
RESEARCH Open Access

Robust L1 tracker with CNN features
Hongqing Wang and Tingfa Xu*

Abstract

Recently, L1 tracker has been widely applied and received great success in visual tracking. However, most
L1 trackers use only the image intensity for sparse representation, which is insufficient to represent the
object especially when drastic appearance changes occur. Convolutional neural network (CNN) has
demonstrated remarkable capability in a wide range of computer vision fields, and features extracted from
different convolutional layers have different characteristics. In this paper, we propose a novel sparse
representation model with convolutional features for visual tracking. Besides, to alleviate the redundancy
from high-dimensional convolutional features, a feature selection method is adopted to remove noisy and
irrelevant feature maps, which can reduce computation redundancy and improve tracking accuracy.
Different from traditional sparse representation based tracking methods, our model not only exploits
convolutional features to improve the robustness for describing the object appearance but also uses the
trivial templates to model both reconstruction errors caused by sparse representation and the eigen-
subspace representation. In addition, an unified objective function is proposed and a customized APG
method is developed to effectively solve the optimization problem. Numerous qualitative and quantitative
evaluations demonstrate that our tracker outperforms other state-of-the-art trackers in a wide range of
tracking scenarios.
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1 Introduction
Visual tracking plays an important role in computer
vision and has received fast-growth attention in re-
cent years due to its wide practical application such
as pedestrian detection, vehicle navigation, security
surveillance, and wireless communication [1–4]. In
general, visual tracking is to track an interested tar-
get which usually has been indicated in the first
frame by a bounding box in video streams. The main
challenge of visual tracking is the numerous appear-
ance changes, such as occlusion, abrupt motion, illu-
mination variation, in-plane rotation, out-of-plane
rotation, deformation, and scale variation.
To overcome the above challenges, many effective

trackers have been proposed in recent years [5, 6].
Generally, tracking algorithms can be classified into
three different categories: discriminative, generative,
and hybrid generative-discriminative. Discriminative

trackers formulate tracking as a binary classification
problem, which search the target location and ex-
tract target from the background. The main problem
of discriminative trackers is that they cannot esti-
mate the target-specific location due to the limited
number of candidates. Generative trackers adopt an
appearance model to represent the target appear-
ance, which estimate the target state by finding the
highest likelihood; the model is often updated online
to deal with the appearance changes. The main
problem of generative trackers is that the appearance
model often exhibits some limitations thus cannot
represent the target effectively [7–9]. Hybrid
generative-discriminative trackers fuse the advantages
of discriminative and generative trackers; researchers
have proposed many effective hybrid generative-dis-
criminative trackers recently [10–13]. The hybrid
model can take advantage of the global characteris-
tics of object and also exploit the useful information
from the background. However, the complexity of
hybrid model is relatively high, which will lead to a
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high computational cost, thus cannot meet the
requirement in practice.
Recently, as a generative tracking algorithm,

sparse representation model has achieved outstand-
ing performance [14]. Mei et al. [15] first propose
the L1 tracker by casting the tracking problem as
finding a sparse combination of a target template
set and a trivial template set to approximate the
target object. Then the sparsity is achieved by solv-
ing an l1-regularized least squares problem. Ji et al.
[16] improve the tracking accuracy by adding an l2
norm regularization on the trivial coefficients and
use an accelerated proximal gradient approach for
solving the minimization problem which has
achieved both tracking accuracy and computational
efficiency. Zhang et al. [17] exploit the intrinsic rela-
tionship among different candidates which utilize the
joint-sparsity property of candidates by casting track-
ing as a multi-task problem. Jia et al. [18] exploit
both partial information and spatial information of
the target based on a novel alignment-pooling
method and employ a template update strategy,
which combines incremental subspace learning and
sparse representation. Wang et al. [19] introduce l1
regularization into the principal component analysis
(PCA) reconstruction and propose an online tracking
algorithm, which approximates the target by linearly
combining the PCA basis and a sparse set of trivial
templates. Liu et al. [20] use a local sparse represen-
tation for representing the target and exploit the
sparse coding histogram to represent the dynamic
dictionary basis distribution of the target model. Guo
et al. [21] propose a novel multi-view structural local
subspace method which jointly exploits the advantages of
three sub-models and uses an alignment-weighting average
method to obtain the optimal state of the target. Wang et
al. [22] adopt squared templates to replace trivial
templates to handle partial occlusion and propose a
probabilistic collaborative representation framework,
which reduces the complexity in traditional sparse
model-based methods. Kim et al. [23] propose a
novel structure-preserving sparse learning method,
which preserves both local geometrical and discrim-
inative structures within a multi-task feature selec-
tion framework.
However, most of these methods mainly aim at

improving the tracking accuracy or efficiency, they
usually use the image intensity to construct the
template set, which is less effective in expressing
the structural information of the target, thus cannot
cover severe appearance changes of the target
object.
To solve this problem, many hand-crafted features

have been used for visual tracking, such as Haar-

like features, histogram of oriented gradient (HOG)
features, local binary pattern (LBP), and scale-
invariant feature transform (SIFT). However, these
hand-crafted features are not robust for generic ob-
ject tracking. Convolutional neural network (CNN)
models which learn hierarchical features from raw
images on large-scale dataset have been widely used
to represent the appearance of the target. Ma et al.
[24] exploit the features from hierarchical layers of
CNN within a correlation filter-based framework
for visual tracking, learn linear correlation filters
on each CNN layer, and adopt a coarse-to-fine
method to estimate the target location. Wang et al.
[25] analyze CNN features from different layers and
use a novel tracking method which jointly exploits
two convolutional layers to mitigate the drift prob-
lem. Danelljan et al. [26] indicate that activations
from the first convolutional layers achieve favorable
tracking performance compared with the deeper
layers within a discriminative correlation filter-
based framework. In contrast to the traditional fea-
ture descriptors, CNN features contain more struc-
tural information, which is crucial to localize the
target in an unknown frame.
Motivated by the above observations, we present a

novel L1 tracker with CNN features. The proposed ap-
proach use a novel sparse representation model with
convolutional features for visual tracking, which not
only exploits CNN features to improve the robustness
for describing the object appearance but also uses the
trivial templates to model both reconstruction errors
caused by sparse representation and the eigen-
subspace representation. Besides, to alleviate redun-
dancy of high-dimensional convolutional features, a
feature selection method is adopted, which can reduce
computation complexity and improve tracking accur-
acy. This strategy makes the model jointly exploit
the advantages of the CNN features with more
structural information to effectively represent the
target, and of both sparse representation and the
incremental subspace learning simultaneously. In
addition, a customized APG method is developed to
effectively solve the optimization problem. Further-
more, a robust observation likelihood metric is
proposed.
The rest of this paper is organized as follows. In

Section 2, we introduce the CNN features and the
proposed sparse model in detail. In Section 3, we
demonstrate the optimization of the objective
function and the overall tracking algorithm. In
Section 4, we present the details of the quantitative
and qualitative experiments of our method com-
pared with the state-of-the-art methods. In Section
5, we reach the conclusions of this paper.
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2 Proposed model
2.1 CNN features
Most of the traditional L1 trackers usually use the
image intensity to construct the template set. How-
ever, the image intensity-based trackers can hardly
handle the complicated situation in practical visual
tracking due to the lack of target structural informa-
tion. To this end, our algorithm introduces CNN fea-
tures in describing the target template set.
Convolutional neural network (CNN) has been

successfully applied in many computer vision fields,
especially in complicated tasks such as object detec-
tion, image classification, and object recognition
[27]. Traditional CNN, which only the information
from the last layer are used to represent the target,
are effective in dealing with classification problems.
However, adopting CNN for generic visual tracking
directly is inadequate due to the lack of training
samples and the computational complexity.
To overcome this problem, pre-trained CNN fea-

ture extraction method is proposed in recent years.
CNN features, extracted from different CNN layers,
have different characteristics in describing the object
[24]. The CNN features from deeper layer contains more
high-level semantic information, which can be seen as
structural information, have more distinguishing capabil-
ities and thus is effective facing the situation when intra-
class appearance variation occurs. However, the features
from deep layer have very low spatial resolution so that it
cannot fit the task in generic visual tracking, which aim to
indicate the location of target. On the other hand, CNN
features from earlier layer contain more fine-grained
information, which means the more the discriminative cap-
abilities, the more effective in locating the target. But with
the less semantic information, features from earlier layer
are more sensitive to intra-class appearance variations.
From the observation above, different from the com-

mon strategy which use CNN feature extracted from the
last layer, we exploit CNN features from hierarchical
layers in order to make full use of the high-level struc-
tural information as well as preserving the spatial infor-
mation of target.

2.2 Feature selection
In this paper, we employ CNN features extracted from
VGG Net [28], which is trained on the large-scale
ImageNet dataset; note that other CNN models may
also be used alternatively, such as AlexNet [29] and
R-CNN [30].
VGG-19 Net (with 16 convolutional layers and 3

full connect layers) has more deep structure than
other CNN models, which can provide more seman-
tic information. Given an input image frame, due to
the CNN pooling propagation, the spatial resolution

of each layer is more and more smaller, for instance,
pool1 with the size of 224 × 224 and pool5 with only
the size of only 7 × 7. The target in small size layers
is hard to tell, so there is a need to resize each layer
as a fixed size in order to locate the target
accurately.
In this paper, we resize different layers to a

constant size of 224 × 224 by using bilinear
interpolation [31],

f k ¼
X
i

ωkiFi ð1Þ

where the weight ωki depends on the position of k
and i neighboring feature vectors, and F denotes the
feature space.
As discussed above, in order to utilize CNN features from

multi-layers, we choose conv2-2, conv3-4, and conv5-4
layers as feature representations specifically.
However, CNN features are pre-trained mainly aimed

at dealing with classification tasks, so there are plenty of
neurons used in describing generic object, which results
in a very large number of wasted features. Here, by
wasted features, we mean features which are redundant
in discriminating target from background, especially
when target deformation occurs. Furthermore, deeper
CNN features are high-dimensional features (e.g., 512
dimension for conv5-4), leading to an extremely high
computational complexity.
In order to alleviate the influences of these wasted

features, it is of great importance to adopt an appro-
priate selection mechanism. From the experimental
observation, we found that most redundant features
have zero values for representing the target, so we
adopt a sparse method to remove the redundancy
similar to [25] and choose the feature with the lar-
gest coefficient as the template set.

2.3 Sparse representation model with CNN features and
incremental subspace constraint
Motivated by the above dissussions, we propose a novel
sparse model with CNN features (Fig. 1). Similar to [32],
we assume that the target observation z ∈ℝD can be
sparsely representated by target template set M = [m1,m2,
…,mN] ∈ℝ

D ×N and the trivial template set I ∈ℝD ×D,
where D is the dimension of the observation vector, N is
the number of target templates, and I is an identity matrix;
traditional sparse representation-based trackers approxi-
mate target object by linearly combining M and I with
sparse constraints,

argmina
1
2

z−Aak k22 þ λ ak k1; s:t:aM≥0; ð2Þ

where A = [M, I], a = [aM, aI] ∈ ℝ
D +N indicates the
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corresponding sparse coefficients, and λ controls the
amount of regularization. The optimal state is the state
with smallest reconstruction error.
However, traditional sparse representation-based

trackers have some drawbacks. First, the computa-
tional complexity is relatively high which limit the
real-time application. Secondly, they only use image
intensity to construct the target template set, which
can hardly handle the drastic appearance changes of
target in practical visual tracking due to the lack of
feature description. Thirdly, the target templates are
only obtained from a previous couple of time in-
stants, which cannot effectively obtain the underlying
properties for modeling target appearance.
To solve the second problem, we use CNN fea-

tures in describing the object. However, CNN fea-
tures from different convolutional layers have
different characteristics, high-level features have
more distinguishing capabilities while low spatial
resolution, and low-level features have more discrim-
inative capabilities while sensitive to appearance
changes. So, we construct a target template set by
using hierarchical CNN features as a more complete
feature descriptor. Furthermore, CNN features have
a very high dimension in contrast to image intensity-
based trackers, which results in an extreme compu-
tation complexity. In addition, most CNN features
have barely contributed to effectively determine the
exact location of the target, so we adopt a feature
selection method to alleviate the redundancy.
To solve the third problem, an eigen template

model is introduced for its ability to learn the tem-
poral correlation of target appearances effectively
from the past observation data by incremental update
procedure, which compactly capture both rich and

redundant image properties [33]. The incremental vis-
ual tracking (IVT) [34] algorithm can efficiently learn
and update a low-dimensional PCA subspace repre-
sentation of the target object and update the sample
mean, which makes full use of the past observed
target appearances. Experimental results have demon-
strated that incremental learning of PCA subspace
representation can deal with appearance changes
caused by rotation, illumination variation, deformation
and scale change efficiently. However, it has also been
demonstrated that the performance of IVT tracker
declines when partial occlusion occurs. Since the
underlying assumption of PCA is that the error of
each pixel is Gaussian distributed with small
variances, this assumption does not hold anymore
case of partial occlusion occurs. Furthermore, the
IVT tracker may also fail when the target overlaps
with a similar object.
In [19], each patch can be linearly represented by

the eigenvectors corresponding to itself and the co-
efficients of almost all other eigenvectors will be
zero; hence, by introducing l1 regularization into the
PCA reconstruction and modeling the error term e
with arbitrary but sparse noise,

argmin
z;e

1
2

y−Uq−ek k22 þ τ ek k1 ð3Þ

where U ∈ ℝD × P is the PCA eigen basis matrix and P
is the number of eigen basis vectors. q ∈ ℝP are the
coefficients of U and τ controls the amount of
regularization.
Motivated by [19], we model both reconstruction errors

caused by sparse representation and the eigen subspace
representation by solving

Fig. 1 Overall sparse model with CNN features
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argmin
c

1
2

y−Bck k22
þ σ

2
TcT−tð Þ−UUT TcT−tð Þ�� ��2

2

þρ ck k1; s:t:cT≥0

ð4Þ
where B = [T, I], T is the target template set with
CNN features, c = [cT, cI] ∈ ℝ

3D +N indicates the corre-
sponding sparse coefficients, t is the sample mean of
target object, and σ balances the contribution of the
two terms.
This strategy constrains the reconstruction of the

sparse representation to have a minimal reconstruc-
tion error in the PCA eigen basis representation.
Meaning that our model with incremental subspace
constrains can model both reconstruction errors
caused by sparse representation and the eigen-
subspace representation. This method constructs the
reliable part of the target using a few number of
PCA basis.
By integrating the subspace constrained sparse repre-

sentation model with CNN features extracted and
selected from hierarchical CNN layers, we get

argmin
a; c

1
2

z−Aak k22 þ λ ak k1 þ
1
2

y−Bck k22
þ σ

2
TcT−tð Þ−UUT TcT−tð Þ�� ��2

2

þρ ck k1; s:t:aM; cT≥0

ð5Þ
The above overall model takes advantages of both

the capability of hierarchical CNN features in describ-
ing the target and the subspace constrained sparse
representation.

3 Optimization and the tracking algorithm
3.1 Optimization
Problem (5) can be decomposed into two sub-problems:

argmin
a

1
2

z−Aak k22 þ λ ak k1; s:t:aM≥0 ð6� 1Þ

argmin
c

1
2

y−Bck k22
þ σ

2
TcT−tð Þ−UUT TcT−tð Þ�� ��2

2

þρ ck k1; s:t:cT≥0
ð6� 2Þ

Problem (6-1) can be solved by the LASSO
method [35] and problem (6-2) can be solved by
the accelerated proximal gradient (APG) method
[16]. APG method is an effective approach to solve
the following unconstrained minimization problem,

minF cð Þ þ G cð Þ ð7Þ
where F(c) is a differentiable convex function with
Lipschitz continuous gradient and G(c) is a non-smooth
convex function. We describe the details of solution as
follows.
Let R = T −UUTT and S ¼ t−UUTt . Then the prob-

lem (6-2) can be reformed to the following
formulation:

argmin
c

1
2

y−Bck k22 þ
σ

2
S−RcTk k22

þρ ck k1; s:t:cT≥0
ð8Þ

However, APG method cannot be used directly in
our model since the original APG method is pro-
posed for solving unconstrained minimization prob-
lem, so there is a need to covert our model into an
unconstrained problem.
Let 1T ∈ ℝ

N denotes the column vector with entries
are all 1. Let ψ (c) denotes the indicator function defined
by

ψ cð Þ ¼ 0 c≥0
þ∞ otherwise

�
; ð9Þ

The problem (8) can be alternately reformed as the
following unconstrained problem:

argmin
c

1
2

y−Bck k22 þ
σ

2
S−RcTk k22

þρ1TTcT þ ρ cIk k1 þ ψ cTð Þ
ð10Þ

Then, we can use the APG approach to solve this
minimization problem with

F cð Þ ¼ 1
2

y−Bck k22 þ
σ

2
S−RcTk k22 þ ρ1TTcT ;

G cð Þ ¼ ρ cIk k1 þ ψ cTð Þ; ð11Þ
In the above formulation, we need to solve an

optimization problem:

ckþ1 ¼ argminc
L
2

c−βkþ1 þ ∇F βkþ1

� �
=L

�� ��2
2

þG cð Þ;
ð12Þ

where k denotes the current iteration time, L is the
Lipschitz constant and βk + 1 is defined in Algorithm 1.
We define gk + 1 = βk + 1 − ∇F(βk + 1)/L and the soft-
thresholding operator Tρ xð Þ ¼ sign xð Þmax xj j−ρ; 0ð Þ .
Then, the fast numerical algorithm for solving problem
(6-2) is given in Algorithm 1.
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3.2 Particle filter tracking framework
Similar to [19], our method is based on Bayesian filtering
framework in a Markov model. In a particle filter frame-
work, given a set of observed image vectors Z1 : t− 1 = [z1,
z2,…, zt− 1 ], the posterior probability can be recursively
computed as

p xt z1:t−1jð Þ ¼
Z

p xt xt−1jð Þp xt−1 zt−1jð Þdxt−1; ð13Þ

where p(xt|xt − 1) is the dynamic model and xt indicates
the state vector.
At time t, by using Bayes rule, we get

p xt Ztjð Þ ¼ p zt xtjð Þ R p xt xt−1jð Þp xt−1 zt−1jð Þdxt−1
p zt z1:t−1jð Þ ;

ð14Þ

where p(zt|xt) denotes the observation likelihood of ob-
serving zt at state xt. The state variable xt is composed
of six parameters xt = [tx, ty, θt, st, δt, φt]

T, where tx, ty, θt,
st, δt, φt denote x, y translations, rotation angle, scale, as-
pect ratio, and skew respectively.
The dynamic model is modeled by the Gaussian

distribution,

p xt xt−1jð Þ ¼ N
�
xt;xt−1;

X�
; ð15Þ

where ∑ is a diagonal covariance matrix.
Through the above method, we generate the candidates

state set Xt ¼ x1t ; x
2
t ;…; xnt

� 	
, where n is the number of

candidates sampled at each frame. For each particle xit , we
crop out the related image region to get zit . Then, we get a
candidate set Zt ¼ z1t ; z

2
t ;…; znt


 �
∈RD�n.

For each candidate, we solve the optimization problem
using Algorithm 1. Then, the observation likelihood of
state xit is given as

p zit ; y
i
t x

i
t

��� � ¼ 1
φ
exp −δ1 zit−MaiM

�� ��2
2

� �

� exp −δ2 yit−Tc
i
T

�� ��2
2

� �

� exp −δ3 UUT TciT−t
� �

− TciT−t
� ��� ��2

2

� �
;

ð16Þ
where φ is a normal factor, δ1, δ2, and δ3 balance the
contributions between the three terms. The first term
is the reconstruction error of the original image
patch. The second term is the reconstruction error of
sparse representation by target templates with CNN
features. The third term reflects the relevancy be-
tween the reconstructed target and target PCA basis
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with CNN features. The optimal state x�t of frame t is
achieved by

x�t ¼ argmax
xit∈Xt

p zit ; y
i
t x

i
t

��� � ð17Þ

3.3 Template update
To alleviate the influences of object appearance changes,
there is a need to update the target template and PCA
basis dictionary dynamically.
First, we use the method proposed in [27] to update

target template. This updating strategy can effectively
alleviate the influences caused by noise and occlusion.
However, the target template is achieved from a previous
couple of time, so they are not capable of dealing with
numerous appearance variations due to the lack of long-
term adjustment.
Then, we update the PCA basis dictionary using the

method proposed in [34] and replace the oldest target
template with the PCA reconstruction of the optimal
candidate when the estimated optimal state is
achieved. The PCA eigen template model could learn
the temporal correlation of object appearances by in-
cremental SVD update procedure effectively, so it has
the ability to cover a long period of appearance
changes relatively.
By adopting the strategy proposed above, we co-update

the target template and PCA basis for current target
appearance and long-term adjustment to improve the
performance of our tracker.

4 Experiments
In order to illustrate the performance of our tracker, we
test the robustness of our algorithm on 12 challenging
video sequences with other 9 state-of-the-art trackers.
The trackers are L1APG [16], ASLA [18], MTT [36],
LSK [37], SST [38], IVT [34], FRAG [39], KMS [40], and
SRUCK [41].
The proposed algorithm in this paper is implemented

in MATLAB 2014a on a PC with Intel i7-4790 CPU
(3.6 GHz) and 16 GB RAM memory. Before the experi-
ment, we adopt some parameters and modify them ac-
cording to other cited published works. For example, the
iteration number is set to be 5 in the optimization part,
but the tracking performance improves little when it is
set to 10 or other lager value and the computational cost
also increases with the iteration number. We did many
experiments to choose the best parameter values as fol-
lows. Each sample is resized to 24 × 24 pixels. The num-
ber of target templates is set to be 11 with one fixed
template extracted from the first frame. The candidate
number n in each frame is 600. These values mainly
affect the speed of the tracker; we choose them to

achieve a balance between the speed and the tracking
performance. The number of PCA basis is set to be 10.
The regularization factor λ is set to be 0.01, σ is set to
be 0.1, and ρ is set to be 0.01. The balance factors δ1, δ2,
and δ3 are set to be 10, 10, and 1. The Lipschitz constant
L is set to be 8.

4.1 Qualitative evaluation
To evaluate our tracker with other state-of-the-art
methods qualitatively, we choose 12 video sequences for
testing. The 12 video sequences pose many challenging
problems; Table 1 lists the characteristics of the
sequences used in this paper.
Compared with traditional sparse representation-

based trackers (e.g., L1APG, MTT, ASLA, LSK, and
SST), our tracker outperforms in a wide range of
challenging scenarios, especially when occlusion, ro-
tation, and deformation occurs. This mainly attri-
butes to our tracker that exploits both the advantage
of sparse representation and incremental subspace
learning, as well as using CNN features for repre-
senting the target. The incremental learning of PCA
subspace representation method mainly aims at deal-
ing with appearance changes caused by rotation,
deformation, and scale variation, but it is sensitive to
occlusion. In our algorithm, the occluded pixels of
target object can be represented by the trivial tem-
plates, so when partial occlusion occurs, our tracker
is more robust than the IVT tracker. Traditional
sparse representation-based trackers are sensitive to
rotation and deformation because they only use the
image intensity for representing the target, but our
method adopts CNN features from hierarchical
layers in order to make full use of the high-level
structural information as well as preserving the
spatial information of target, so our tracker is more
robust than these traditional L1 trackers.

Table 1 Tracking sequences used in this paper

Sequences Frame Main problem

Deer 71 Motion blur, fast motion, background clutters

David2 537 Rotation

Crossing 120 Deformation, background clutters, scale variation

Boy 602 Scale variation, motion blur, rotation, fast motion

David3 252 Rotation, background clutters, deformation, occlusion

FaceOcc1 892 Occlusion

Football 362 Background clutters, Rotation, Occlusion

Walking 412 Low resolution, occlusion, scale variation, deformation

Football1 74 Rotation, background clutters

Sylvester 1345 Illumination variation, rotation

Subway 175 Occlusion, background clutters, deformation

Mhyang 1490 Background clutters, deformation, illumination variation
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For example, in Fig. 2c–k, the target suffers from partial
or total occlusion. In these scenarios, the IVT tracker pre-
sents bad performance, while our tracker can cope with
these situations effectively. In Fig. 2a–i, the targets suffer
from drastic appearance changes. Our tracker can still
handle these situations effectively because the adopting of
CNN features can utilize more structural information,
while other L1 trackers failed in most of these situations.

In conclusion, our tracker performs well in all the 12
sequences while other 9 state-of-the-art trackers fail in
some sequences.

4.2 Quantitative evaluation
We provide quantitative comparisons of our tracker with
other state-of-the-art methods in terms of center location
error (CLE) and overlap rate (VOR). The CLE is measured

Fig. 2 a–l Qualitative comparisons. Tracking results of our algorithm and other 9 state-of-the-art tracking method on some representative frames
of 12 sequences (deer, david2, crossing, boy, david3, faceOcc1, football, walking, sylvester, football1, subway, and mhyang, from left to right and
top to bottom). Result of our method is marked with red rectangle
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Fig. 3 Center error comparisons on 12 sequences with 9 state-of-the-art trackers
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Fig. 4 Overlap rate comparisons on 12 sequences with 9 state-of-the-art trackers
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by the Euclidean distance between the estimated target cen-
ter location and the ground truth center location. The VOR

is defined by area BT∩BGTð Þ
area BT∪BGTð Þ , where BT is the estimated target

bounding box and BGT is the ground truth bounding box.
Figures 3 and 4 show the center error plot and the over-

lap rate plot of different trackers for each video sequence.
In addition, we adopt the precision and success

rate for evaluating the tracking performance. The
precision criteria is the percentage of frames which
estimated location is within a given threshold dis-
tance of the ground truth and the success criteria is
the ratios of successful frames at a given threshold
ranged from 0 to 1.

Figure 5 shows the precision and success plots.
The threshold of distance precision is 20 pixels and
the threshold of overlap success rate is 0.5. Both
precision plots and success plots show that our
tracker is more robust than other state-of-the-art
trackers over the 12 video sequences.

Tables 2 and 3 demonstrate the average center error
and overlap rate of different tracking methods on
each sequence. The best three results are marked in
red, blue, and green fonts.

Note that in 6 of the 12 sequences (e.g., deer,
david2, football1, mhyang, sylvester, and walking),
the proposed tracker achieves the best average

Fig. 5 Precision and success plots on 12 sequences with 9 state-of-the-art trackers

Table 2 Average center error for each sequence with 9 state-of-the-art trackers
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center error. In 7 of the 12 sequences (e.g., deer,
crossing, david3, football1, mhyang, sylvester, and
walking), the proposed tracker achieves the best
overlap rate. In other sequences, our tracker achieves
either the second or the third best scores. The pro-
posed tracker also achieves both the best scores in
average center error and average overlap rate for all
the 12 sequences, meaning that our tracker outper-
forms other state-of-the-art trackers in many chal-
lenging situations significantly.

5 Conclusions
In this paper, we propose a robust L1 tracker with
CNN features. Different from traditional sparse
representation-based tracking algorithms, our model
not only exploits convolutional features to improve
the robustness for describing the object appearance
but also uses the trivial templates to model both re-
construction errors caused by sparse representation
and the eigen-subspace representation. A customized
APG method is developed to solve the optimization
problem effectively. Both qualitative and quantitative
evaluations demonstrate that our tracker outperforms
other state-of-the-art trackers in many challenging
situations.
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