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Abstract

Cloud radio access network is one of the most promising cellular networks for the next generation of mobile
networks. The basic idea of cloud RAN (radio access network) is virtualizing and centralizing the intelligent part of
the base station, the base band unit, and keeping remote radio heads on cell site enabling a centralized processing
and management. Offloading data computation to edge cloud was proposed as a solution to deal with resource
limitation while keeping a good quality of service. In this paper, we propose a strategy to jointly handle offloading
decision and offloading request scheduling in cloud RAN. We aim to improve network quality of service while reducing
the scheduling cost expressed in terms of overload, network delay, and migration cost. Numerical results show that the
proposed approach is able to reduce the response time of the applications, mobile terminal energy consumption, and
total execution cost.
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1 Introduction
With the success of smartphones, mobile developers
are becoming more ingenious in creating sophisticated
applications to attract users such as face recognition,
interactive gaming, and augmented reality applications.
However, these applications are resource-intensive, i.e.,
they require high processing and energy capabilities to
be executed. Finding a tradeoff between limited re-
sources and battery lifetime of mobile devices and
resource-intensive applications is a big challenge for
next-generation mobile platform development [1].
Mobile cloud computing was proposed as a solution

to tackle this challenge [2]. Offloading of total or part
of application workflow to a resource-rich cloud infra-
structure helps to increase mobile devices capabilities.
However, computation offloading to remote central
cloud will not solve the problem while mobile users
may experience long latency for data exchange with the
central cloud through the wide area network. Since it is
very hard to reduce the latency in a wide area network,

mobile cloud computing based cloudlets was proposed as
a solution [3]. The basic idea consists on leveraging the
physical proximity by offloading computation to servers
via a Wi-Fi access point. However, due to limited coverage
of Wi-Fi access points, services cannot be provided every-
where. Besides, cloudlets are based on servers with small
or medium resources which may not satisfy the QoS
(quality of service) of a large number of users.
In order to meet these challenges, mobile edge cloud

computing was proposed as an innovative mobile cloud
computing paradigm which complements the cloudlet
concept [4]. The concept of mobile edge cloud comput-
ing is to provide cloud computing resources at the edge
of radio access networks close to mobile end users.
Using this infrastructure will allow to reduce latency by
deploying a fiber transport network between base sta-
tions and edge cloud data centers. Endowing base sta-
tions with additional computation and storage resources
is expected to enhance mobile users’ QoS anywhere and
at any time [5].
In a C-RAN (cloud radio access network) infrastruc-

ture, base band units are moved from cell site to a cen-
tral data central. With this approach, all the radio access
network functionalities are centralized in the cloud.
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Centralized processing enables indeed more advanced
and efficient network coordination and management. In
the cell site, RRH (radio remote head) is still responsible
for transmitting radio signal, amplification of signal
power and analog to/from digital conversion, while all
the base band signal processing parts, including physical,
mac, and upper layers, which require higher processing
resources, are relocated from the cell site to a central-
ized BBU (base band unit) in the operator cloud infra-
structure. The interface between the numerous RRH and
BBU is named CPRI (common public radio interface).
This interface supports a bidirectional constant bit rate
protocol that requires accurate synchronization and
strict latency control. Other protocols have also been
proposed for this interface such as OBSAI (Open Base
Station Architecture Initiative) and ORI (open radio
equipment interface). The general C-RAN architecture
is illustrated in Fig. 1.
In this paper, we propose a novel strategy for data off-

loading in cloud RAN-based mobile edge cloud comput-
ing. We aim to fully leverage the potential of such
infrastructure throughout joint offloading decision and
offloading requests scheduling in the edge cloud. One of
the most critical issues impacting data offloading perfor-
mances is task scheduling in cloud resources.
For example, when too many applications are offloaded

to the same edge cloud, if all of them are executed on the
same container, it will be highly overloaded. In return, this
situation will lead to high energy consumption and long
application response time. Therefore, in order to effi-
ciently benefit from data computation offloading, we need
to address two key challenges:

(1)How to choose between local execution on mobile
device and offloading to the cloud?

(2)Once an application is offloaded to the cloud, how
to schedule it among the available resources?

The rest of the paper is organized as follows: In the next
section, different related works are discussed. In Section 3,
we explain our strategy for joint offloading decision and
offloading request scheduling. Then, in Section 4, we
study the system performances and present simulation re-
sults. Finally, Section 5 concludes this paper.

2 Related work
Internet data traffic is increasing exponentially, espe-
cially the portion of traffic going through mobile net-
works. That is why mobile data computation offloading
has become an important issue in cellular networks. As
a result, various cloud offloading systems were proposed
in the literature. MAUI (Mobile Assistance Using Infra-
structure) [1] and ThinkAir [6] describe hardware compo-
nents and propose to offload data in order to optimize
energy consumption of mobile devices. However, they ig-
nore other aspects of offloading. CloneCloud [7] proposes
to improve application partitioning between the device
and the cloud with the purpose of reducing energy con-
sumption or execution time.
In addition to mobile cloud frameworks, many other

research works have focused on offloading decision-
making issue in MCC (mobile cloud computing) based
systems. However, most of them have focused on the
issue of energy consumption without considering other
parameters that can affect the offloading process. For ex-
ample, authors in [8] proposed an offloading decision
mechanism based on computation, communication, and
compilation energies comparison. The main objective of
the proposed process is conserving energy on mobile
terminal. It consists in comparing different energy con-
sumption values of different execution strategies and
choosing the alternative which have the lowest energy
cost. In [9], Liu et al. proposed an offloading decision al-
gorithm based on application deadline and communica-
tion quality constraints. The proposed offloading
decision process helped the cloud controller to choose
tasks for offloading in order to minimize mobile handset
energy consumption. In [10], authors proposed CADA
(context-aware offloading decision algorithm) in order to
offload to the cloud servers. CADA uses a profiler con-
taining the location of the mobile user and time-of-day
in order to make the mobile offloading decisions. How-
ever, this method generates a lot of overhead and re-
quires a lot of memory in order to store users’ profiles.
In [11], authors have proposed an energy-aware data off-
loading scheme for cloud RAN. The centralized BBU
makes offloading decision considering the mobile de-
vices transmission rate and energy consumption of both
cellular and Wi-Fi networks. It benefits from the

Fig. 1 General C-RAN architecture
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centralized characteristic of C-RAN in order to schedule
mobile terminals’ computation offloading from RRH to
Wi-Fi access point. In [12], authors proposed to jointly
optimize communication resources (downlink and uplink
beamforming), computation resources (power and com-
putation capability allocation), and offloading decision in
cloud RAN to minimize the network energy consumption
while satisfying applications’ delay requirements.
There is also a significant body of literature on task

scheduling in the cloud mostly focusing on traditional
cloud systems. Authors in [13] have proposed a task
scheduling scheme to achieve the cooperation between
local cloud and the Internet cloud. Applications are firstly
classified according to their delay requirements before be-
ing served. However, with such an approach, most end
users have to wait before being served and QoS decreases
dramatically when the arrival rate increases. For this rea-
son, authors have then designed a threshold-based policy
to cooperatively schedule the local cloud and the Internet
cloud. The objective is to maximize the probability that
tasks can be executed within their delay requirements. In
[14], a job scheduling scheme in the cloud computing
clusters considering job resource requirements and com-
pletion time sensitivity is proposed. The problem is for-
mulated as a maximization of the minimum utility
achieved across all the jobs in the cluster, where the job
utilities are functions of their completion times. In [15],
authors have presented an online scheduling scheme that
aims to minimize the average task queuing delay while ac-
counting for task execution times. As a first step, upon
the arrival of a new task, the scheduler tries to find an
available server for assigning and executing this recently
submitted task. If the scheduler does not find any server
for the task, it will be putted in the queue. Then, the
scheduler tries to find the task with the shortest execution
time among the tasks that are already in the queue and fits
it on the recently released server. In another work, authors
have proposed in [16] a task scheduling mechanism which
takes care of deadline and cost. Based on the concept of
space-shared scheduling policy, this work presents a CDB
(cost-deadline based) task scheduling algorithm to sched-
ule tasks by taking into account task penalty and provider
profit. Simulations show that if the number of virtual
machines and datacenters decreases with the decrease of
the number of cloudlets, the proposed algorithm misses
deadline. Cost-based scheduling using linear programming
was also investigated in [17]. Authors proposed SAH-DB
(a task scheduling algorithm based on delay-bound con-
straint) in order to improve the task execution con-
currency: when a task is received, all the resources (CPU,
memory, and network) are sorted in a descending order
based on the resources processing capacity, then the
task is dispatched to resources with the minimum exe-
cution time.

To summarize our state-of-the-art analysis, we can
state that existing contributions in the area of mobile
computation offloading optimization have mainly fo-
cused on the energy consumption and latency. In the
area of task scheduling, in which the main focus was on
the jobs’ completion time, we propose in this work a
scheduling optimization mechanism that aims to reduce
the cost of task scheduling. Unlike previous works, we
model the cost of tasks as a function of overloading, net-
work delay, and migration. The proposed resource man-
agement strategy takes mainly into account the available
resources, resource requirements, deadlines, and load
balancing in Cloud-RRH. These two problems are ad-
dressed separately and there are very few contributing
addressing these two aspects in a holistic way. In this
work, we propose to address the two problems at the
same time proposing a joint optimization of offloading
decision and application scheduling in the edge cloud
which from our viewpoint is necessary. In our previous
contribution [18], we have proposed a dynamic multi-
parameter offloading decision scheme in order to adapt
offloading decision to the current network state. In this
work, we extend significantly this contribution propos-
ing a global offloading strategy which combines offload-
ing decision and task scheduling optimization. The
originality of our algorithm is that it takes into consider-
ation in the decision-making several parameters related
to the network state, the MT mobility, and capabilities,
as well as the tasks to offload.

3 Computation offloading and task scheduling in
H-CRAN
3.1 System model
3.1.1 Computation offloading system model
The scenario is depicted in Fig. 2. We consider a H-
CRAN (heterogeneous cloud radio access network) com-
posed of H-RRHs (high remote radio heads) that act as
macro-cells and L-RRHs (low remote radio heads) that
act as small cells. In our previous works, we proposed to
add an edge cloud, the Cloud-RRH [19]. It represents
additional cloud resources close to the mobile end user.
While in traditional cloud RAN architecture all RAN
functionalities are centralized in the cloud, we proposed
to flexibly split RAN functionalities. Besides, the Cloud-
RRH contains additional computation and storage re-
sources for data offloading. We also make the following
assumptions: (i) mobile applications that are utilized by
the mobile user are installed on the mobile device, on
the cloud server, and also on the Cloud-RRH; (ii) even if
the interface between mobile terminal and clouds may
provide different rate and delay values, mobile broad-
band connectivity does not change during the applica-
tion processing time. Note that the second assumption
means that we considered applications with no large
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processing time. This condition has also been assumed
by most of the related works [5, 20–23].
The system is composed of M mobile users that can

be served by either a high or a low RRH. We consider
uplink. The time needed to transfer Sup bits in the UL
(uplink) connection between mobile device and the serv-
ing RRH tup depends only on the uplink data rate rup
and the number of bits to be transmitted, i.e., tup = Sup/
rup. Similarly, for DL (downlink) transmission, after re-
mote processing, from Cloud-RRH to the serving RRH,
the time required is tdl = Sdl/rdl, with Sdl the number of
bits to transmit and rdl the downlink data rate.
The measurements provided in [22] proved that the

power consumed by the mobile device in UL increases
with the uplink transmission power, ptx, while a baseline
power is consumed just for having the transmission
chain switched on, whereas the power consumed in DL
increases with the downlink data rate, rdl, and a baseline
power is consumed just for having the reception chain
switched on. Based on these results, we adopted the fol-
lowing models of power consumption at the mobile de-
vice in both UL and DL:

pul ¼ k tx;1ð Þ þ k tx;2ð Þptx ð1Þ
pdl ¼ k rx;1ð Þ þ k rx;2ð Þrdl ð2Þ

where k(tx, 1), k(tx, 2), k(rx, 1), and k(rx, 2) are constants.
The maximum rate supported by the channel with M

users depends on the quality of the channel and the
transmission power. It is given using Shannon’s theorem
by the following expressions in UL and DL:

r up;mð Þ ¼ B log 1þ Gupp tx;mð Þ
� �

ð3Þ

r dl;mð Þ ¼ B log 1þ Gdlp tx;RRHð Þ
� �

ð4Þ

where Gup and Gdl are the channel gain normalized by
the average power of the noise and interference over the
bandwidth, respectively, in uplink and downlink, p(tx,m)

and p(tx, RRH) represent the transmission power of the
mobile user and RRH, respectively, and B is the channel
bandwidth.
According to (1) and (2), the energy spent by mobile

device in UP and DL is given by the following equations:

Eup ¼ k tx;1ð Þtup þ k tx;2ð Þtupptx ð5Þ
Edl ¼ k rx;1ð Þtdl þ k rx;2ð Þtdlrdl ð6Þ

Using (3), we can express ptx as ptx ¼ 2
rup
B −1
Gup

. Therefore,

the energy consumed by the mobile device for offloading
is given by the following equation:

Eoff ¼ Eup þ Edl

¼ k tx;1ð Þtup þ k tx;2ð Þtup
2

Sup
tup⋅B

−1
Gup

þ k rx;1ð Þtdl þ k rx;2ð ÞSdl

ð7Þ
The energy spent by the mobile device in the local

processing is considered to be proportional to the num-
ber of processed bits. It is given by the following
equation:

Eloc ¼ ε0S ð8Þ
where ε0 is a constant that accounts jointly for the
Joules/cycle and cycles/bit at the mobile device proces-
sor and S is the total number of bits.
Concerning the latency, we considered t0 as the time

needed to process one bit at the mobile device and t1 as
the time needed to process one bit at the RRH.

Fig. 2 Proposed C-RAN architecture model
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Therefore, the time needed for local execution is given
by the multiplication of t0 by the number of bits.
Whereas if the execution is offloaded to the Cloud-RRH,
the time required for processing is given by the sum of
the time required to transfer the bits from the mobile
device to the serving RRH through the UL transport net-
work, the time for the remote cloud to execute the off-
loaded computation, and the time to transfer all the
output bits through the DL. Latency for both local pro-
cessing and offloading are expressed by the following
equations:

Lloc ¼ t0S ð9Þ
Loff ¼ tup þ t1S þ tdl ð10Þ

3.1.2 Task scheduling system model
We assume that N predefined containers are running on
each Cloud-RRH and each container is characterized by
its available capacity resources CPUi, RAMi, and Neti, i
∈N. Each offloading request is composed of T tasks that
have to be executed with a deadline D, and each task is
characterized by its CPUj, RAMj, and Netj and has an
expected execution time Texj, j ∈ T. We consider a bin-
ary variable t(i,j) to indicate if a task j is allocated to a
container i or not:

t i;jð Þ ¼
1 if task j is allocated to container i

0 otherwise

�

A cost C is associated to each pair container-task allo-
cation. Its value depends on whether the container is
overloaded after the task execution or not and also
whether a task migration was necessary due to end user
mobility. Energy consumption cost was not considered
in this work. We present details about considered costs
in the following:

3.1.2.1 Overload cost We denote by C_capi the compu-
tational capacity of container i at time t:

C capi ¼
C capCPUi

C capRAMi

C capNet
i

0
B@

1
CA

C_utj, i is the average resource utilization of task j on
container i:

C utj;i ¼
C utCPUj;i

C utRAMj;i

C utNet
j;i

0
B@

1
CA

For each new task j to be executed in container i, we
express the utilization rate μi of container i correspond-
ing to this system configuration as the ratio of average

resource utilization of task j on container i by the com-
putational capacity (CPU, RAM, network) of the
container:

μi ¼

μCPUi ¼

XT
j¼1

t i;jð ÞC utCPUj;i

C capCPUi

μRAMi ¼

XT
j¼1

t i;jð ÞC utRAMj;i

C capRAMi

μNet
i ¼

XT
j¼1

t i;jð ÞC utNet
j;i

C capNet
i

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

ð11Þ

If Max μCPUi ; μRAMi ; μNet
i

� �
> 1, the container is consid-

ered in overloaded status. A penalty is associated when a
task j is allocated on an overloaded container. We as-
sume it to be positively proportional to the level of over-
loading. The overload cost ov_ cos ti metric of a
container i is defined as follows:

ov costi ¼ μi−1ð Þλ if Max μCPUi ; μRAMi ; μNet
i

� �
> 1

0 otherwise

(

ð12Þ
λ allows to accentuate ov_cost when the container is

approaching its saturation state. Indeed, the closer the
container is approaching its maximum capacity, the
more the ov_cost will increase, and therefore, the algo-
rithm will choose another less loaded container to exe-
cute the tasks and avoid overloading.
The overall overload cost for the Cloud-RRH system

to execute all the offloading request tasks can be calcu-
lated using this expression:

ov cost ¼
XN
i¼1

ov costi;N : set of containers ð13Þ

3.1.2.2 Network delay cost The network delay is caused
by processing, queuing, transmission, and propagation
delays. It causes performance degradation to system
users. We associate a per unit of time delay cost di, j of
task j allocation on container i. The overall network
delay cost is:

nd cost ¼
X

i

X
j
t i;jð Þdi;j ð14Þ

3.1.2.3 Migration cost A task can be migrated when
the corresponding mobile user is moving from one cell
to another one. If a user task j is migrated, from one
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container to another one, a penalty rj is associated in
order to capture the service downtime incurred by this
migration. The overall migration cost is defined as
follows:

mig cost ¼
X
i

X
j

t i;jð Þrj ð15Þ

Note that we only consider here a migration of the
tasks in the same Cloud-RRH and that migration penalty
only depends on the type of task.

3.2 Joint offloading decision and task scheduling
mechanism
In this section, we will present our strategy for joint off-
loading and tasks scheduling in 5G cloud radio access
networks. The global idea is represented in Fig. 3. When
a task is received, we will run an offloading decision al-
gorithm considering a multitude of parameters about
the mobile device capabilities, user mobility, and net-
work status. If the decision is offloading to the edge
cloud, a task scheduling mechanism is launched in order
to improve resource utilization while reducing the exe-
cution cost.
Offloading mechanism is represented in Fig. 4. After

receiving a task, the mobile terminal (MT) starts by gen-
erating an offloading request packet and sends it to the
serving RRH. The offloading request packet has the fol-
lowing structure:
- Offloading Req (service ID, CMT,C, Eloc, B), where

CMT is the capacity of the mobile terminal, C is the cap-
acity required by the received application, Eloc is the en-
ergy that will be spent for local execution, and B is the
bandwidth between the serving RRH and mobile device.
The offloading request is then sent to corresponding

Cloud-RRH where the container’s manager (CM) will
decide about offloading or not using the offloading deci-
sion algorithm which will be detailed in the next session.

If the application will be offloaded in the Cloud-RRH,
the CM sends a Resource Allocation Request packet to
the serving container where it indicates the capacity re-
quired for processing. The Offloading Response will be
routed up to the mobile device after execution.
We propose a multi-parameter offloading decision al-

gorithm which indicates where the application should be
processed: locally on the mobile device, in the edge
cloud (Cloud-RRH), or in central cloud (BBU pools). We
aim to enhance the end user quality of experience (QoE)
while improving the network and MT resource
utilization. The decision algorithm workflow is repre-
sented in Fig. 5.
When a task is received, we will start by comparing

the mobile device velocity to a velocity threshold (Vth): if
the MT velocity is higher, the task will be executed lo-
cally. The main motivation to take into account the vel-
ocity in the offloading decision-making is to prevent
mobile terminals moving with a high speed from off-
loading tasks in the cloud which may lead to quality of
service degradation due to the degradation of the com-
munication (e.g., handover) and the risk that the tasks
are migrating too often between the access Cloud-RRHs.
If not, we will test the latency due to local execution
with the latency due to offloading using Eqs. (9) and
(10). If the latency generated by offloading the task to
Cloud-RRH is greater than the latency generated by local
processing, the task should be executed locally at the
mobile terminal. However, while mobile terminal com-
putation resources are limited, if the computational cap-
acity required is greater than the predefined percentage
of the total locally available capacity, the task will be off-
loaded to the Cloud-RRH.
Otherwise, if the latency generated by offloading is

lower, we have to compare the energy consumed by mo-
bile terminal in case of offloading using Eq. (7) to the en-
ergy consumed in local execution case using Eq. (8). If Eoff
is higher than Eloc, we compare the latency generated by
local computation to the maximum latency authorized by
the application. If Lloc < Lmax, the task is executed locally,
if not, the task is offloaded to Cloud-RRH.
Finally, if Eoff < Eloc, we will test the channel condi-

tions. We can use the Shannon theorem to calculate the
channel capacity. We consider that channel gain encom-
passes path loss, slow fading, and fast fading. Then, the
channel coefficient is compared to the average channel
coefficient calculated and updated over time. The chan-
nel is considered in a relatively “good” state if the
current channel realization is above this average; thus,
the task is offloaded. Otherwise, the task is executed lo-
cally. This will prevent the system from applying costly
offloading when channel conditions are not favorable.
When a task is offloaded in the edge cloud, the con-

tainer’s manager will decide in which container the
Fig. 3 Global approach
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application will be processed. A container is character-
ized by a triplet of allocated resources (CPU, RAM, and
network bandwidth). Each offloading request is consid-
ered as a set of tasks to instantiate in the Cloud-RRH.
Each task has a delay constraint and is characterized by
its resource requirements in terms of CPU, RAM, and
network bandwidth.
It is necessary to well design the scheduler of tasks

based on the available resources and tasks requirements
in order to find the most suitable container for

application task offloading that minimizes the total cost
while respecting load balancing between containers in
the same Cloud-RRH. The total execution cost is
expressed as follows:

C ¼ α⋅ov costþ β⋅nd costþ δ⋅mig cost ð16Þ

α, β, and δ introduce the importance of weights associ-
ated to each cost to optimize. If the weights are equal,
this means that there is no preference of one resource

Fig. 4 Offloading mechanism interactions

Fig. 5 Proposed offloading decision algorithm
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against the others; otherwise, the resources that are
assigned the highest weight will have the highest priority
in the optimization process.
Therefore, the objective is to minimize the total cost

of overloading, network delay, and migration of the en-
tire system when executing all the submitted offloading
requests.
Objective function

Minimize C

Subject toX
j

t i;jð ÞTexj≤D ð17Þ(P
j
t i;jð ÞC utCPUj;i ≤CPUiP

j
t i;jð ÞC utRAMj;i ≤RAMiP

j
t i;jð ÞC utNet

j;i ≤Neti

ð18Þ

μi−

P
i

μi

N

�����
�����

μi
≤ε ð19Þ

X
j

t i;jð Þ ¼ 1 ð20Þ

The optimization is subject to constraints given by
(17) through (20). Deadline constraint is expressed by
Eq. (17). It guarantees that each offloading request is ex-
ecuted before the application’s deadline. Equation (18)
expresses resources constraint. It enforces that container
resources are greater than all tasks’ requirements includ-
ing the number of CPU, amount of memory, and net-
work bandwidth. The constraint (19) assures load
balancing between containers in the same Cloud-RRH,
and ε denotes for the maximum tolerance of load balan-
cing. Finally, the constraint (20) guarantees that each
task is scheduled on only one container.
We firstly consider that there is no preference between

the different types of resources, i.e., α = β = δ = 1. We
also consider that all tasks are executed in parallel and
the deadline D constraint is therefore fixed for the worst
case, that is, all tasks are executed in serial.
This is a MIP (mixed-integer problem) problem, and

we solve it as a linear program since the objective func-
tion is linear to all variables.

4 Performances evaluation
In order to test our resource management scheme, we
considered an urban environment simulation scenario.
Our heterogeneous C-RAN infrastructure is composed
of seven H-RRHs and four L-RRHs per cell. H-RRHs

have a coverage of 500 m and L-RRHs 30 m radius [23].
We have aligned values of ε0 and t0 with the measure-
ments given in [24] for energy and frequency character-
istics of local computing in commercial mobile handsets,
as well as computation of data ratios in practical applica-
tions. As in an urban area, we have considered users
with random velocity from 3 to 120 km/h.
In the Cloud-RRH, containers have a computing cap-

acity from 25 to 100. The memory varies from 100 to
200 KB and the network bandwidth is set from 1 to
2 Kbps. The number of tasks T varies from 20 to 140,
and they have heterogeneous requirements. To evaluate
our cost-based task scheduling scheme, we compare its
performances to the SAH-DB mechanism. System simu-
lation parameters are listed in Table 1.
To evaluate our offloading decision algorithm perfor-

mances, we compare it to the following algorithm:

� No offloading: all tasks are executed locally on the
mobile handset

� Total offloading: all tasks are offloaded to the Cloud-
RRH

� SM-POD [25]: task offloading is based on a series of
successive classifications considering mobile
terminal capacities, task characteristics, or
communication channel state. As a first step, tasks
are classified as offloadable or not regarding their

Table 1 Simulation parameters

Parameters Values

k(tx,1) 0.4 W

k(tx,2) 18

k(rx,1) 0.4 W

k(rx,2) 2.86 10−3 W/Mbps

ε0 8.6 10−8 J/bit

t0 10−7 s/bit

t1 t0/2

Bandwidth (B) 10 MHz

Maximum latency
authorized by the
application ( Lmax)

4 s

Users mobility speed 3 km/h < V≤ 120 km/h

Vth 5 m/s

Number of containers 25

Containers’ CPU variation 1–10

Containers’ RAM variation 128–512 MB

Containers’ net variation 100–200 Kbps

Number of tasks 20–140

Tasks’ CPU variation 1–4

Tasks’s RAM variation 128–1024 KB

Tasks’s Net variation 1–20 Kbps
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characteristics. Then, offloadable and non-
offloadable tasks are divided into urgent and not ur-
gent tasks based on their latency requirements. The
third step of the decision algorithm concerns only
offloadable urgent tasks. It consists in checking re-
sources. If there is a lack of resources in the mobile
terminal, the task should be offloaded. Therefore,
tasks are divided into offloadable urgent tasks that
should be offloaded (SOffUrg) in priority and off-
loadable urgent tasks that could be either offloaded
or executed locally on the mobile terminal (COf-
fUrg) depending on the available resources in the
terminal. In the fourth step, energy spent for local
computation and energy consumed for offloading
are compared in order to determine COffUrg tasks
that have to be offloaded. Finally, channel state is
checked in order to determine if offloadable non-
urgent tasks have to be offloaded or deferred.

In order to evaluate the impact of users’ speed on
the quality of service, we have tested our system
performances under varying velocity values. Figure 6
represents the application response time and MT en-
ergy consumption over mobile terminals speed (ran-
ging from 5 to 30 km/h). We considered an
application’s data size of 100 Mb. We can see that
the QoS decreases when users’ velocity exceeds
15 km/h. Therefore, in order to prevent QoS degrad-
ation, the velocity threshold must be taken between
15 and 20 km/h; otherwise, offloading will generate
a lot of overhead leading to longer response time
and higher energy consumption.
Figure 7 illustrates the variation of the response

time over the data size (ranging from 1 to 100 Mb).
We can observe that the proposed offloading scheme
can ameliorate the user experience by reducing the
response time. For small data size, no offloading has
the best performance because mobile terminal

capacity is able to satisfy the application require-
ments. However, when the data size becomes larger,
the difference between different schemes becomes
lager. Thanks to cloud edge introduction and net-
work flexibility, the proposed scheme has the lowest
response time especially for big data size values.
Thus, the proposed offloading decision algorithm
can be useful for high resource demand applications.
Figure 8 shows the simulation results of the energy

spent by the MT under the data size (ranging from
1 to 100 Mb). We can see that the proposed offload-
ing decision algorithm can make the mobile handset
consume less energy. The difference is more import-
ant when the data size is big. Therefore, the pro-
posed algorithm is able to augment the mobile
handset battery lifetime while executing complex
program applications compared to local execution
and total offloading.
When a task is offloaded to Cloud-RRH, we have

evaluated the scheduling efficiency in terms of exe-
cution cost under a varying number of associated
tasks. Figure 9 represents the execution cost by ap-
plying the proposed cost-based scheduling scheme
and SAH-DB scheduling algorithm with 25 to 100
cloud containers respectively. The proposed

Fig. 6 QoS with different users speed

Fig. 7 Application response time evaluation
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scheduling algorithm can reduce total execution cost
compared with SAH-DB algorithm in the different
number of associated tasks. Meanwhile, with the in-
crease of the number of resources, the total cost of
scheduling decreases. Moreover, the cost of schedul-
ing increases with the number of associated tasks.

5 Conclusions
Data computation offloading enables intelligent mobile
devices to run greedy resource applications. However,
in order to fully exploit computation offloading bene-
fits, we have to deal with two key challenges. The first
one is about offloading decision, and the second one
is about offloading request scheduling among available
cloud resources [18]. The main contribution of this
paper is the development of a whole offloading

strategy for H-CRAN composed of offloading decision
and task scheduling in order to improve network per-
formances and user QoE. Therefore, we jointly handle
offloading decision and offloading request scheduling
in Cloud-RRH. First, we proposed a dynamic multi-
parameter offloading decision scheme in order to
adapt offloading decision to the current network state
and application characteristics. Then, scheduling
mechanism was developed as linear programming
optimization function that aims to reduce the total
execution cost expressed as overload, network delay,
and migration. Simulation results show that the pro-
posed approach is able to improve QoS by reducing
application response time and mobile device energy
consumption while decreasing total execution cost in
the Cloud-RRH.

Fig. 8 Mobile terminal energy consumption evaluation

Fig. 9 The execution cost with different resources
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