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Abstract

Modulation scheme recognition occupies a crucial position in the civil and military application. In this paper,
we present boosting algorithm as an ensemble frame to achieve a higher accuracy than a single classifier. To
evaluate the effect of boosting algorithm, eight common communication signals are yet to be identified. And
five kinds of entropy are extracted as the training vector. And then, AdaBoost algorithm based on decision tree
is utilized to confirm the idea of boosting algorithm. The results illustrate AdaBoost is always a superior classifier,
while, as a weak estimator, decision tree is barely satisfactory. In addition, the performance of three diverse
boosting members is compared by experiments. Gradient boosting has better behavior than AdaBoost, and
xgboost creates optimal cost performance especially.
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1 Introduction
With the rapid progress of radio technology, it has influ-
enced many fields such as communication reconnaissance
and anti-reconnaissance. Communication modulation
scheme is one of the most important technology in com-
munication reconnaissance and anti-reconnaissance, and
it has been widely used in military and civil fields [4–9].
Hence, the research of automatic modulation recognition
(AMR) of digital signals should be pay more attention.
AMR is a central task to extract representative pa-

rameters or features for defining the type of received
unknown signals. In the past decade years, the
approach for AMR can be mainly divided into two
categories [4, 8–10]. The first one refers to the
decision-theoretic method which utilizes the statistical
computing on digital signals and then converts the
AMR to the probability space by the threshold hypoth-
esis to get the recognition results. However, it has
obvious drawbacks requiring too many parameters of
the signal and high algorithm complexity. The next
approach mentions pattern recognition. It can be
regarded as a mapping relationship, which means

mapping the time-series signals to feature fields, and
the process of recognition just depends on the featured
parameters. Compared with the former, pattern recog-
nition occupies the advantage, an easy engineering im-
plementation, and has a widespread application field.
Generally, a large amount of data sets and training sets
are employed to train the classifier, and then, a series
of rather small sets, also called testing sets, try out the
performance of the classifier. Above content has
already displayed the primary steps for pattern recog-
nition. However, there still exists a critical key issue of
how to determine the classifier. A superior classifier
can improve the overall recognition results, while a
poor one will pull down the classification performance.
A number of classifiers have been published, but the
results are barely satisfactory under low signal to noise
ratios (SNRs). To ameliorate the current state, we use
the ensemble algorithm instead of single classifier.
These algorithms, such as bagging and boosting, have
been revealed more significant advantages than signal
classifier [1–3, 33–37].
In this paper, the aim is to survey the performance of

different boosting algorithms. From various algo-
rithms, the AdaBoost, Gradient Boosting, and Extreme
Gradient Boosting are selected. The ensemble algo-
rithms can improve the recognition results by combin-
ing a serious of base estimators (classifiers). Here, all
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boosting methods are based on decision tree for the
comparison of performance. The data set is composed
of five different information entropies instead of con-
ventional features.
The organization of this paper can be arranged as fol-

lows. The next section is feature extraction. In this part,
the feature is extracted for eight common digital signals,
including 2ASK, 2FSK, BPSK, 4ASK, 4FSK, QPSK,
16QAM, and 64QAM. Power spectrum entropy, wavelet
energy entropy, singular entropy, sample entropy, and
Renyi entropy compose the input datasets. Section 3
provides the ensemble learning methodology. In Section
4, the experiments are shown and the details will be
discussed later on. The summary is given in Section 5.

2 Feature extraction
The processing of pattern recognition is shown in Fig. 1.
We can roughly propose two key words for the whole
processing: feature and classifier. No classifiers can work
well with some invalid features. We have to choose the
characteristics in a scientific way. This part analyzes the
input data, i.e., features.
Different types of signal affect military and civilian

application dissimilarly. And identifying the communi-
cation signals precisely needs some powerful informa-
tion. As a result, the powerful information is fertile
such as amplitude, phase, frequency, high-order cumu-
lants, and cyclic spectral features [11–17]. As time
passes by, the feature extractor was not only focusing
on the time-frequency analysis but entropy features
[18–21, 38, 39]. The concept of entropy belongs to in-
formation theory, which is a kind of measurement for
the uncertainty of random events. It can be utilized to
measure the uncertainty and complexity of the signal
state distribution characteristic. The more entropy
there is, the less stable the signal is. The capacity of
carrying information can be distinguished by which is

the reason why entropy is suitable for applying in the
AMR. In our work, the diverse five entropies are
chosen to express the signal respectively. The detailed
principles are displayed in the following part.

2.1 Power spectrum entropy
Power spectrum entropy reflects the complexity of the
signal in the frequency domain and also the order de-
gree with the signal energy. The frequency distribution
will be obtained by Fourier transform. Relative to the
time-sequence waveform, spectrum analysis embodies
more internal characteristics. Here, the paper denotes
the signal by {xi, i = 1, 2,…,N}, which will be converted
to X(ejw)after Fast Fourier Transform (FFT), and then,
the power spectral density S(ejw) can be presented as
the following expression:

S ejw
� � ¼ 1

N

XN−1

n¼0

xne
−jw

�����
�����
2

ð1Þ

S(ejw) is the distribution of power in the frequency
domain. If normalizing the S(ejw), then

pk ¼
S ejwð ÞP∞

k¼1
S ejwð Þ

ð2Þ

H ¼ −
X∞
k¼1

pk log2pk ð3Þ

In (3), pk represents the kth ratio of the frequency to
whole spectrum and H is the power spectrum entropy.
The less H is, the more concentrated it is in the main
frequency point.

2.2 Singular spectrum entropy
Singular spectrum entropy [40] is a common entropy in
the time domain. The extraction steps are grouped by

Fig. 1 The process of the whole experiment
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piecewise sequence, decomposition singular values, and
calculating the H.

A ¼
x1; x2;…; xM
x2; x3;…; xMþ1

xN−M ;…; xN

#�
ð4Þ

Assume the segment length is M, and xi can be seg-
mented by N −M. Then, the matrix A is given by (4).
Signal’s information (δi) based on N −M basic vector is
got after decomposing A which is embodied in the way
of the length of signal projection under the basic vector.

pi ¼
δiP

i¼1

N−M
δk

ð5Þ

H ¼ −
X∞
k¼1

pi log2pi ð6Þ

The order degree of the signal information distribution
is incarnated by singular spectrum entropy. If H is rela-
tively high, the signal order has a higher level.

2.3 Wavelet energy entropy
In the real world, most signals are non-stationary which
leads to that the wavelet analysis is indispensable. Unlike
FFT, wavelet transform is involved in two wavelet bases
which can cover the frequency and time domains’
availability at the same time. Therefore, the local tiny
features of signal can be described more finely.

Wf a; bð Þ ¼ f ;φa;b

D E
¼ 1ffiffiffiffiffiffi

aj jp Z ∞

−∞
f tφ

� t−b
a

� �
dt ð7Þ

The above equation is on behalf of wavelet transform
on the signal f(t).The wavelet transform covers high-
dimensional signals well, while the classical analytical
method, FFT, is adopted to one-dimensional signals.
If the transformation scale is set to be j, then we use

FFT on the wavelet signal:

X kð Þ ¼
XN
n¼1

di nð ÞWkn
N ð8Þ

where Wkn
N ¼ exp −j 2πN kn

� �
. Similar to the above calcula-

tion of these entropies, power spectrum and
normalization for the X(k)can be denoted:

S kð Þ ¼ 1
N

X kð Þj j2; k ¼ 1; 2;…; jþ 1 ð9Þ

pk ¼
S kð ÞPN

i¼1
S ið Þ

So, the wavelet energy entropy is H ¼ −
PN

k¼1pk log2pk .

2.4 Renyi entropy
According to the reference [22], the Renyi entropy is de-
fined by:

Rα pð Þ ¼ 1
1−α

log2

P
i
pαiP

i
pi

ð10Þ

When the input is two-dimensional probability density
distribution f(x, y), then the Shannon entropy and α
order Renyi entropy are denoted:

I pð Þ ¼ −
∬ f x; yð Þ log2f x; yð Þdxdy

∬ f x; yð Þdxdy ð11Þ

Rα pð Þ ¼ 1
1−α

log2
f α x; yð Þdxdy
∬ f x; yð Þdxdy ð12Þ

In this paper, a modified Renyi entropy, SPWVD Renyi
entropy, is carried out.

Hα;x ¼ 1
1−α

log2∬
SPWVDg;h t; fð Þ

∬SPWVDg;h t; fð Þdfdt
� �α

dtdf

ð13Þ
Here,SPWVDg;h t; τð Þ ¼ R∞

−∞

R∞
−∞ s t−uþ τ=2ð Þs� t−uþ τ=2ð Þ

h τð Þg uð Þe−j2πτdτdu, which is from smoothing for the vari-
ables t,τ by windows function h(τ), g(τ). SPWVD is a kind
of smooth pseudo Wigner-Ville distribution (WVD) in the
Cohen, because of the cross term in WVD.

2.5 Sample entropy
Sample entropy is a time series complexity measurement
proposed by Richman [23, 24]. It can be considered as
the modified approximate entropy. Now, sample entropy
is defined as follows:

H ¼ log
φm rð Þ
φmþ1 rð Þ

� �
ð14Þ

Here, the maximum distance between the ith signal X(i)
and the others X(j) is calculated firstly, d[X(i),X(j)] =max {|
X(i + k),X(j + k)|}. It must be noted that X(i) is composed
of m samples of signal xi. Next, a threshold value is set by r.
Thus, the φm(r) is as follows:

φm rð Þ ¼ 1
N−mþ 1

XN−mþ1

i¼1

Cm
i rð Þ ð15Þ

Cm
i rð Þ denotes the ratio which means the number of max-

imum is smaller than the setting threshold to all samples.
We have illustrated the principle of these features, and

we will use an experiment result to display their respon-
sibilities which are skilled in different types of digital sig-
nal. The boxplot will be used to reflect the distribution
of data. In the experiment part, their ability to extract
signal information will be displayed.
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3 Classifiers
There is an algorithm originating from probably approxi-
mately correct (PAC) learning model [25]. The concept of
weak and strong learning is proposed by Valiant and Kearns.
If the error rate is less than 0.5 slightly, which means the
accuracy rate is just only better than random guessing, the
algorithm can be considered as a weak learner [23, 24].
Then, another issue to ponder is how to boost the weak
learners to be strong learners. A polynomial-time boosting
method is come up by Schapire in 1989 [26], which is the
prototype of boosting algorithm. In recent years, the appli-
cation of boosting algorithm has become popular among
various classifiers. As a machine learning method, ensemble
boosting devotes to finding rough rules of thumb other than
getting a high prediction rate rule. Especially, its superiority
is reflected in avoiding overfitting and high probability of
classification in high-dimensional space. In this paper, we
employ boosting classifier instead of single classifier to build
a high accuracy for the pattern recognition.

3.1 AdaBoost
Boosting is a cluster of algorithms. In 1995, a converted
boosting, adaptive boosting (AdaBoost), was introduced by
Freund and Schapire [27]. AdaBoost algorithm is one of
the most famous representatives; therefore, it aims at trans-
forming weak learners to strong ones. One of the cushy
comprehensions is linear combination based on these weak
learners or estimators for the AdaBoost.
Here takes a binary classification as an example to

explain the process:

In the above process, wij denotes the weight for the jth

sample in the ith round.

D is just sample weight set. AdaBoost combines a
series of estimators by line, and αm is another weight or a
coefficient for the estimator. From the equality relation-
ship, it is obvious that αm is inversely proportional to em.
And Zm represents the normalization of wij which is satis-
fied with the probability. In addition, we will find wij-
depends on the last round result to upgrade where the
adaptive comes from. All weak learners are not alone with
each other but link closely.
The performance of ensemble method is closely

related to weak learners. In the real situation, AdaBoost
with decision tree is the best off-the-shelf classifier [28].
As a result, the whole simulation is based on the only
weak classifier, i.e., decision tree.

3.2 Gradient boosting
Another stagewise boosting member is gradient boosting
(GB) derived by Friedman [29, 30]. The principle idea of
gradient boosting is to construct the new model based on
the negative gradient of the previous loss function which is
related to the former iteration rounds. In the machine
learning, loss function is the key issue to solve, which em-
bodies the relationship between prediction and target. The
less the loss function is, the higher the precision is. If the
loss function declines consecutively with the iteration
process, a conclusion that the model changes sequentially
along a superior direction can be inferred. Gradient of loss
function is the superior direction.
Considering the supervised classification, there is an ex-

pected objective to find an approximation rule Fb xð ÞÞ�
to fit

the F(x). Here, the definition of loss function is L(y, F(x)):

Fb¼ argmin
F

L y; Fð Þ ð16Þ
where F denotes the linear combination of some weak
learners (Gi(x)) with weights (γi). And F tries minimizing
the value of loss function on the input vector. So, the
algorithm initializes a constant function F0(x),

F0 xð Þ ¼ argmin
γ

Xn
i¼1

L yi; γð Þ ð17Þ

The pseudocode is shown as follows:
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Similar with AdaBoost, if the decision tree is selected
as the estimator, the algorithm will be the gradient
boosting decision tree (GBDT), a shining classifier,
which can be applied in many fields.
At the beginning of this section, we have mentioned there

are a lot of member algorithms in the boosting method
family. Gradient boosting and AdaBoost are two common
ones of them. If we view from an abstract point, both of
them get solved with the help of convex loss function. But
gradient boosting can get more types of loss function.
What is more, GB could deal with both regression and
classification. In classification mode, log loss function
is always the best objective function while AdaBoost
will choose exponential loss. If you want to tell them
from the fundamental element, the crucial question is
how to identify the model. AdaBoost utilizes the mis-
classification to adjust the weight of weak learners
whereas GB applies Negative gradient to ameliorate.

3.3 Extreme gradient boosting
During the last years, data mining and data analysis
become the current topic with the rise of alpha go.
Our life is full of these words such as big data and arti-
ficial intelligence. Boosting family also has a vicissitude
with time. A novel boosting method occurs in the
Kaggle, extreme gradient boosting, simply xgboost.
Xgboost, an implementation of GBDT, offers a novel

tree searching: end to end [31, 32]. The algorithm has
advantages in distributed computing, solving the
sparse, and avoiding overfitting better. In other words,
the amount of calculation reduces greatly and the split
direction is learned automatically. For overfitting,
regular terms are appended to the objective.
Different from conventional GBDT, xgboost performs

second-order Taylor expansion on the loss function
replacing the first derivative. Based on GBDT, xgboost
can be described as the following:

L ¼
X
i

l y; Fð Þ þ
X
k

Ω Gkð Þ ð18Þ

Here, we use l as the training loss function as above,
and L is the real loss function for xgboost method. The
other notations are consistent with the ones in other
mentioned boosting methods. G is the weak estimator
(decision tree) and F represents prediction. Moreover,
the complexity of the decision trees (Ω(Gm)) is added
into the loss to construct the objective function. The
definition of regular term, Ω(Gm), is showed as:

Ω Gð Þ ¼ γT þ 1
2
λ
XT

j¼1
wj

2 ð19Þ

where T is the number of leaves of the decision tree and
wj
2 means L2 norm of leaf scores. γ is the threshold to

control the split of nodes, and λ is just on behalf of coef-
ficient to preserve overfitting which is a unique charac-
teristic. More details are demonstrated in reference [31].
Then, the equation can be transformed as:

Lm ¼
XN
i¼1

l yi; F
m−1
i þ Gm xið Þ� �þΩ Gmð Þ

≈
XN

i¼1
l yi; F

m−1
i

� �þ giGm xið Þ þ 1
2
f iG

2
m xið Þ

24 35þΩ Gmð Þ

ð20Þ

From the equation, the other main variables can be de-
noted respectively: gi ¼ ∂Fm−1 l yi; F

m−1
i

� �
and f i ¼ ∂2Fm−1 l

yi; F
m−1
i

� �
, the first and second derivative on loss

function.

4 Experiments
After introduction of methodology, AMR experiment to
evaluate ensemble methods is proposed in this part. We
consider the eight types of modulation schemes including
2ASF, 2FSK, BPSK, 4ASK, 4FSK, QPSK, 16QAM, and
64QAM. For every signal, sampling rate is 16 KHz and
carrier frequency is 4 KHz. The other parameters are
listed here such as number of symbols (125), symbol rate
(1000), and length of signal (2000). The range of SNR is
between − 10 and 20 dB with the 3 dB step length.
Data set is divided into training data and testing data.

The first one covers 8000 samples in every SNR while
the other one has 4000 samples. Every modulation
scheme extracts 1500 samples for one SNR.
The experiment begins with the extraction entropy

feature. From Fig. 2, the distribution of feature where
entropy acts the communication scheme on the 11 SNRs
is shown. Because these entropies are discrete points,
boxplot that embodies the distribution of discrete data
well has been used to analyze characteristics. The reason
why the range of maximum and minimum is immense is
that the boxplot is made under all SNRs. Median layout
is well-proportioned that maybe contribute to the classi-
fication. One of the five pictures looks contrary from the
others. The Renyi entropy boxplot displays some points
labeled by “+”, called extreme outliers, which causes
some inference to recognition result. In addition, data is
more concentrated, which means the feature is not sen-
sitive to noise. Wavelet spectrum entropy affects the all
modulation similarly except the type of FSK. As a
feature, its contribution may be less than others.
Furthermore, QPSK, 16QAM, and 64QAM almost are
similar with each other except Renyi entropy. This
mostly results in some misclassification.

4.1 AdaBoost with weak learners
Building a mergence system to improve the performance
of every weak classifier is the ultimate goal. In this part,
the experiment will be implicated in comparing the
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single with groups. Decision tree (DT) is the only candi-
date. The result is shown in the graph.
Shown in Fig. 3, with the depth of tree higher, the recog-

nition rate of DT becomes better. For example, when the
SNR is − 10 dB, two-tier DT is just a random guessing be-
cause the recognition probability is about 50%, whereas
DT based on four layers can acquire precision more than

70%. DT is a tree structure from one node split binary
branches according to some special conditions which
point to GINI information Branch connects two nodes:
one is the generation, parent node; the other is child node.
Child follows the parent to spill continuously until it
meets the decision rules. Consequently, it is a capability to
embody classifying by setting a higher depth of tree. The

Fig. 2 The distribution of entropy feature in different signals in mixture SNR (from − 10 dB to 20 dB) with margin 3 dB. Five points are shown
which include maximum, 75th percentile, median, 25th percentile, and minimum
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lusher the tree evolves, the more complex the algorithm is
and as a result the higher the accuracy is.
However, there is a worrying phenomenon in the

above picture. When the SNR reaches 5 dB, DT’s ability
goes down drastically. We have no choice but to con-
sider whether the cause is from features or base classi-
fiers. The following picture will interpret the reason.
The confusion matrix is used to exhibit details of

classification. The column denotes the real target while
the row denotes the predicted label. It is a visualization
tool to compare the classification results and actual
measured value primarily.
The left matrix is the result of accuracy of decision tree

based on 4 layers. For each signal, there are 500 samples
to test the model. Modified model can identify the digital
signals adequately except QPSK, 16QAM, and 64QAM.
Model feels confused with regard to QPSK, QAM, and
2FSK. It allots wrong label, i.e., 2FSK, to them. Moreover,
none of them can be escaped which means the five
entropy features does not work anymore. These features
no longer have their unique characteristics.
The right confusion matrix shows the AdaBoost rec-

ognition rate. Although the base learner has a low
grade, ensemble has an opposite one. This is the en-
semble’s original idea which comes from PAC and re-
quires just about 50% probability. In Fig. 4, two
confusion matrixes verify the conclusion that boosting
has the ability to enhance the accuracy of weak
learners once again. As for the features, although they
demonstrate a little anti-common sense which is work-
ing badly under high SNR, this is not a key issue with
the performance comparison text and offers an
evidence to support the ensemble theory. So it will not
be discussed much anymore.

Fig. 3 Comparison of different tree depth between decision tree and AdaBoost algorithm with 800 rounds iteration. The right column always
denotes decision tree with diverse depth, and the left one is AdaBoost. The correct order in legend is from left to right and up to down

Fig. 4 Recognition confusion matrix of DT and AdaBoost versus
SNR = 5 dB, tree depth is 4
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4.2 Comparison of boosting
The conclusion that AdaBoost algorithm converts base
learner into a strong one successfully can be made. As the
same with other algorithms, boosting algorithm also is a
family method. Assorted deformation algorithms have
been proposed by the amount of researchers and studies
during the past decades. Two epidemical arithmetic based
on tree structure stand out from these boosting members.
The next experiment will show the comparison between
the popular and classical arithmetic.
Seen from Table 1, every column includes a series of

classification rate by means of three individual boosting al-
gorithms. The recognition probability of eight typed signal
is satisfied in all SNRs. All of the results based on three
depth of tree are done with 100 rounds except xgboost
that only iterates 20 times. The trend of recognition prob-
ability emerges upward from vertical direction. If we re-
gard from horizontal perspective, the effect of GBDT is
proximal to xgboost. Notwithstanding boosting achieve a
higher outcome, gradient boosting seems better than
others. In the case of − 10 dB SNR, AdaBoost algorithm
gets probability 78% but gradient boosting’s average is
probability 85%. Although these two gradient boosting al-
gorithms are approximate, the xgbooost occupies less it-
erative times; that is to say, it masters high proceeding
speed but less resources consumption. Modulation
scheme recognition is an engineering project in civil and

military application. Therefore, performance of xgboost al-
gorithm is excellent.
As the same as former, confusion matrix is utilized to

show the classification details. We want to analyze the
probability of classification for every sigma.
In Fig. 5, confusion matrixes give the proportion that

every signal recognition result. The confusion matrix
presents visualization of the performance of three

Table 1 Probability of different ensemble learning

SNR Classifier

AdaBoost GBDT Xgboost

− 10 dB 0.783 0.8501 0.8465

− 7 dB 0.894 0.928 0.928

− 4 dB 0.993 0.993 0.993

− 3 dB 1.000 1.000 1.000

− 1 dB 1.000 1.000 1.000

2 dB 1.000 1.000 1.000

5 dB 1.000 1.000 1.000

8 dB 1.000 1.000 1.000

11 dB 1.000 1.000 1.000

14 dB 1.000 1.000 1.000

17 dB 1.000 1.000 1.000

20 dB 1.000 1.000 1.000

Fig. 5 Recognition confusion matrix of AdaBoost, gradient boosting decision tree, and xgboost algorithm versus SNR = − 10 dB, tree depth is 3

Liu et al. EURASIP Journal on Wireless Communications and Networking  (2017) 2017:179 Page 8 of 10



contrast algorithms which brings more details than ac-
curacy. Although some signal is misclassified, the recog-
nition result is satisfied from the three confusion
matrixes. The type of ASK and QAM can be identified
correctly, while the others are mixed together. For BPSK,
almost half of the samples are labeled with QPSK.
Meanwhile, QPSK is acknowledged as BPSK. Most of
the wrong 4FSK is predicted as QPSK, some as BPSK
and the rest is considered as 2FSK. In general, PSK can-
not be distinguished greatly. However, the excellent
boosting members reduce the number of wrong samples.
Xgboost is the derivative of GBDT; therefore, the result
is similar but better than AdaBoost. Even so, no matter
which ensemble learning is chosen, the law of identifica-
tion will not be influenced unless the SNR alters.

5 Conclusions
In order to enhance the probability of communication
digital signal recognition, in this paper, we bring in ensem-
ble learning based on boosting algorithm. All of three
boosting member algorithms can obtain a higher accuracy
than weak classifier. First, five different information en-
tropy of communication signals are extracted as the input
training data set of classifiers. A boxplot is used to show
the distribution of discrete features, and a similarity for
QPSK, 16QAM, and 64QAM is also displayed. And then
the experiment starts from the comparison between the
AdaBoost algorithm and decision tree algorithm with un-
certain depth of tree. The result exhibits that AdaBoost
can improve the performance of decision tree despite the
entropy feature work badly when SNR is over 2 dB. At
last, another check experiment is made to confirm proper-
ties of each boosting member. It is obviously seen from
the table of recognition result that gradient boosting is su-
perior to classical AdaBoost a little. And the state-of-art
boosting algorithm, named xgboost, may be more suitable
for modulation scheme classification without less iteration
times and higher precision.
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