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Abstract

Underwater acoustic channel (UAC) is one of the most challenging communication channels in the world, owing to
its complex multi-path and absorption as well as variable ambient noise. Although adaptive equalization could
effectively eliminate the inter-symbol interference (ISI) with the help of training sequences, the convergence rate of
equalization in sparse UAC decreased remarkably. Besides, channel estimation algorithms could roughly figure out
channel impulse response and other channel parameters through several specific mathematical criterions. In this
paper, a typical channel estimation method, least square (LS) algorithm, is applied in adaptive equalization to obtain
the initial tap weights of least mean square (LMS) algorithm. Simulation results show that the proposed method
significantly enhances the convergence rate of the LMS algorithm.
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1 Introduction
With further exploration of ocean resources, underwater
communication is playing a more critical role in both
military and civilian aspects. Owing to the fact that elec-
tromagnetic wave attenuates severely in underwater
channels, sound wave becomes the only effective com-
munication mode. But compared with electromagnetic
wave, sound velocity is extremely slow which would
cause a severe propagation delay. When transmitting
signals, sound wave would continually reflect between
sea surface and bottom owing to restrained underwater
channel. As a result, transmitted signals in underwater
acoustic channel (UAC) have more severe inter-symbol
interference (ISI) due to complex multi-path propagation
in contrast to other kinds of communication channel.
Besides, underwater channels have variable and unknown
impulsive ambient noises which are often related to wind,
rainfall, tide, vessels, and so on [1].
Adaptive equalizers are often utilized to effectively

mitigate the inter-symbol interference (ISI), but they
have a considerably low convergence rate in UAC.
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Therefore, information frame needs to carry longer
training sequences to guarantee that iterations could
reach the steady state of convergence during training
mode. But it would occupy more bandwidth and reduce
communication effectiveness, and this would be a deadly
drawback for the fact that underwater acoustic channel
is badly band-limited due to low-frequency ship noise
and absorption of high-frequency energy [2]. It can be
concluded that enhancing convergence rate of equalizer
is a better option than enlarging the training sequences
in underwater acoustic communication.
In general, the convergence rate of standard least

mean square (LMS) adaptive equalizer mainly depends
on the step size of each iteration. Therefore, a series of
variable step-size least mean square (VSSLMS) algo-
rithms [3–5] were proposed, which adjusted the variable
step-size by minimizing the error at each iteration. Tong
et al. [6] proposed a data reuse least mean square (DR-
LMS) algorithm, which reuse the known training
sequences to achieve a better equalization performance.
Cui et al. [7] combined LMS with recursive least square
(RLS) algorithms to realize a faster convergence rate and
simplify complexity of implementation at the same time.
However, the initial coefficients of equalizer tap weights
are always neglected among improved equalization
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methods, which are also critical to the whole iterations
and convergence rate.
Channel estimation is another way to impede and

compensate channel fading, which obtains an approxi-
mate channel response through a series of mathematical
analysis and calculations. But those estimation algo-
rithms would get poor performances in sparse under-
water acoustic channels. This paper aims to exploit the
typical channel estimation algorithm—least square (LS)
[8] to obtain the initial coefficients of equalizer tap
weights. Simulation results under UAC reveal that our
proposed algorithm improves the convergence rate and
BER compared with the traditional LMS adaptive
equalizer, especially in a low SNR region.

2 UAC communication model
2.1 Sound velocity
In general, the sound velocity would be influenced by
temperature, salinity, and static pressure, and its empir-
ical formula can be written as [9]:

c ¼ 1450þ 4:21T−0:037T2 þ 1:14 S−35ð Þ þ 0:175P

ð1Þ

where c is the corresponding sound velocity, T stands for
temperature, S is salinity (‰), and P stands for pressure
(atm). However, those environmental factors are slow
time-varying during the communication, and sound
velocity is usually considered as a constant, which is
1500 m/s.

2.2 Ray model
In an underwater acoustic environment, glancing angle
and reflection loss are literally small, so the amplitude of
Fig. 1 The ray model in underwater acoustic channel
multi-path is too large to ignore. In this paper, we apply
ray model to simulate underwater acoustic channel [9],
and the specific schematic plot can be seen in Fig. 1.
The multi-path signals could be classified into five
categories, which are mainly based on the reflecting
border (sea bottom or sea surface) of the first time
and the last time. Then, the transmission route from
a communication sender to a receiver would be easily
obtained so that propagation distance of each path
could be roughly calculated according to specular
reflection principle.
2.3 System mode for simulation
For practical purpose, a one-way transmission scheme
with a relay node is established for simulation, which is
as shown in Fig. 2. Taking long communication distance
and severe ISI into account, the relay transmission node,
which would forward the information sequences, is
added to guarantee the communication quality to some
extent. In order to simplify the communication model,
the complex ambient noises are substituted for inde-
pendent additive white Gaussian noise. And a typical
channel response [10] is applied to simulate the unknown
underwater acoustic sparse channel (as shown in Fig. 3).
Note that error correction coding and orthogonal

frequency division multiplex (OFDM) could improve sys-
tem performance. However, it would impede the under-
standing of how efficiently the receiver equalizer mitigates
the ISI. For this reason, channel coding is omitted and
OFDM is replaced by binary ASK modulation in this
paper. For more details, the modulation frequency is
8 kHz and each transmitting frame consists of 400
training symbols and 1000 data symbols.



Fig. 2 Established one-way transmission scheme
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3 Related works: channel equalization and
estimation
Channel equalization and estimation are two common
ways to overcome multi-path effects and mitigate ISI.
However, their fundamental principles are entirely
opposite. It is obvious to see in Fig. 4 that the former is
to compensate channel’s loss and attenuation, while the
latter attempt to calculate channel response.
Figure 5 depicts a simple kind of adaptive equalizer,

linear transversal equalizer (LTE) which consists of N
delay units and N tap coefficients [11]. If we just define
the input signal as x(n) and the corresponding tap
weights as wi(n), then the output signal y(n) can be
defined as:
Fig. 3 The typical underwater acoustic sparse channel response
y nð Þ ¼
X

i¼0

N ‐1

wi nð Þx n−ið Þ ð2Þ

While channel estimation generally use complex prob-
ability theory and information theory to approximately
deduce channel response with the aid of training
sequences or pilot signal, those algorithms vary in time
domain and frequency domain, and least square is the
most conventional principle. The specific equations
would be illustrated in the next section.

4 The proposed algorithm
Our new algorithm effectively combines channel
equalization with estimation methods, which make a
better use of training sequences.
In general, the unknown UAC communication system

is simplified by an Nth order finite impulse response
(FIR) filter with an impulse response which is h = [h0, h1,
⋯, hN ‐ 1]

T. In addition, the corresponding input vector
regression of the adaptive equalization filter is assumed
as x(n) = [x(n), x(n − 1),⋯, x(n −M + 1)]T and the tap
weight vector is w(k) = [w0(k),w1(k),⋯,wM − 1(k)]

T, where
n is the time index and M is the length of the equalizer
taps, given that s(n) is the initial training sequences and
v(n), which is to substitute the ambient noise of real
underwater environment, is the independent white
Gaussian noise with zero mean and variance δ2n .
Besides, the inner structure of training sequences is
[0, 1, 0, 1,⋯, 0, 1], because changeable sequences could
better track channels. Finally, the desired output
sequences d(n) can be defined as

d nð Þ ¼ s nð Þ⋅hþ v nð Þ ð3Þ



Fig. 4 The comparison between channel estimation and equalization: a estimation and b equalization
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where d is the outcome of the training sequences s influ-
enced by channel response h and v(n).
Prior to starting with iterations and updating the tap

weights, a significant step needs to be done, which is
roughly estimating the tap weights with the aid of LS
channel estimation algorithm. Firstly, we need to cut out
s and d so that they are in the same length of equalizer
taps, then we obtain s ¼ s 0ð Þ; s 1ð Þ;⋯; s M−1ð Þ½ � and d
¼ d 0ð Þ; d 1ð Þ;⋯; d M−1ð Þ½ � . Next, a discrete fast Fourier
transform is conducted on both of them as
Fig. 5 The inner structure of linear transversal equalizer
S kð Þ ¼
X

n¼0

M−1

s nð ÞWkn
M ð4Þ

D kð Þ ¼
X

n¼0

M−1

d nð ÞWkn
M ð5Þ

where WM ¼ e−j
2π
M and k = 0, 1,⋯,M − 1.

Then, we can use the following formula to calculate
the estimated frequency domain channel response H .



Fig. 7 The spectrogram of received signals when the SNR is 5 dB
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H kð Þ ¼ D kð Þ
S kð Þ ð6Þ

Subsequently, we conduct an inverse Fourier trans-
form on 1H to gain original equalizer weights w0 which
is as follows:

w0 ¼
X

k¼0

M−1 1

H kð ÞW
−kn
M ð7Þ

Since the initial coefficients of tap weights w(n) are
obtained, we can utilize the general LMS algorithm to
recursively update them as follows:

w nþ 1ð Þ ¼ w nð Þ þ 2μ⋅e nð Þ⋅s nð Þ ð8Þ

e nð Þ ¼ s nð Þ−wT nð Þ⋅d nð Þ ð9Þ

where μ is the step size of updating tap weights and e(n)
is the error calculation output.

5 Simulation results and discussions
During the simulation, convergence rate of the proposed
algorithm is compared with the traditional LMS algo-
rithm. Figure 6 shows the MSE learning curves of two
algorithms when μ(n) is set to a constant, 0.005, and the
length of the equalizer taps is 70. The final outcome
shows that the proposed algorithm has a faster conver-
gence rate with less than 2000 iterations to reach the
steady state. Since the ambient noises are neglected
during this simulation, the MSE in steady state approxi-
mately reaches − 600 dB.
The spectrogram of received signals is shown in Fig. 7.

It is obvious that the received signals in frequency
domain reach the peak roughly at − 8 and 8 kHz, which
is mainly determined by the modulation.
Fig. 6 The MSE learning curves
In general, the unknown and variable errors in the
steady state are mainly caused by the additive noise [7].
Hence, the bit error rate (BER) becomes another
performance metric to further identify the robustness of
this new method. In Fig. 8, the BER performances of the
two methods are plotted, where the results are averaged
over 500 independent trials. And the results show that
our proposed algorithm has 0.5 dB better BER perform-
ance than LMS algorithm in a low SNR environment.
In addition, Fig. 9 demonstrates that the length of

training sequences could be effectively decreased when
utilizing DR-LMS algorithm. During this simulation, the
length of training sequences was cut down to one sixth
of its original length.
Fig. 8 BER performances comparison between the referred
two algorithms



Fig. 9 BER performances among different reuse times i
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6 Conclusions
In this paper, a novel equalization algorithm is proposed
which utilize channel estimation to define the initial
values of receiver equalizer taps. Simulations show that
our new method has better performances both in
convergence rate and BER compared with the original
LMS algorithm. In addition, the proposed method could
lessen the transmission of training sequences and save
energy for underwater communication devices.
In future work, MIMO channel equalization will gain

more attention. And the relevant simulations would
take more practical factors into account. Furthermore,
we would attempt to figure out the optimal inner
structure of training sequences by virtue of mathematical
derivation and computing experiments.
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