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Abstract

than the conventional algorithm.

Most existing algorithms of simultaneous wireless information and power transfer (SWIPT) for orthogonal frequency
division multiplexing (OFDM) systems are studied based on power splitting or time splitting, which lead to time delay
and the decrease of subcarrier utilization. In this paper, a multiuser OFDM system with multichannel is established and
the subcarriers are divided into two parts. One part is used for information decoding and the other part is used for
energy harvesting. We maximize the sum rate of the users under the constraint of energy harvesting by optimizing the
channel allocation and power allocation. By means of iterative calculation, an efficient subcarrier allocation algorithm is
proposed. Simulation results demonstrate that the proposed algorithm converges fast and can achieve higher sum rate
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1 Introduction

Orthogonal frequency division multiplexing (OFDM) is
the viable air interface for providing the high spectral ef-
ficiency and ubiquitous communication services because
of its ability to combat frequency selective fading and
flexibility in resource allocation. However, the power-
hungry circuitries and the limited energy supplies in
portable devices lead to the bottlenecks in prolonging
the lifetime of networks and guaranteeing quality of ser-
vice (QoS). As a result, the energy-efficient mobile com-
munication has drawn much attention from both the
industry and the academia [1-4].

Traditionally, the energy has been harvested from natural
renewable energy sources, such as solar, wind and geother-
mal heat, thereby substantially reducing the reliance on the
energy supply from conventional energy sources. In this
context, simultaneous wireless information and power
transfer (SWIPT) has emerged and attracted the wide-
spread concern. Varshney put forward the concept of trans-
mitting information and energy simultaneously and defined
the capacity energy function for the first time [5]. Pulkit
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Grover proposed the model based on the electromagnetic
induction principle and analyzed the noise coupling circuit
with SWIPT [6-10] maximized the energy efficiency in
spectrum sensing. Two transmission protocols based on
power splitting relaying and mode adaptation were pro-
posed in OFDM relaying SWIPT systems [11]. Liang Liu
proposed a classical transmission solution [12]. Specifically,
the received signal is divided into two circuits: one is used
for information decoding, and the other one is used for en-
ergy harvesting. As two classical models, time switching
(TS) model and power switching (PS) model were put for-
ward in [13-15], respectively. In TS model, the receiver
switches to energy harvesting mode or information mode
within one transmission period. In PS model, the receiver
splits the power into two parts with some ratios of which
one part is used for information decoding and another part
is used for energy harvesting. Javer Rubio combined
SWIPT with multiple-input-single-output (MISO) in [16]
where a transmitter with multi-antennas transmits the
same information to several banks of single antenna simul-
taneously. Various types of SWIPT systems including two-
user MIMO broadcast channels, two-way communication
links, and point-to-point links assisted by passive relays
have been formulated and optimized in [17-20] proposed
an optimal algorithm of power splitting based on downlink
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OFDMA by means of iterative algorithm. A tradeoff be-
tween TS and PS was proposed in [21].

As the promising technology for improving spectrum
efficiency, cognitive radio (CR) has been investigated a
lot recently [22—-24]. SWIPT in CR networks with multi-
users was studied in [25]. Two SWIPT schemes were
proposed [26] for CR networks with a single SU. The se-
cure beamforming schemes for SWIPT in a MISO
broadcast channel was investigated in [27].

Different from PS and TS models, we study a subcarrier
allocation algorithm based on SWIPT for the OFDM sys-
tem with multiusers which is without a splitter at the re-
ceiver. The subcarriers of each user are separated into the
information decoding part and the energy harvesting part.
On the basis, we address the problem of maximizing the
sum rate of users under the condition of enough energy
harvesting. The problem is non-convex, and an iterative al-
gorithm is used to solve it.

2 System model

We consider a wireless OFDM downlink system consisting
of one cognitive base station (CBS) and k users. As shown
in Fig. 1, each user is only equipped with one antenna. Let
K denote the set of k users. The OFDM system bandwidth
is assumed to be equally divided into n (n > k) channels.
The set of subcarriers is denoted as N (N = {1,2,---n}). Each
subcarrier must be allocated to only one user. Parts of sub-
carriers are used for energy harvesting, while the others are
utilized for information decoding simultaneously. We sup-
pose that the channel power gain on each subcarrier is al-
ways constant in one transmission period provided by the

base station

information transfer
energy transfer

Fig. 1 System model
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base station. Let /1, represent the gain of the k-th user on
the n-th subcarrier. Then, the noise power of each sub-
carrier is modeled as an additive white Gaussian noise
(AWGN) random variable with zero mean and variance o*.
The total transmission power is limited to the power
budget P. Therefore, the power allocated on the n-th sub-
carrier is denoted as P,. Let S” represent the subcarriers
used for energy harvesting to power transfer. Accordingly,
the other subcarriers used for information decoding are de-
noted by S'. Hence, Sk represents the subcarriers of K-th
user for information transfer. Since one subcarrier cannot
be used for energy harvesting and transfer information sim-
ultaneously, we have S'n §” = grand S'u S = N.

3 Problem formulation

Our aim is to maximize the sum rate of the OFDM
downlink under the constraint of the minimum har-
vested energy for each user. Let B; represent the mini-
mum harvested energy of the k-th user. Since one
subcarrier can only be allocated to one user, we use «a,,
to stand for a binary channel allocation index. In other
words, a,, x = 1 means that the subcarrier # is only allo-
cated to the user k, while a,, y = 0 is determined on
other terms. Thus, it is written as:

K
Zkzlak,n =1,VneN (1)
The sum rate can be formulated as:
K hie nP
k:1znesfak*” log<1 T (:2 n> (2)

Here, neS’. With energy harvesting efficiency e, the
harvested energy during one transmission block for user
k is determined by:

D e (P + %) 3)

For Vk € K. Therefore, the optimization model of max-
imum sum rate can be expressed as:

an.k»*glvpnzf:lZneS’ak’” log (1 * k:z n)

st Y enPusP (Py20)
SPusl =N
SPnsl = @

S @k, =1, VneN
ax,€{0,1}, VkeK,neN

(4)

4 Optimal solution
Since the problem is non-convex, it is impossible to
obtain the optimal solution directly. In this section, a
sub-optimal algorithm is proposed for solving the
non-convex problem.
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The optimization task can be decomposed into three
steps: to optimize ay , with given P, and SiSP), to
optimize P,with given a; , and S(SP), as well as to
optimize SH(SP) with given ay , and P,

Firstly, since P,, and S/(SP) are determined, Ay nis opti-
mized as follows:

max K hy Py,
@k Zk:lak’"bg 1+ o?

, nes

stY n =1, VneN

ax,€{0,1}, VkeK,neN
(5)

The problem above is regarded as allocating the sub-
carrier n to the assigned user for obtaining the max-
imum sum rate. In other words, the subcarrier n (n € S’
is allocated to the user k which can get the maximum
hi, /P i, ap, =1, K = arg max,_, 7y ,P, and o, =
0,Vkzk,kekK

Secondly, P, is optimized by ay , and S'(S”). In this
proposition, the problem can be rewritten as:

max hy Py,
o e log | 1+ 2 ©)
s.t.

Znesp (Shk*ynpy, + 0'2) >By
> uenPusP  (Py20)

Note that ay, = 1,ar, = 0,Vk=k*,keK . The con-
verted problem is satisfied with convex model. Therefore,
the Lagrange dual decomposition is adopted to solve this
problem. The Lagrange dual function is as follows:

gﬁﬁn 7ﬁ2) = maX{Pn}L(Pn) (7)

Where, B; and f3, are the Lagrange multipliers and
they are determined by the sub-gradient method. Mean-
while, L(P,) is expressed as:

Lp,) = ZnES,’( log <1 + hk*(;;Pn)
+ ﬁl {Znesp (Shk*v”P”‘ + 02) _Bk}
(P2, ) ®

Then, the dual problem can be simplified as follows:

ming, g, g(/))l’ v/3)2) 9)
st f1,5,20

Because the dual problem is differentiable, it can be
solved by the classic sub-gradient method, which solves
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the optimal problem based on the gradient and the suit-
able step size [28]. The result is presented as below:

Ay = anSPShk*,nPn + Uz_Bk

Aﬁz - P_ZneNP"

For the given 8, and f3,, the optimal power P,(n< ) is
obtained according to KKT conditions using mathematical
manipulation:

1 o2\
P=(500)

2 hk*,n
Where, (.)*denotes max(.,0).

Similarly, the allocated power P, used for energy har-
vesting is determined as:

p. — {Pmaxﬁlhk*,ng > ﬁz
! Pminﬁlhk*,nesﬁZ

(10)

(11)

(12)

(13)

Where, Pn.x and P.;, represent the maximum
and minimum power constraints on information de-
coding, respectively.

Algorithm 1: Proposed algorithm for the problem (6)

1. Initialize: £1(0), £2(0), = 0.

2. Repeat

3 CalculateP,(n € S") according to (11)

4 CalculateP,(n € S”) according to (12)

5 Bi(t+ 1) = Bi(t) — stepsizel (T pesp ehgr n Py + 02 — By)

6. Ba(t + 1) = Pa(t) — stepsize2(P — Ypen By)

7. t=t+1

8. Until |f1(7) — iz —1)| < e and |fa(r) — ot —1)| < &

‘Where, &(>0) denotes the error tolerance and ¢ denotes the times of iteration.

According to P, and a,, 4, S/(8”) can be obtained by
substituting (11) and (12) into (8). Consequently, the La-
grange dual function can be rewritten as below:

hi Py,
L) = S S i 10g<1 . —)

_EkleZnes”“n,k log <1 + hk;:,an>

B st (EMnPr + 0%) =B1Bi + ByP~Po > e P

- {ﬁl (ehnPy + )55 o (1 P

TP, n> }

+an1\[{2f1‘xn.k log (1 + gzn> By Py }—ﬂlBk + B, P

Dy P
=3 estEn+ ZneN{Zflamk log(l + klﬂ

) ~BsP } ~BiBx + BoP
(14)

Where,
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P
Fy = By (el Py + az)—Zlean,k log(l + hkg#)
(15)

When we observe the formula (13), only the first item
on the right side is about to S”. Thus, the optimal $” can
be achieved by maximizing the item F,, i.e.,

§P* = arg maxg st En (16)

S can be easily obtained by substituting all the # into
F, to find the ones which make F, positive. As a result,
the rest of the set N belongs to S™.

The proposed algorithm to solve the optimal problem
is presented as below:

Algorithm 2: Proposed algorithm for the joint optimizationproblem

Initialize: P,(0) = 0, @y - (0), £ =0
GivenP,(0) and a;, x+(0), obtain §'(0) according to formula (16)
R(0) = TK_; i (0)log (1 + 22229 e g
Repeat

Given P,(0) and S'(f), set @y, p (t) = 1, k'= arg maxiex(hinPy) and ayp o+ (£) = 0, ViK',
kEK

Given ay, (¢ + 1) and S/(#), obtain P,(+1) for all n € N, according to formulas (11)
and (12)

Given @, +(t + 1) and P,(t + 1), obtain Slie+1)

Ru(t+ 1) = Sy et + Dlog (1+222ED) e
9. t=t+1
10.  Until Ryt + 1) —Ru(0)| < &
Where, &(>0) denotes the error tolerance and ¢ denotes the times of iteration.

RAEaE ol
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5 Simulation results
In this section, the performance of the proposed sub-
carrier allocation algorithm based on SWIPT for the
OFDM system with multiusers is demonstrated by simula-
tion results.

We denote all the channels involved follow the
Rayleigh distribution. For simplicity, we suppose that the
minimum harvested energy limits for all the users are
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Fig. 3 Sum rate of users vs. sum transmission power

the same, i.e., By = B. In addition, we set N = 16, K = 5,
0?=1, P = 3 W, Py = 0, € = 1, and the bandwidth is
equal to 1 MHz.

Figure 2 shows the convergence behavior of the pro-
posed algorithm. It can be seen that the proposed algo-
rithm converges fast. It indicates that the proposed
algorithm can be implemented practically.

Figure 3 presents the comparison between the pro-
posed optimization algorithm and the conventional algo-
rithm of subcarrier allocation based on [29]. It can be
observed that the proposed algorithm performs better
compared with the conventional algorithm.

When the conventional algorithm allocates N subcar-
riers to K users, all the subcarriers are used for informa-
tion decoding and the consumed energy comes from the
system. Since the system can not produce energy by it-
self, the energy comes from the finite battery. Therefore,
the constraint of minimum energy harvesting can not be
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Fig. 2 Convergence behavior of the proposed algorithm
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satisfied more often than not. Since the water-filling ap-
proach is used for the power allocation of the conven-
tional algorithm, it would cause some power waste.
What is more, all the subcarriers allocated to informa-
tion decoding lead to the energy consumption and less
power is used for information decoding. Figure 2 also
demonstrates that the sum rate of users increases with
the increase of sum transmit power P. It can be inter-
preted as that the increase of sum transmit power brings
about the more power allocated to information decoding
with the same target harvested energy.

Figure 4 shows that the total transmit power used for
information decoding of user k. It can be seen that the
user 3 is allocated the most power, while the user 1 is
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the least. This is because, in our simulation, the user 3
has the best channel condition so that it can achieve
higher sum rate.

Figure 5 shows that the sum rate of users versus the
minimum energy harvesting limit B, under the fixed
power budget. It is obvious that the sum rate varies with
the constraint of the harvested energy. When By increases,
the sum rate decreases. This is because when the con-
straint of energy harvesting increases, more subcarriers
are allocated to satisfy the constraint of the harvested en-
ergy. It leads to less resources that are allocated to the in-
formation decoding. It can also be observed that, with
regard to the same constraint of energy harvesting, the
sum rate decreases as the number of users increases. That
is expected due to the fact that under the same power
budget, the increasing number of users causes the de-
crease of the average allocated power for each subcarrier.
As a result, more subcarriers are allocated to energy har-
vesting in order to satisfy the same constraint of the re-
quired energy, as well as the sum rate of users increases.

Figure 6 shows the allocated power to each subcarrier
under the condition of the power budget equal to 80 W.
It also illustrates the average channel gain for each sub-
carrier. As shown in Fig. 6, when the subcarrier has the
good channel condition, it is always used for energy har-
vesting. On the other hand, when the subcarrier has the
bad channel condition, it is always used for information
decoding and less power is allocated. The phenomenon
appears because to allocate the good channel for energy
harvesting leads to less subcarriers used for energy har-
vesting and more subcarriers used for information de-
coding to achieve maximum sum rate.
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a
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6 Conclusions

A subcarrier allocation algorithm based on SWIPT
for the OFDM system with multiusers was proposed
in this paper. Traditionally, SWIPT is used for single
user in OFDM systems more often than not. How-
ever, we proposed a joint optimization algorithm
used for multiusers. Specifically, the OFDM subcar-
riers of each user are divided into two parts whose
one part is used for information decoding and the
other part is used for energy harvesting. Therefore,
in contrast to the conventional time or power split-
ter at the receiver, the enough information rate can
be obtained on the premise of the harvested energy
we require. Simulation results show that the pro-
posed algorithm converges fast and performs better
than the conventional algorithm in the rate of infor-
mation decoding.
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