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Abstract

Principal component analysis (PCA)-based approach for user heading estimation using a smartphone in the pocket suffers
from an inaccurate estimation of device attitude, which plays a central role in both obtaining acceleration signals in the
horizontal plane and the ultimate global walking direction extraction. To solve this problem, we propose a novel heading
estimation approach based on two unscented Kalman filters (UKFs) fusing inertial sensors and landmarks. The first UKF is
developed for the recalibration of device attitude estimation. We mathematically derive the measurement equation
connecting observed user heading from landmarks with the quaternion vector representing device attitude. To decrease
the nonlinearity of the measurement equation and make the filter more robust, we deploy the difference between user
heading derived from the landmark and estimation result of PCA-based approach as the observation variable. The second
UKF is developed for user heading estimation fusing estimation results of PCA-based approach and observed user
headings from landmarks. Besides, we develop a robust landmark identification method by exploiting the acceleration
and device pitch patterns, while noisy barometers are no longer required as previous methods. Experiments show that
the proposed landmark-aided user heading estimation approach may improve accuracy performance significantly, which
is very useful for continuous indoor navigation.
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1 Introduction
Indoor positioning techniques have been paid increasing at-
tentions from industry and academia due to the mass
market for positioning applications. For outdoor environ-
ments, Global Navigation Satellite Systems (GNSSs) may
provide reasonable accuracy performance. However, due to
signal attenuations, they are always unavailable for indoor
environments. Among various indoor positioning ap-
proaches [1, 2], pedestrian dead reckoning (PDR) using in-
ertial sensor built-in smartphones is a promising solution,
since it is self-contained and requires no extra infrastruc-
tures. There are two kinds of PDR, the strapdown approach
[3] and the step-and-heading approach [4, 5]. The accumu-
lated tracking errors of the strapdown approach may grow
rapidly, since it involves a double integration of noisy

acceleration signals. The strapdown approach is only feas-
ible when continuous corrections are available, such as zero
velocity updates for foot-mounted situations.
For unconstrained use of smartphones, such as a

device put in the trouser pocket, it is more suitable to
deploy the step-and-heading approach [6]. Step-and-
heading approach infers the current pedestrian position
sequentially by adding relative displacement to the
position of previous step. The displacement is deter-
mined by estimated step length and user heading. User
heading estimation is a central problem and the main
error source of the step-and-heading approach. More-
over, user heading estimation may also be used in many
other areas [7–9], such as human facing direction
estimation in virtual reality and human computer inter-
action in smart environments. This paper focuses on the
user heading estimation using a smartphone put in the
pocket, which is one of the most popular device-carrying
positions [10].
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Due to the changing device orientations caused by body
locomotion, such as leg locomotion, it is inapplicable to
compute user heading by the most commonly used device
estimation approach [11], which adds heading offset to de-
vice heading. This is because the heading offset between
device heading and user heading varies due to the chan-
ging device orientations and is difficult to be estimated.
For a smartphone put in the pocket, uDirect approach
[12] has been proposed by extracting walking direction in
a specific region, where the walking direction dominates
the acceleration vector. However, the specific region may
be easily corrupted by body locomotion. In contrast, the
PCA-based approaches [13] are more robust, since it ex-
ploits all samples in the walking step. Regardless of the
changing device orientations, PCA may extract the walk-
ing direction along the maximum variations of the accel-
eration signals in the horizontal plane.
In order to obtain the horizontal accelerations more

accurately, our previous work has proposed a PCA-
based approach called RMPCA [14], combining rotation
matrix (RM) with principal component analysis (PCA)
for user heading estimation. Firstly, we continuously
track the device attitude by developing extended Kalman
filter (EKF) fusing inertial sensors. Then, we combine
related rotation matrix to project the accelerations at
local device coordinate system (DCS) into the global
coordinate system (GCS). Finally, the global walking
direction may be extracted by PCA over horizontal
accelerations. Due to gyro and acceleration drifts, the
accuracy performance of user heading estimation and
positioning may degrade rapidly over a relatively short
period.
Exploiting landmarks to aid pedestrian navigation is

one of the most promising techniques to guarantee user
heading estimation performance and limit accumulated
tracking errors. Traditional landmark-based methods
mainly rely on a pre-defined database and related infra-
structures. For example, the densely deployed ultra-wide
bandwidth (UWB) [15] and radio frequency identifica-
tion (RFID) [16] anchors may provide distance informa-
tion from the landmarks to the pedestrian, through time
of arrival (ToA) and received signal strength (RSS) mea-
surements, respectively. Wireless local area network
(WLAN) or magnetic fingerprints [17, 18] can also be
regarded as landmarks to aid pedestrian navigation.
Traditional landmark-based methods may improve posi-
tioning accuracy significantly. However, these methods
may increase the cost and disrupt self-containedness of
the PDR system.
Recently, user motion states [19], including walking

stairs and taking elevators and escalators, have been
considered as indoor landmarks to aid indoor posi-
tioning. These landmarks [20] require neither extra infra-
structures nor complex pre-defined database. Previous

works [21, 22] have proposed these landmarks for both
location estimation and direct user heading estimation re-
calibration. Significant user heading and positioning
accuracy improvement has been reported. However, a re-
estimation of the quaternion vectors describing device atti-
tude is neglected. The accurate estimation of the quater-
nion vector is critical for ultimate user heading estimation,
since it may directly affect the acceleration signal extraction
in the horizontal plane and the ultimate global walking
direction extraction by PCA. Besides, the previous device
attitude estimation method fusing inertial sensors and mag-
netometers relies on EKF [21], which cannot adapt the
nonlinearity of the measurement equation well.
In this paper, we propose a novel landmark-aided

heading estimation approach based on two unscented
Kalman filters (UKFs) and a recalibration of device atti-
tude estimation. The main novelty is to fuse landmark
information for device attitude recalibrations by con-
structing an explicit measurement equation in an UKF.
The measurement equation relating landmarks with the
quaternion vector describing device attitude is mathem-
atically derived upon the principle of PCA-based ap-
proach. In order to reduce the nonlinearity of the
measurement equation, we deploy the difference be-
tween user heading derived from the landmark and esti-
mation result of RMPCA as the observation variable.
For ultimate user heading estimation, we develop the
second UKF fusing landmarks and estimation results of
an improved RMPCA. The improved RMPCA may re-
duce the nonlinearity of the state equation of the second
UKF, by extracting walking direction at a reference co-
ordinate system. Besides, we develop a more robust user
motion recognition method for landmark identification.
Instead of requiring noisy barometers for vertical dis-
placement detection as previous methods [19], we just
deploy inertial sensors based on the acceleration and
device pitch patterns.
Experiments demonstrate the accuracy performance

improvement and reliability of the proposed landmark-
aided heading estimation approach. In summary, our
work makes the following contributions:

� We propose a novel heading estimation approach
fusing inertial sensors and landmarks based on two
developed UKFs and a recalibration of the device
attitude estimation.

� We derive measurement equation of the first UKF
mathematically upon the principle of the PCA-based
approach. To decrease the nonlinearity of the meas-
urement equation and make the filter more robust,
the heading estimation difference is deployed as the
observation variable.

� We develop the second UKF fusing landmarks and
estimation results of an improved RMPCA, which
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may reduce the nonlinearity of the state equation of
the second UKF.

� We develop a robust landmark-identification
method without requiring barometers, by only
exploiting the inertial sensors and magnetometers.

The rest of the paper is organized as follows: Section 2
gives an overview of the proposed heading estimation
approach. Section 3 presents the user motion recogni-
tion method for landmark identification. Section 4 de-
scribes the first UKF-based device attitude estimation
module. Section 5 presents ultimate user heading esti-
mation based on the second UKF. Section 6 provides ex-
perimental evaluations of the proposed approach.
Finally, conclusions are presented in Section 7.

2 Overview of the proposed user heading
estimation approach
Figure 1 overviews the proposed heading estimation ap-
proach fusing inertial sensors and landmarks using
smartphones in the pocket. The proposed approach con-
sists of three main modules: landmark identification, de-
vice attitude estimation, and user heading estimation.
The landmark identification module deploys a decision

tree-based approach to recognize the motion states,

including normal walking, standing, walking stairs, taking
elevators, and taking escalators. Among these motion states,
walking stairs, taking elevators, and taking escalators can be
considered as landmarks to aid user heading estimation.
The device attitude estimation module deploys the

first UKF to continuously estimate device attitude. The
state model of the first UKF involves quaternion-based
time evolution equation, while the measurement model
involves measurement update from magnetic field
values, accelerations under quasi-static situations, and
identified landmarks. An explicit measurement equation
relating the quaternion vector and user heading is math-
ematically derived upon the principle of PCA-based user
heading estimation approach.
In order to describe the user heading estimation mod-

ule, we define three coordinate systems, including global
coordinate system (GCS), device coordinate system
(DCS), and reference coordinate system (RCS). GCS
consists of three axes XG, YG, and ZG, which point east,
north, and the opposite direction of the gravity vector.
We collect all raw inertial signals including acceleration
and angular velocity samples at DCS. DCS consists of
three axes XD, YD, and ZD. The two axes XD and YD

point rightward and forward, respectively, which are par-
allel with the phone screen. The axis ZD is the cross

Fig. 1 Overview of the proposed user heading estimation approach fusing inertial sensors and landmarks
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product of axes XD and YD. To reduce nonlinearity of
the measurement equation in the first UKF and state
equation in the second UKF, we define RCS by rotating
GCS UHRMPCA radians around ZG counterclockwise,
which also includes three related axes XR, YR, and ZR.
The angle UHRMPCA is user heading initially estimated
by RMPCA approach for each walking step. It should be
noted that DCS and RCS may change with the body
locomotion, while GCS is a fixed coordinate system.
User heading is defined as the angle that rotates from

positive direction of the YG axis to the walking direc-
tions at GCS counterclockwise. The user heading esti-
mation module deploys the second UKF to fuse
identified landmarks with an improved RMPCA. For the
improved RMPCA, rotation matrix obtained from the
first UKF-based attitude estimation model is firstly used
to project the accelerations at DCS into GCS. For each
walking step, the accelerations at GCS are then pro-
jected into the related RCS. Finally, accelerations in the
horizontal plane at RCS are obtained, and the global
walking direction is extracted by PCA at RCS. The walk-
ing direction is extracted at RCS to reduce nonlinearity
of the state equation.

3 Landmark identification module
The landmarks used in this paper include taking elevators,
taking escalators, and walking upstairs/downstairs. When
users enter or leave elevators, take escalators, and walk
upstairs/downstairs, the user headings are always limited
into a small region. Therefore, not only the landmarks can
be used to recalibrate location estimation, but also can be
used to recalibrate the heading estimation. We deploy a
decision tree-based landmark identification method to de-
tect and distinguish these landmarks from normal walking
and standing motion states. The decision tree has three
levels, as seen in Fig. 2.
In the first level, we firstly distinguish the elevator

from the other motion states by exploiting the unique
acceleration pattern of an elevator [23]. For the whole

period of taking an elevator, the process includes stand-
ing still to wait for the elevator, entering the elevator,
standing inside, and finally walking out of it. When
standing inside the elevator for a short duration, a pair
of positive/negative impulses of accelerations along the
gravity direction occur, due to the related hyper-gravity/
hypo-gravity effects. Between two impulses, there is a
stationary duration, depending on the number of floors
the elevator passes. In order to accurately capture the
user heading information, when users enter or walk out
of an elevator, we deploy the magnitude change of the
magnetic field, since the total magnitude notably de-
creases or increases, respectively.
In the second level, we distinguish taking escalators/

standing from walking stairs/walking by exploiting their
acceleration variances. The acceleration variances of walk-
ing stairs/walking motion states are notably bigger than
those of taking escalators/standing, since the former states
involve the higher locomotion intensity. Furthermore, in
the third level, we distinguish taking escalators from
standing by exploiting the variances of the magnetic field
values. The magnetic field values of taking escalators
change rapidly due to the changed locations of moving
escalators, while those of standing remain unchanged.
In the third level, to further distinguish between nor-

mal walking and walking upstairs/downstairs, we do not
deploy barometers as previous methods [19, 24]. The
barometers are only available in some relatively expensive
smartphones, and the atmospheric pressure values mea-
sured by barometers may be influenced by many factors,
such as the temperature, humidity, and opening/closing
windows. Therefore, we exploit the pitch value pattern to
detect walking upstairs/downstairs motion states. For the
human leg, we define the leg pitch value as the angle leg
rotates around the axis XG, and the leg pitch value equals
to zero when the leg is parallel to the gravity vector. The
opening angle of the leg is defined as:

ΔPitch ¼ Pitchmax−Pitchmin ð1Þ

Fig. 2 Identification of landmarks using a decision tree
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where Pitchmax and Pitchmin indicate the maximum and
minimum value of leg pitch value. The leg pitch values
show periodic change and thus make the maximum or
the minimum leg pitch values occur only once per
walking step. For each pedestrian, two observations may
be seen during walking steps. Firstly, the opening angle
of the leg for walking upstairs ΔPitchUpstairs is notably
bigger than that of normal walking ΔPitchNormal, while
the opening angle of the leg for walking downstairs
ΔPitchDownstairs is notably smaller than the opening angle
ΔPitchNormal, given as follows,

ΔPitchUpstairs > ΔPitchNormal > ΔPitchDownstairs ð2Þ
Secondly, the maximum leg pitch value of walking

upstairs PitchUpstairsmax is notably bigger than that of normal

walking PitchNormal
max , while the minimum leg pitch value

of walking downstairs PitchDownstairsmin is notably bigger

than that of normal walking PitchNormal
min , given as follows,

PitchUpstairsmax > PitchNormal
max ; PitchDownstairsmin > PitchNormal

min

ð3Þ
According to the observations, we may compute the

average opening angle, the maximum and minimum leg
pitch values for normal walking and walking upstairs/
downstairs during offline phase. The related angle values
can be seen as the pitch value pattern. During online
phase, the pattern-matching process comparing the
related angles as seen in (2) and (3) may be carried to
distinguish between normal walking and walking up-
stairs/downstairs.
We collected 1000 test samples for each motion state,

including taking elevators, taking escalators, walking
stairs, normal walking, and standing. A total number of
5000 test samples were collected, 4000 samples collected
in our office building, while the rest 1000 test samples of
taking escalators were collected in a shopping mall. Each
kind of samples are randomly divided into five parts,
one part is used for testing and the rest four parts for
training the related parameters of the decision tree.
Table 1 shows the landmark identification results by a
confusion matrix. The results show that almost all
landmarks can be identified correctly, except for the
negligible confusion between normal walking and

walking stairs, due to some irregular leg locomotion.
Furthermore, most of these wrong identified samples
can be corrected by adjacent right identified samples. If
the motion state of one walking step is different from
that of the two adjacent steps, its motion state is as-
sumed to be wrongly identified and considered as that of
the two adjacent steps. Therefore, we assume that all the
landmarks can be correctly identified and used in the
proposed user heading estimation approach.

4 Device attitude module based on first UKF
We deploy quaternion vector as the state vector of UKF
to describe the time evolution of device attitude. Firstly,
we give the state and measurement models of UKF.
Then, we derive the measurement equation relating qua-
ternion vector with user heading mathematically upon
the PCA-based approach. Finally, we describe unscented
transformation and UKF equations.

4.1 Unscented Kalman filter design
Before designing UKF, we establish the relationship be-
tween device attitude and quaternion vector by deploy-
ing rotation matrix,

hDCS tð Þ ¼ RDCS
GCS q tð Þð Þ� �T

hGCS tð Þ ð4Þ

RDCS
GCS qð Þ ¼

q20 þ q21−q
2
2−q

2
3 2 q1q2−q0q3ð Þ 2 q1q3 þ q0q2ð Þ

2 q1q2 þ q0q3ð Þ q20−q
2
1 þ q22−q

2
3 2 q2q3−q0q1ð Þ

2 q1q3−q0q2ð Þ 2 q0q1 þ q2q3ð Þ q20−q
2
1−q

2
2 þ q23

264
375
ð5Þ

where RDCS
GCS q tð Þð Þ is the rotation matrix from GCS to

DCS at time t; hGCS(t) and hDCS(t) are the same 3 × 1
vectors with different representations at GCS and DCS,
respectively; and q ¼ q0 q1 q2 q3½ �T is the normal-
ized quaternion vector with the scalar part q0 and the
vector part e ¼ q1 q2 q3½ �T .
Based on the rigid body kinematic law [25], the state

model of quaternion vector can be given as:

qkþ1 ¼ Fkqk þ wq
k ð6Þ

where state transition matrix Fk = exp(0.5∗Ts
∗Ω(wk)),

Ω wkð Þ ¼

0 −wx
k −wy

k −wz
k

wx
k 0 wz

k −wy
k

wy
k −wz

k 0 wx
k

wz
k wy

k −wx
k 0

26664
37775

ð7Þ

where Ts is the system interval and wk ¼ wx
k wy

k wz
k

� �T
is the angular velocity vector measured at DCS at time in-
stants kTs. Process noise variable w

q
k and related covariance

matrix Wk can be given as:

Table 1 Confusion matrix for landmark identification

Motion states Stairs Elevators Escalators Walking Standing

Stairs 0.997 0 0 0.003 0

Elevators 0 1.0 0 0 0

Escalators 0 0 1.0 0 0

Walking 0.004 0 0 0.996 0

Standing 0 0 0 0 1.0
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wq
k ¼ Ξkw

gyro
k ¼ −

Ts

2

ek�½ � þ qk0I

−eTk

" #
wgyro

k ð8Þ

Wk ¼ wq
k wq

k

� �T ¼ ΞkW
gyro
k ΞT

k ð9Þ

where qk0 is the scalar part of qk and ek ¼ qk1 qk2 qk3
� �T

is the related vector part, wgyro
k is the zero-mean white

Gaussian noise of gyroscope outputs at time instants kTs,
[ek×] is a standard vector cross-product operator, W gyro

k is
the covariance matrix for gyroscope measurement noise
with W gyro

k ¼ σ2gyroI, and I is an 3 × 3 identity matrix.
The measurement model of UKF is given as follows:

zkþ1 ¼
akþ1

mkþ1

ΔUHkþ1

24 35 ¼ ϕ qkþ1

� �þ vkþ1

¼
RDCS
GCS qkþ1

� �� �T
0 0

0 RDCS
GCS qkþ1

� �� �T
0

0 0 1

264
375

g
h

f qkþ1

� �
264

375þ

�
vkþ1
a

vmkþ1

v
kþ1

UH

�
ð10Þ

where ak + 1 and mk + 1 are the observed accelerations
under quasi-static situations and magnetic field values at
DCS, respectively; g and h are the local gravity vector
and magnetic field values at GCS; ΔUHk + 1 is the differ-
ence between user heading derived from a landmark and
estimation result of RMPCA approach at GCS, f(qk + 1) is
the function relating user heading with the quaternion
vector and accelerations upon PCA-based approach, as
will be given in the next section; and vakþ1 , vmkþ1 , and
vUHkþ1 are the related zero mean white Gaussian measure-
ment noise of the accelerometer, magnetometer, and
landmark, respectively. The covariance of the measure-
ment noise Rk + 1 can be given as follows:

Rkþ1 ¼

"
Rkþ1
a

0

0

0

Rkþ1
m

0

0

0
Rkþ1

UH

#
¼ ½ R σa

2I3

0

0

0

Rσ
m

2
I3

0

0

0
Rσ

UH
2 � ð11Þ

where RσUH2 is set during offline phase according to
the style and related realistic environments of a land-
mark, as described in Section 3; and Rσa2 and Rσm2

are the parameters adaptively tuned according to the
perturbation intensity of accelerations and magnetic
field values:

Rσa
2 ¼ σ2a; akþ1k k2− gk k2

�� �� < εa1 ∩ var akþ1−Na=2

		 		
2 : akþ1þNa=2

		 		
2


 �
< εa2

∞; otherwise

8<:
ð12Þ

Rσm
2 ¼ σ2m; mkþ1k k2− hk k2

�� �� < εm1 ∩ var mkþ1−Nm=2

		 		
2 : mkþ1þNm=2

		 		
2


 �
< εm2

∞; otherwise

8<:
ð13Þ

where εa1 represents allowed maximum difference be-
tween acceleration vector and the local one; εm1 repre-
sents allowed maximum difference between magnetic
field vector and the local one; εa2 and εm2 represent the
related allowed maximum variances of signal samples,
respectively; Na and Nm represent the sizes of centered
windows for acceleration and magnetic field samples, re-
spectively; and var(⋅) is the function computing variance
of samples in the centered window. Since the absolute
static situations are always unavailable in realistic envi-
ronments, we exploit the quasi-static situations, in
which the magnitudes of the accelerations are similar to
that of the static situations and the variances of the ac-
celerations are assumed to be small.

4.2 Derivation of measurement equation relating
quaternion vector with user heading
We derive the explicit measurement equation relating
quaternion vector with user heading upon the principle
of RMPCA approach. RMPCA firstly projects all acceler-
ation samples within a walking step at DCS into the
GCS and obtains the accelerations in the horizontal
plane at GCS. In order to establish the relationship be-
tween the user heading and the quaternion vector at a
specific time, we deploy a temporary rotation matrix be-
tween two DCSs to project all accelerations into the
DCS at a specific time,

aDCS1 t2ð Þ ¼ RDCS1
DCS2

� �T
aDCS2 t2ð Þ ð14Þ

RDCS1
DCS2 ¼ RDCS

GCS q t2ð Þð Þ� �T
RDCS
GCS q t1ð Þð Þ� � ð15Þ

where DCS1 and DCS2 represent the DCS at time
instant t1 and t2, RDCS1

DCS2 is the temporary rotation matrix
from DCS2 to DCS1, q(t1) and q(t2) are the quaternion
vectors at time instant t1 and t2, and aDCS2(t2) and
aDCS1(t2) are the same accelerations measured at time
instant t2 and represented at DCS1 and DCS2, respect-
ively. The time interval between time instant t1 and t2
within a walking step is small enough, and thus, the
accumulated error for computing related temporary
rotation matrix RDCS1

DCS2 can be neglected. Derived from
Eqs. (14) and (15), we project all accelerations within a
walking step into the DCS at a specific time t1 within
the walking step:
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aDCS1 jð Þ ¼ R jð Þð ÞTaDCS jð Þ; j ¼ 1;…;N step
acc ð16Þ

where aDCS1(j) and aDCS(j) are the representations of the
j-th acceleration sample at DCS1 and its raw DCS, R(j)
is the temporary rotation matrix from the DCS of the j-
th acceleration sample to DCS1, and N step

acc is the number
of acceleration samples within the walking step.
After projecting all accelerations within the walking

step into a specific time t1, we may obtain the accelera-
tions at GCS,

aGCS jð Þ ¼ RDCS
GCS q t1ð Þð ÞaDCS1 jð Þ; j ¼ 1;…;N step

acc

ð17Þ

where aGCS jð Þ ¼ aGCSx jð Þ aGCSy jð Þ aGCSz jð Þ
h iT

is the

representation of the j-th acceleration sample at GCS,
and RDCS

GCS q t1ð Þð Þ is the temporary rotation matrix de-
scribed by quaternion vector at time t1. Then, we can
obtain the acceleration components in the horizontal
plane as follows,

aGCSx jð Þ
aGCSy jð Þ

" #
¼ Q q t1ð Þð ÞaDCS1 jð Þ; j ¼ 1;…;N step

acc

ð18Þ

Q q t1ð Þð Þ ¼
q
_2

0 þ q
_2

1−q
_2

2−q
_2

3 2

�
q
_
1q
_

2−q
_

0q
_

3



2

�
q
_

1q
_
3 þ q

_
0q
_

2



2

�
q
_

1q
_

2 þ q
_

0q
_

3



q
_2

0−q
_2

1 þ q
_2

2−q
_2

3 2

�
q
_

2q
_
3−q

_
0q
_

1



2664

3775 ð19Þ

where q t1ð Þ ¼ q_0 q_1 q_2 q_3

� �T
is the quaternion

vector at time t1.
In order to make the nonlinear measurement equa-

tion converge fast, we take the difference between
user heading derived from a landmark and estima-
tion result of RMPCA approach as the observed
variable,

ΔUH ¼ UHlandmark‐UHRMPCA ð20Þ
where ΔUH is the observed difference value, UHlandmark

is the observed user heading derived from a landmark,
and UHRMPCA is the estimation result of RMPCA ap-
proach for the current step. The acceleration compo-
nents in the horizontal plane at RCS may be given as,

aRCSx jð Þ
aRCSy jð Þ

" #
¼ C

aGCSx jð Þ
aGCSy jð Þ

" #
; j ¼ 1;…;N step

acc ð21Þ

C ¼ cos UHRMPCAð Þ sin UHRMPCAð Þ
− sin UHRMPCAð Þ cos UHRMPCAð Þ
� �

ð22Þ

Then, derived from Eqs. (16) to (18), the acceleration
components in the horizontal plane at RCS may be de-
scribed by the raw measured accelerations represented
at DCS1 directly,

aRCSx jð Þ
aRCSy jð Þ

" #
¼ AaDCS1 jð Þ; j ¼ 1;…;N step

acc ð23Þ

A ¼ CQ q t1ð Þð Þ ð24Þ
where aDCS1(j) is the j-th measured accelerations repre-
sented at DCS1.
According to the principle of PCA-based approach

and pattern recognition [26, 27–29], the maximum en-
ergy of the accelerations in the horizontal plane may be
obtained along the walking direction at RCS,

ΔUH ¼ max
Δθ

− sinΔθ cosΔθ½ �
XN step

acc

j¼1

aRCSx jð Þ
aRCSy jð Þ

" #
aRCSx jð Þ
aRCSy jð Þ

" #T
− sinΔθ cosΔθ½ �T

8<:
9=;

ð25Þ
where Δθ is the angle variable that rotates from the axis
YR to the walking direction counterclockwise. Substitute
Eq. (23) into Eq. (25),

ΔUH ¼ max
Δθ

− sinΔθ cosΔθ½ �A
XN step

acc

j¼1

aDCS1 jð ÞaDCS1 jð ÞTAT − sinΔθ cosΔθ½ �T
8<:

9=;
ð26Þ

Define the following matrices described by quaternion
vector at time t1,

~A q t1ð Þð Þ ¼ ~a11 ~a12

~a21 ~a22

� �
¼ CQ q t1ð Þð Þ

XN step
acc

j¼1

aDCS1 jð ÞaDCS1 jð ÞT
24 35Q q t1ð Þð ÞTCT

ð27Þ
~f q t1ð Þ;Δθð Þ ¼ − sinΔθ cosΔθ½ �~A q t1ð Þð Þ − sinΔθ cosΔθ½ �T

ð28Þ
Combine Eqs. (26), (27), and (28),

∂ ~f q t1ð Þ;Δθð Þ

 �

∂ Δθð Þ ¼ 0 ð29Þ

~f q t1ð Þ;Δθð Þ ¼ − sinΔθ cosΔθ½ �
� ~a11 ~a12

~a21 ~a22

� �
− sinΔθ cosΔθ½ �T

ð30Þ
We will get the following restriction equation about

the observed variable ΔUH,

tan 2 � ΔUHð Þ ¼ ~a12

~a11−~a22
ð31Þ

where ~a11 , ~a12 , and ~a22 can be obtained from Eq. (27).
Generally, we assume that the absolute difference be-
tween user heading derived from a landmark and from
RMPCA approach is less than π/4. Therefore, we may
obtain the measurement equation relating quaternion
vector with observed variable as follows,
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ΔUH ¼ f q t1ð Þð Þ ¼ 0:5� arctan
~a12

~a11−~a22

� 

ð32Þ

Usually, the absolute difference between user head-
ing derived from a landmark and from RMPCA ap-
proach may be restricted into a small value, such as
less than π/8. As a result, the arc tangent function in
Eq. (25) may be approximated by a low-order polyno-
mial function. If the absolute difference exceeds 45°,
though the probability is rather low, we will not ex-
ploit the landmark to recalibrate the device attitude
estimation module.

4.3 UKF equations for device attitude estimation
UKF [30, 31] is a Kalman filter based on unscented
transformation (UT). UT provides an effective way to
approximately calculate the change of the mean and
covariance of a random variable when it undergoes a
nonlinear transformation. As seen in Section 4.1,
combining Eqs. (6) and (10), the state and measure-
ment equations are given as follows:

qkþ1 ¼ Fkqk þ wq
k

zkþ1 ¼ ϕ qkþ1

� �þ vkþ1

(
ð33Þ

The state equation of the quaternion vector is linear,
while the measurement equation is nonlinear. Therefore,
we only need to deploy UT on the measurement
equation.
Firstly, the same as that in Kalman filter, given the

state estimation and its related covariance qbk ; ; PkÞ



,

the state update equations may be given as follows:

qbkþ1
− ¼ Fkqbk

Pkþ1
− ¼ FkPkFT

k þWk

(
ð34Þ

where qbkþ1
− is the a priori state estimate and P−

kþ1 is the
related covariance matrix.
To calculate the statistic of the observed variable zk + 1,

UT designs a series of sigma points ξi , k + 1 (i = 0, 1, ⋯ ,

2L) with corresponding weights wi using qb −
kþ1; P

−
kþ1

 !
,

according to the following:

(
ξ0;;kþ1 ¼ qb −

kþ1

ξi;;kþ1 ¼ qb −
kþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð ÞP−

kþ1

p� �
i i ¼ 1;⋯; Lð Þ

ξi;;kþ1 ¼ qbkþ1
− −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð ÞP−

kþ1

p� �
i i ¼ Lþ 1;⋯; 2Lð Þ

ð35Þ

wm
0 ¼ λ

Lþ λ

wc
0 ¼

λ

Lþ λ
þ 1−α2 þ β
� �

wm
i ¼ wc

i ¼
λ

2 Lþ λð Þ ; i ¼ 1;⋯; 2L

8>>>>>>>><>>>>>>>>:
ð36Þ

λ ¼ α2 Lþ κð Þ−L ð37Þ
where λ is a scaling factor, α is usually set to a small
positive value (e.g., 1e-3) and L is set to 4 (the dimen-
sionality of the state variable), κ is set to 0 and β is set to
2 for Gaussian distribution, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lþ λð ÞPkþ1

−p� �
i is the i

− th column of the square root matrix. wm
i and wc

i are
the weight coefficients for calculating mean and covari-
ance of z.
After obtaining the sigma points, the measurement

update equations are given as follows:

zi;kþ1 ¼ ϕ ξi;kþ1

� �
zkþ1
− ¼

X
i¼02L

wm
i zi;kþ1

Pzz;kþ1 ¼
X

i¼02L
wc
i zi;kþ1−z−kþ1

� �
zi;kþ1−z−kþ1

� �T þ Rkþ1

8>><>>:
ð38Þ

Then, the Kalman filter gain [32] may be obtained as
follows:

Pqz;kþ1 ¼
X
i¼0

2L

wc
i ξ i;kþ1−ξ0;kþ1

� �
zi;kþ1−z−kþ1

� �T
Kkþ1 ¼ Pqz;kþ1 Pzz;kþ1

� �−1
8><>:

ð39Þ
The ultimate estimation of the state variable and its

related covariance matrix are given as follows:

qbkþ1 ¼ qbkþ1
− þ Kkþ1 zkþ1−z−kþ1

� �
Pkþ1 ¼ Pkþ1

− −Kkþ1Pzz;kþ1KT
kþ1

(
ð40Þ

5 User heading estimation module
This section describes the user heading estimation mod-
ule based on the second UKF fusing heading estimation
result of improved RMPCA and landmarks. The main
difference between the proposed improved RMPCA and
the original RMPCA is that attitude estimation is
achieved by UKF rather than EKF. The state model of
UKF is constructed upon the improved RMPCA. Firstly,
as seen in Eq. (16), all acceleration samples measured at
DCS within a walking step are projected into a specific
time t1 during the same step. Then, deploying the
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quaternion vector at the specific time and related rota-
tion matrix, the horizontal acceleration samples at GCS
are obtained, as seen in Eq. (17). Similarly to Section 4.2,
to reduce nonlinearity of the state equation, we also pro-
ject accelerations at GCS into RCS and extract the walk-
ing direction at RCS. The state equation of user heading
is given as follows,

UH ¼ UHImRMPCA þ f q t1ð Þð Þ þ w

f q t1ð Þð Þ ¼ 0:5� arctan
~a12

~a11−~a22

0@ 1A
8>><>>:

ð41Þ
where ~a11, ~a12 , and ~a22 can be seen as a function of the
quaternion vector variable and obtained from Eq. (27),
UHImRMPCA is the user heading estimation result of im-
proved RMPCA for current step, and w is the process
noise variance of the state model.
If there is a landmark available, the user heading de-

rived from the landmark can be used to recalibrate the

ultimate user heading estimation. The measurement
equation is given as follows,

UHlandmark ¼ UHImRMPCA þ v ð42Þ

where v is the measurement noise of the user heading
derived from the landmark. With the quaternion vector
q(t1) and its covariance matrix calculated by attitude
tracking model developed in Section 4, we can deploy
UKF to calculate the ultimate user heading and its vari-
ance. If there is no landmark available, the ultimate user
heading estimation can be calculated by unscented
transformation on the state model, with the quaternion
vector and its covariance matrix as input variable.
For different landmarks, the uncertainties of the

derived user heading are different. User heading of
taking an escalator or entering an elevator has a smaller
variance than that of walking upstairs/downstairs. We
set the measurement noise of each landmark at the
target environment during the offline phase. Firstly, we
define an interval covering all possible user headings of

Fig. 3 Experimental environment and the true walking path including walking at the second floor, walking downstairs, walking at the first floor,
taking the elevator, and walking at the second floor again. a Second floor. b First floor
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a specific landmark. Secondly, for simplicity, the
measurement noise is assumed to follow Gaussian
distribution. We choose a three-sigma interval,
where the probability of the user heading values
lying in can reach up as high as 98.89%. Thirdly, the
center value of the defined interval is set as the
observed user heading of the landmark, and the
standard deviation is set to one sigma. The param-
eter settings may vary with different types of the
landmarks and realistic environments.

6 Evaluation
6.1 Experimental setup
Experiments were carried in a typical indoor building
area covering two floors, including a hall, a corridor and
a room for each floor, as seen in Fig. 3. The size of the
experimental area for each floor is 18.5 m × 11.2 m. We
deploy a Samsung Galaxy S4 smartphone as the device
to collect gyroscope, accelerometer, and magnetometer
data. The whole walking process for each participant in-
cludes starting on the walking path at the second floor
along the corridor and the hall, walking downstairs,
walking at the first floor along the hall, taking elevator,
and walking at the second floor again along the hall and
the room. The process was repeated by four individual
participants with a total number of 100 times to test the
user heading estimation performance of compared
approaches. Each participant initially held the phone
in hand, started the application, put it into the pocket

and then started the walking. As in many other works
[14, 33, 34], some parameters such as the initial walk-
ing direction are assumed to be known. To label the
ground truth and compute the user heading estima-
tion errors, we deployed a video to record the entire
walking process of each participant.

6.2 Performance analysis
We compare the user heading estimation accuracy of
various RMPCA-based approaches, including original
RMPCA approach, landmark-aided RMPCA without de-
vice attitude recalibration, improved RMPCA using
UKF, landmark-aided improved RMPCA without device
attitude recalibration, and the proposed landmark-aided
approach. As seen in Fig. 4, the proposed landmark-
aided approach performs significantly better than the
other compared approaches. Particularly, probability of
absolute estimation error within 10° for proposed
landmark-aided approach is 75.6%, while those of
landmark-aided improved RMPCA without device atti-
tude recalibration, improved RMPCA, landmark-aided
RMPCA without device attitude recalibration, and
RMPCA are 71.5, 69.1, 67.4, and 65.4%, respectively.
Probability of absolute estimation error within 20° for
proposed landmark-aided approach is 96.2%, while those
of landmark-aided improved RMPCA without device at-
titude recalibration, improved RMPCA, landmark-aided
RMPCA without device attitude recalibration, and
RMPCA are 93.5, 91.4, 87.9, and 85.8%, respectively.

Fig. 4 Cumulative error distributions of absolute heading estimation error of compared user heading estimation approaches
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Figure 5 shows the performance comparisons of mean
and standard deviation of absolute heading estimation
error. The proposed landmark-aided approach obtains
the smallest mean and standard deviation values of
absolute heading estimation error. Particularly, mean ab-
solute estimation error for proposed landmark-aided
approach is 6.85°, while those of landmark-aided im-
proved RMPCA without device attitude recalibration,
improved RMPCA, landmark-aided RMPCA without
device attitude recalibration, and RMPCA are 7.65°, 8.31°,
8.90°, and 9.56°, respectively. Standard deviation of abso-
lute heading estimation error for proposed landmark-
aided approach is 2.84°, while those of landmark-aided
improved RMPCA without device attitude recalibration,
improved RMPCA, landmark-aided RMPCA without de-
vice attitude recalibration, and RMPCA are 3.19°, 3.46°,
3.76°, and 4.03°, respectively. Compared with RMPCA
approach, the proposed landmark-aided approach and
previous landmark-aided RMPCA approach reduce the
mean absolute heading estimation error by 28.3% (2.71°)
and 6.9% (0.66°), respectively.
The proposed landmark-aided approach improves

the heading estimation accuracy from two aspects.
First, the improved RMPCA approach is developed
for user heading estimation without landmarks. The
improved RMPCA deploys UKF for quaternion-based
device attitude estimation, which may better adapt
the nonlinearity of the related measurement equation
than previous RMPCA approach using EKF. This
aspect can also be verified by the heading estimation
result comparisons between the improved RMPCA
and RMPCA approaches. Second, we not only deploy
landmarks for direct user heading recalibrations, but
also for device attitude estimation recalibrations,
which may render more accurate extraction of the
horizontal accelerations. This is also the reason why

the proposed landmark-aided approach performs
better than that of landmark-aided improved RMPCA
without device attitude recalibration.

7 Conclusions
In this paper, we propose two UKF-based user heading
estimation approach by fusing inertial sensors and land-
marks. The second UKF fusing landmarks and estima-
tion results of an improved RMPCA is developed for
direct user heading estimation, while the first UKF is
developed for device attitude estimation. The proposed
approach not only exploits landmarks for direct user
heading estimation recalibration, but also for device atti-
tude recalibration, which is important for accurate walk-
ing direction extraction. Compared with previous
RMPCA approach, instead of using EKF, the improved
RMPCA using the first UKF may better adapt nonlinear-
ity of measurement equation. Besides, we develop a
robust user motion recognition method for landmark
identification, without requiring noisy barometers. Ex-
perimental results show that the proposed landmark-
aided approach may obtain significant user heading
estimation accuracy improvement. Compared with pre-
vious landmark-aided RMPCA approach, the proposed
approach may reduce the mean absolute heading estima-
tion error by 23.0% (2.05°).
In our future works, more kinds of landmarks such as

passing doors and corners will be used to aid user head-
ing estimation and indoor navigation. Besides, more
complicated and a large-scale indoor environment in-
cluding more landmarks will be tested.
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