.
Figure 29 shows the height error of each test point when

the target is located in the staircase. From this figure,
we can find that our system is capable of achieving bet-
ter height resolution compared to the conventional ones
using the MEMS or BLE solely.

Table 3 Different percentile values with respect to the
positioning error

Percentile Fusion BLE MEMS
values (%) positioning (m) positioning (m) positioning (m)

50 <0.60 <3.80 <2.29

70 <0.77 <4.48 <3.37

90 <1.03 <5.26 <8.41

Fig. 29 Positioning error at each test point

Finally, we investigate the stability of our system under
the long-term testing. To achieve this goal, three shapes
(square, linear, and irregular shapes) of trajectories are
considered in Figs. 30, 31, 32, 33, 34, 35, and 36 respec-
tively. Obviously, our system exhibits the best perfor-
mance in terms of accumulative error constraint, irregular
jump error elimination, and height resolution under dif-
ferent shapes of trajectories.

5 Conclusions
In this paper, both the hardware and software of BMW
system are designed and implemented for indoor multi-
floor positioning. Based on the extensive experimental
results, it is demonstrated that the proposed system is
capable of solving the problems of accumulative error
constraint and irregular jump error elimination in MEMS

Fig. 30 Height error at each test point
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Fig. 31 Locations tracking under square shape of trajectory

Fig. 32 CDF of positioning errors under square shape of trajectory

Fig. 33 Locations tracking under linear shape of trajectory

Fig. 34 CDF of positioning errors under linear shape of trajectory

Fig. 35 Locations tracking under irregular shape of trajectory

Fig. 36 CDF of positioning errors under irregular shape of trajectory
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and BLE positioning respectively. In general, our system
is featured with high positioning accuracy, good height
resolution, and strong long-term stability.
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