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Abstract

The natural acoustic system used by marine mammals and the artificial sonar system used by humans coexist in the
underwater cognitive sonar communication networks (CSCN). They share the spectrum when they are in the same
waters. The CSCN detects the natural acoustic signal depending on cooperative spectrum sensing of sonar nodes. In
order to improve spectrum sensing performance of CSCN, the optimization of cooperative spectrum sensing and data
transmission is investigated. We seek to obtain spectrum efficiency maximization (SEM) and energy efficiency
maximization (EEM) of CSCN through jointly optimizing sensing time, subchannel allocation, and transmission power.
We have formulated a class of optimization problems and obtained the optimal solutions by alternating direction
optimization and Dinkelbach’s optimization. The simulation results have indicated that SEM can achieve higher
spectrum efficiency while EEM may get higher energy efficiency.
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1 Introduction
Cognitive radio (CR) can improve spectrum utilization
greatly through letting secondary user (SU) to access the
idle spectrum licensed to the primary user (PU) [1]. How-
ever, the SU has to detect the absence of the PU through
performing spectrum sensing, in order to guarantee the
normal communications of the PU [2]. Energy detection
is widely used as an effective spectrum sensing method
due to the unnecessary prior information of the detected
signal [3]. But the performance of energy detection will
decrease if the PU is in fading or shadowing path, which
is called “hidden terminal problem.” Cooperative spec-
trum sensing has been proposed to cope with this problem
through letting multiple SUs detect the PU and exchange
the sensing information collaboratively [4].
Recently, underwater communication network has

attracted the attention, which can be used in underwater
environment monitoring and submarine resource explo-
ration. The underwater communication network trans-
mits data using the underwater acoustic channel [5].
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However, there are often multiple different underwa-
ter acoustic systems in the same water area, which may
cause the interference to each other. In order to improve
the spectrum utilization, CR has been introduced in the
underwater communication network, called as cognitive
sonar communication networks (CSCN) [6]. CSCN can
use the sonar nodes to detect the presence of the other
underwater acoustic systems in the surrounding water
environment and transmit data on the premise of detect-
ing the idle underwater acoustic channel. The underwater
acoustic environment in the ocean is very complex, and
usually, multiple acoustic systems coexist in the same
water area, such as artificial echolocation systems, moni-
toring systems, and the nature acoustic systems of marine
mammals [7]. The spectrum sharing of artificial acoustic
network system and natural acoustic system will affect the
transmission efficiency and the survival of marine mam-
mals. The CSCN can realize the coexistence of a variety
of artificial underwater acoustic systems in the protection
of marine animals [8]. Thus, in the CSCN, the sonar node
and the nature acoustic system can be seen as a SU and a
PU, respectively.
Spectrum efficiency is an important index to evalu-

ate the transmission performance of CSCN. Most of the
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previous works focused on optimizing either cooperative
sensing or data transmission to maximize the spectrum
efficiency of the CSCN. For instance, the listening-before-
transmitting spectrum access is proposed, which can
maximize the spectrum efficiency through optimizing
sensing time [9]; both [10] and [11] assumed that each
SU had a fixed transmission power, which ignored the
potential gain of dynamic resource optimization. The
water filling algorithm could maximize the spectrum effi-
ciency of multichannel CSCN through optimizing sub-
channel power [12]. Recently, green communications have
attracted the attentions of the scholars. Energy efficiency
has been proposed to measure the effectiveness of energy
utilization [13].
In this paper, we investigate the joint parameter opti-

mization of cooperative spectrum sensing and data trans-
mission for multichannel CSCN. The contributions of the
paper are listed as follows:

• We seek to maximize spectrum efficiency and energy
efficiency of CSCN, respectively, while considering
both spectrum sensing performance for detecting the
nature acoustic system and the power constraint of
each sonar node.

• We have formulated the cooperative spectrum
sensing and data transmission optimization as a class
of optimization problems about sensing time,
subchannel allocation, and transmission power. In
the optimization problem, the nature acoustic system
is fully protected, while the transmission performance
of the CSCN is improved as much as possible.

• The joint optimization algorithm is proposed to
obtain the solutions to the optimization problems,
which is based on the alternating direction
optimization and the Dinkelbach optimization.

2 Systemmodeling
We consider L nature acoustic systems occupying L sub-
channels, which are seen as PUs and a CSCN constituting
ofN sonar nodes, which are seen as SUs. We also suppose
that in an artificial acoustic system, there is an access point
that controls the channel usage of the SUs in the locat-
ing water, which can be seen as a fusion center. In order
to avoid causing harmful interference to the PU, the SU
has to detect the utilization state of the licensed spectrum
and decide the activation of the PU. Hence, the periodic
cooperative spectrum sensing based on “listening before
transmitting” is proposed in this paper, which divides the
communication time into several frames, each of which
constitutes of three time slots including local sensing slot,
cooperative interaction slot, and data transmission slot, as
shown in Fig. 1. In the local sensing slot, all the SUs sense
the activation of the PU in L subchannels and obtain the
local sensing information.

Then, in the cooperative interaction slot, each SU uses
one common channel to report the local sensing infor-
mation to the fusion center, which makes a final decision
on the activation of the PU by the soft-decisional com-
bination of the local sensing information. To avoid the
mutual interference, the SUs cannot report from the com-
mon channel simultaneously at the same time. Hence,
in order to save the bandwidth of the common channel,
the SU adopts time division multiple access (TDMA) to
report the local sensing information. Finally, in the data
transmission slot, the SUs access the licensed spectrum
to communicate according to the decision result of the
fusion center.

2.1 Underwater acoustic channel model
The fusion center maintains a collection of free channels
and the corresponding channel gain matrix in the under-
water acoustic region by scanning and spectrum sensing.
Supposing that hn,l is the channel gain of SU n using sub-
channel l, the channel gain matrix H, can be given by

H =

⎛
⎜⎜⎜⎜⎝

h11 h12 · · · h1N
h21 h22 · · · h2N
...

...
. . .

...
hL1 aL2 · · · hLN

⎞
⎟⎟⎟⎟⎠

(1)

Due to the reflection of the sea surface, submarine,
and underwater medium, there are complicated multi-
path propagation in shallow sea acoustic channel, which
can be considered as generalized uncorrelated scattering
condition in general wireless channel. When the number
of multipaths is relatively large, the underwater acous-
tic channel obeys the Rayleigh distribution. Thus, the
channel gain distribution is given by

fhn,l
(
hn,l

) = 1
h̄n,l

exp
(

−hn,l
h̄n,l

)
(2)

where h̄n,l is the statistical average of hn,l.

2.2 Cooperative spectrum sensing
The sensing signal of SU n for n = 1, 2, . . . ,N in sub-
channel l for l = 1, 2, . . . , L, yn,l(m), is denoted as follows:

yn,l(m) = θlhn,lpsl(m) + σ 2
l (m),m = 1, 2, . . . ,M (3)

where θl = 0 and θl = 1 denote the absence and presence
of the PU in subchannel l, respectively; hn,l denotes the
subchannel gain from SU n to the PU; psl is the transmis-
sion power of the PU in subchannel l; σ 2

l is the power of
the noise in subchannel l; andM is the number of the sam-
plings.M is given byM = τ fs, where τ is the local sensing



Liu and Jia EURASIP Journal onWireless Communications and Networking  (2017) 2017:171 Page 3 of 8

Fig. 1 Periodic cooperative spectrum sensing model

time and fs is the sampling frequency. We can get the
energy statistic of the sensing signal yn,l by accumulating
the energy ofM samplings as follows:

ψn,l = 1
M

M∑
m=1

‖yn,l(m)‖2 (4)

Each SU reports ψn,l to a fusion center, which combines
ψn,l of N SUs to get an overall energy statistic of the PU
signal in subchannel l as follows:

�l = 1
N

N∑
n=1

ψn,l = 1
MN

N∑
n=1

M∑
m=1

‖yn,l(m)‖2 (5)

The overall energy statistic �l is compared with a thresh-
old λ. If �l ≥ λ, the presence of the PU is detected;
otherwise, the absence of the PU is determined. When
M is large enough, �l obeys the Gaussian distribution
approximatively according to the central limit theorem.
Hence, the cooperative probabilities of false alarm and
detection for subchannel l is given as follows:

Qf
l = Q

((
λ

σ 2
l

− 1
)√

Nτ fs
)

Qd
l = Q

((
λ

σ 2
l

− γ̄l − 1
)√

Nτ fs
(γ̄l+1)2

) (6)

where γ̄l = 1
N
∑N

n=1
pslh

2
n,l

σ 2
l

is the average sensing SNR
of N SUs in subchannel l, and the function Q(x) =
1√
2π

∫ +∞
x exp

(
− z2

2

)
dz.

In order to avoid causing harmful interference to other
underwater acoustic systems, the detection probability

must be guaranteed. The sensing threshold λ can be
obtained by fixing Qd

l with some value, which is given as
follows:

λ =
⎡
⎣Q−1

(
Qd
l

)√ (γ̄l + 1)2

Nτ fs
+ γ̄l + 1

⎤
⎦ σ 2

l (7)

The selection of sensing threshold is important to
the sensing performance. The detection probability will
improve with the increasing of sensing threshold; how-
ever, the false alarm probability will also increase, thus
decreasing the spectrum access probability. Through
removing the threshold λ, Qf

l is denoted by Qd
l as follows:

Qf
l = Q

(
Q−1

(
Qd
l

)
(γ̄l + 1) + γ̄l

√
Nτ fs

)
(8)

In underwater, since the channel between the signal
source and the sonar is often in severe fading, the received
signal by one sonar may be too weak to be detected accu-
rately. However, with cooperative spectrum sensing, the
same signal can be received by multiple sonars from dif-
ferent paths. If the received signal by one sonar is too
weak, the detection performance cannot be decreased
through sharing the sensing information with the other
sonars. Thus, the sensing diversity gain can be achieved to
improve the final detection performance through cooper-
ative spectrum sensing.

2.3 Spectrum efficiency maximization (SEM)
Spectrum efficiency is an important indicator to eval-
uate the spectrum sensing performance. In spectrum
sensing, the decreasing of detection performance may
decrease the spectrum access opportunity of the SU
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because of the increasing false alarm probability; how-
ever, improving detection performance needs to increase
the sensing time, which decreases the data transmission
time. Hence, we need to optimize the sensing parameters
to maximize the spectrum efficiency. The SU can trans-
mit data effectively only when the absence of the PU is
detected accurately. The accurate idle detection proba-
bility of subchannel l is Pr(θl = 0)

(
1 − Qf

l

)
, and the

transmission rate of SU n in subchannel l is given by Rn,l =
an,l log

(
1 + pn,lg2n,l

σ 2
l

)
, where an,l = {0, 1} denotes whether

subchannel l is allocated to SU n, pn,l indicates the trans-
mission power of the SU n in subchannel l, and gn,l denotes
the subchannel gain between receiver and transmitter of
SU n. Supposing the frame duration is T and the length of
each cooperative interaction slot is ε, the overall spectrum
efficiency of N SUs over L subchannels is given as follows:

ηSE = T − τ − Nε

T

N∑
n=1

L∑
l=1

×
[
Pr (θl = 0)

(
1 − Qf

l

)
an,l log

(
1 + pn,lg2n,l

σ 2
l

)]

(9)

Our goal is to maximize the spectrum efficiency of the SU
by jointly optimizing sensing time, subchannel allocation,
and transmission power, subject to the constraints that the
detection probability is above the lower limit Qmin

d , the
total power of SU n is below the maximal power pmax

n , and
one subchannel is only allocated to one SU. Supposing the
spectrum sensing power is pc, the optimization problem
of SEM is given as follows:

max
τ ,{an,l},{pn,l}

ηSE (10a)

s.t. Qd
l ≥ Qmin

d , l = 1, 2, . . . , L (10b)
L∑

l=1
an,lpn,l + pc ≤ pmax

n , n = 1, 2, . . . ,N

(10c)
N∑

n=1
an,l = 1, an,l = {0, 1}, l = 1, 2, . . . , L

(10d)
0 ≤ τ ≤ T − Nε; (10e)
pn,l ≥ 0, n = 1, 2, . . . ,N , l = 1, 2, . . . , L

(10f)

For simplifying the optimization problem (10), we relax
the integer an,l with any value within [0,1] and let ωn,l =

an,lpn,l. Then, we have Rn,l = an,l log
(
1 + ωn,lg2n,l

an,lσ 2
l

)
. From

(8) and (9), ηSE improves with the decreasing of Qf
l while

Qf
l reduces with the decreasing of Qd

l . Hence, ηSE may
reach the maximum only whenQd

l = Qmin
d . The optimiza-

tion problem is rewritten as follows:

max
τ ,{an,l},{ωn,l}

ηSE = T − τ − Nε

T

N∑
n=1

L∑
l=1

×
[
Pr(θl = 0)

(
1−Q

(
κ+γ̄l

√
Nτ fs

))
Rn,l

]

(11a)

s.t.
L∑

l=1
ωn,l ≤ p̂max

n , n = 1, 2, . . . ,N (11b)

N∑
n=1

an,l = 1, an,l ∈[ 0, 1] , l = 1, 2, . . . , L (11c)

0 ≤ τ ≤ T − Nε (11d)
ωn,l ≥ 0, n = 1, 2, . . . ,N , l = 1, 2, . . . , L (11e)

where κ = Q−1(Qmin
d )(γ̄l+1) and p̂max

n = pmax
n −pc. Then,

we will give the following theorem.

Theorem 1 Problem (11) is a convex optimization
problem.

Proof We often let Ql
f ≤ 0.5 and then have κ +

γ̄l
√
Nτ fs ≥ 0. Fixing Rn,l, We can get the secondary

derivative of ηSE in τ as follows:

∂2ηSE
∂2τ

= −Pr(θl = 0)
√
Nfs

T
√
2πτ

N∑
n=1

L∑
l=1

×
⎡
⎢⎣γ̄lRn,l exp

⎛
⎜⎝−

(
κ + γ̄l

√
Nτ fs

)2

2

⎞
⎟⎠

⎤
⎥⎦

− T − τ − Nε

4Tτ
√
2π

×
N∑

n=1

L∑
l=1

×
⎡
⎢⎣Pr(θl = 0)Rn,l exp

⎛
⎜⎝−

(
κ + γ̄l

√
Nτ fs

)2

2

⎞
⎟⎠

×
((

κ + γ̄l
√
Nτ fs

)
γ̄ 2
l Nfs + γ̄l

√
Nfsτ

1
2
)
⎤
⎥⎦ < 0

(12)

which indicates that ηSE is convex in τ . Moreover, Rn,l
is obviously convex in (an,l,ωn,l). Since ηSE is the non-
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negative linear combination of Rn,l, ηSE is also convex in
({an,l}, {ωn,l}). Hence, ηSE is a convex optimization prob-
lem about (τ , {an,l}, {ωn,l}).

We use the alternating direction optimization (ADO) to
get the solution to the optimization problem. Firstly, fixing
τ , we optimize (an,l,ωn,l). Using the Lagrange multiplier,
the optimization function is given by

�(an,l,ωn,l) =
N∑

n=1

L∑
l=1

[
ρlan,l log

(
1 + ωn,lg2n,l

an,lσ 2
l

)]

−
N∑

n=1

[
μn

( L∑
l=1

ωn,l − p̂max
n

)]

−
L∑

l=1

[
νl

( N∑
n=1

an,l − 1
)]

(13)

where ρl = Pr(θl = 0)
(
1 − Qf

l

)
is constant and μn for

n = 1, . . . ,N and νl for l = 1, . . . , L are the Lagrange
multipliers. Through calculating ∂�

∂an,l = 0 and ∂�
∂ωn,l

= 0,
we have

ωn,l = ρlan,l

[
1
μn

− σ 2
l

g2n,l

]+
(14)

an,l =
{
0, νl ≤ �n,l(μn)
1, νl > �n,l(μn)

(15)

where �n,l(μn) = ρl

(
log

(
g2n,l

μnσ 2
l

)
+ μnσ 2

l
g2n,l

− 1
)
. Then,

the Lagrange multipliers μn and νl can be obtained by
using the gradient method that leads to the following
update equations

μn(t + 1) =
[
μn(t) + ζ1(t) ×

( L∑
l=1

ωn,l − p̂max
n

)]

νl(t + 1) =
[
νl(t) + ζ2(t) ×

( N∑
n=1

an,l − 1
)]

(16)

where t ≥ 0 is the iteration index and ζ1(t) and ζ2(t) are
both the positive step sizes. Then, the updated Lagrange
multipliers in (16) is used for updating the power allo-
cation in (14). Secondly, we fix Rn,l with the optimized
(an,l,ωn,l). Using the Newton iterationmethod, we can get

the optimal τ through iteratively updating τ {k} until it is
convergent, as follows:

τ (k+1) = τ (k) −
∂ηSE
∂τ (k)

∂2ηSE
∂2τ (k)

(17)

where k ≥ 0 is the iteration index. As mentioned above,
we use ADO to optimize (an,l,ωn,l) and τ alternatively
until an,l, ωn,l, and τ are all convergent, as shown in
Algorithm 1. Then, if an,l = 0, the transmission power
pn,l = 0; otherwise, pn,l = ωn,l

an,l . Since ηSE is convex in τ , a
and ω, ηSE is non-decreasing during each iteration, which
is described as follows:

Algorithm 1 Joint optimization algorithm based on ADO
1: Initialize k = 0 and τ (k) with any value within

[0,T − Nε], {an,l}(k) = {0} and {ωn,l}(k) = {0};
2: while ηSE

(
τ (k), {an,l}(k), {ωn,l}(k)

)
is not convergent

do
3: With given τ (k), obtain the Lagrange multiplier

function (13);
4: Set t = 0, {μn(t)}, {νl(t)}, ζ1(t) and ζ2(t) with the

presettled values;
5: while {νl(t)} and {μn(t)} are not convergent do
6: Update {an,l}∗ and {ωn,l}∗ with {μn(t)} and {νl(t)}

by (14) and (15);
7: Update {μn(t + 1)} and {νl(t + 1)} with updated

{an,l}∗ and {ωn,l}∗;
8: Let t = t + 1;
9: end while

10: Set {an,l}(k+1) = {an,l}∗ and {ωn,l}(k+1) = {ωn,l}∗;
11: With {an,l}(k+1) and {ωn,l}(k+1), calculate τ (k+1) by

(17);
12: Let k = k + 1;
13: end while
14: : Output τ (k), {an,l}(k) and {ωn,l}(k).

ηSE
(
τ (k),{an,l}(k),{ωn,l}(k)

)
≤ ηSE

(
τ (k+1), {an,l}(k), {ωn,l}(k)

)

≤ηSE
(
τ (k+1), {an,l}(k+1),{ωn,l}(k)

)

≤ηSE
(
τ (k+1),{an,l}(k+1),{ωn,l}(k+1)

)

(18)

Hence, the convergence of ηSE can be obtained after
some iterations.
Supposing the estimation error is δ, ηSE will be conver-

gent when τ (k), {an,l}(k), and {ωn,l}(k) are all convergent.
Thus, the iterative complexity of the joint optimization
algorithm is given by O

(
1
δ3

)
.
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2.4 Energy efficiency maximization (EEM)
Compared to the traditional communication system, the
SU may consume more energy due to spectrum sens-
ing power. Thus, we use energy efficiency to evaluate
the energy consumption of cooperative spectrum sensing.
We define the energy efficiency as spectrum efficiency to
energy consumption ratio. The consumed total energy for
spectrum sensing and data transmission within unit time
is given by

ET = 1
T

(
Npc(τ + ε) + (T − τ − Nε)

N∑
n=1

L∑
l=1

[
an,lpn,l

])

(19)

Hence, the energy efficiency of cooperative spectrum
sensing is given by

ηEE = ηSE
ET

=
(T−τ −Nε)

∑N
n=1

∑L
l=1

[
Pr (θl =0)

(
1−Qf

l

)
an,llog

(
1+ pn,lg2n,l

σ 2
l

)]

Npc (τ +ε)+(T−τ −Nε)
∑N

n=1
∑L

l=1
[
an,lpn,l

]

(20)

We seek to maximize ηEE by jointly optimizing
{τ , {an,l}, {ωn,l}}. The optimization problem of EEM is
given by

max
τ ,{an,l},{pn,l}

ηEE (21a)

s.t. Qd
l ≥ Qmin

d , l = 1, 2, . . . , L (21b)
L∑

l=1
an,lpn,l + pc ≤ pmax

n , n = 1, 2, . . . ,N

(21c)
N∑

n=1
an,l = 1, an,l = {0, 1}, l = 1, 2, . . . , L

(21d)
0 ≤ τ ≤ T − Nε; (21e)
pn,l ≥ 0, n = 1, 2, . . . ,N , l = 1, 2, . . . , L

(21f)

We have proven ηSE(τ , {an,l}, {pn,l}) to be a continuous
positive convex function. As ET (τ , {an,l}, {pn,l}) is a linear
positive function, we can solve the optimization problem
(21) by the Dinkelbach optimization [14].

Setting q = ηSE(τ ,{an,l},{pn,l})
ET (τ ,{an,l},{pn,l}) , the optimization problem

(21) can be rewritten as follows:

max
τ ,{an,l},{pn,l},q

ηSE
(
τ , {an,l}, {pn,l}

)− qET
(
τ ,
{
an,l

}
,
{
pn,l

})

(22a)
s.t.(21b) − (21f ) (22b)

Supposing the feasible region of the solutions to (21) is
denoted as S, the joint optimization algorithm based on
the Dinkelbach optimization is described in Algorithm 2.

Algorithm 2 Joint optimization algorithm based on
Dinkelbach’s optimization
1: Initialize q(k) = 0 where the iteration index k = 1, and

the estimation error δ;
2: With given q(k), use the ADO to obtain the solution(

τ (k),
{
an,l

}(k) ,
{
pn,l

}(k)
)
to the following equivalent

optimization problem:

F(q(k)) = max
{
ηSE

(
τ ,
{
an,l

}
,
{
pn,l

})−q(k)ET
(
τ,
{
an,l

}
,

{
pn,l

}) | (τ , {an,l
}
,
{
pn,l

}) ∈ S
}
;

3: If F(q(k)) ≤ δ, go to step (5), otherwise, go to step (4);

4: Let q(k+1) = ηSE
(
τ (k),{an,l}(k),{pn,l}(k)

)

ET
(
τ (k),{an,l}(k),{pn,l}(k)

) and k = k + 1,

then go to step (2);
5: Output: the optimal solution

(
τ (k),

{
an,l

}(k),
{
pn,l

}(k)
)
.

3 Simulations and discussions
In the simulations, the number of SUs is N = 10, the
number of subchannels is L = 32, the channels obey the
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Fig. 2 Spectrum efficiency with sensing time
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Rayleigh distribution with the mean −10 dB, the absence
probability of the PU is Pr(θl = 0) = 0.5, the frame
duration is T = 100 ms, the length of cooperative inter-
action slot is ε = 1 ms, the sampling frequency is fs =
100 KHz, themaximal power of each SU is pmax

n = 10mW,
the sensing power pc = 1 mW, and the noise power is
σ 2
l = 0.01 mW.
Figures 2 and 3 show spectrum efficiency ηSE and energy

efficiency ηEE varying with sensing time τ , respectively.
We can see that there exists an optimal τ to maximize
ηSE or ηEE. When τ is smaller, the detection performance
will degrade to decrease the spectrum access; however,
when τ is larger, both transmission time and transmission
energy will decrease. Thus, there is a tradeoff between
spectrum sensing and data transmission. We also see that
ηSE and ηEE improve as detection probability decreases
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Fig. 4 Spectrum efficiency comparison
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Fig. 5 Energy efficiency comparison

and sensing SNR increases. Figures 4 and 5 compare spec-
trum efficiency and energy efficiency of SEM and EEM,
respectively. We can see that SEM can obtain higher spec-
trum efficiency while EEM may achieve higher energy
efficiency, due to the different optimization objectives of
SEM and EEM.
Then, we use power utilization ratio ρ to describe the

usage of power in CSCN, which represents the power
consumption required to accomplish the desired commu-
nication task when the maximum power is limited. ρ can
be formulated as the ratio of the total consumed power to
the total transmission power, as follows:

ρ =
∑N

n=1
∑L

l=1
(
an,lpn,l

)+ Npc∑N
n=1 pmax

n
(23)
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Fig. 6 Power utilization ratio comparison with detection probability
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Fig. 7 Power utilization ratio comparison with maximal power

Figure 6 indicates the power utilization ratio compar-
ison with detection probability. It can be seen that, as
Qd grows, the power utilization ratio of SEM is always
100%. SEM only focuses on maximizing spectrum effi-
ciency and ignores the power consumption. Thus, it tends
to use the entire power to maximize the spectrum effi-
ciency during the optimization, leading to the 100% power
utilization ratio. However, in EEM, the power consump-
tion gains lots of attention and the power utilization
ratio always keeps a low level, which indicates that detec-
tion performance is improved via setting a limit to the
power consumption. Figure 7 shows the power utiliza-
tion ratio comparison with maximal power. It is seen that
EEM can also achieves higher power utilization compared
with SEM.

4 Conclusions
In this paper, we have maximized spectrum efficiency
and energy efficiency of periodic cooperative spectrum
sensing for multichannel CSCN, respectively, through
formulating optimization problems and jointly optimiz-
ing sensing time, subchannel allocation, and transmission
power. We have got the following conclusions: (1) there is
a tradeoff between spectrum sensing and data transmis-
sion; (2) SEM can obtain higher spectrum efficiency while
EEMmay achieve higher energy efficiency.
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