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Abstract

Motivated by the practical and accurate demand of intelligent cognitive radio (CR) sensor networks, a new modeling
method of practical background noise and a novel sensing scheme are presented, where the noise model is the
non-Gaussian colored noise based on α stable process and the sensing method is improved fractional low-order
moment (FLOM) detection algorithm with balance parameter. First, we establish the non-Gaussian colored noise
model through combining α-distribution with a linear system represented by a matrix. And a fitting curve of practical
noise data is given to verify the validity of the proposed model. Then we present a parameter estimation method with
low complexity to obtain the balance parameter, which is an important part of the detection algorithm. The balance
parameter-based FLOM (BP-FLOM) detector does not require any a priori knowledge about the primary user signal
and channels. Monte Carlo simulations clearly demonstrate the performance of the proposed method versus the
generalized signal-to-noise ratio, the characteristic exponent α, and the number of detectors in sensing networks.
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1 Introduction
The cognitive radio (CR) nodes with sensing and adap-
tive abilities have been recognized as a promising solution
[1] to realize the next-generation intelligent sensing net-
works; the key ideas behind detector nodes lie in sensing
spectrum information accurately under the practical noise
background. Gaussian white noise are typically used to
model practical noise processes that affect digital sensing
systems [1], such as the multi-radar system and under-
water acoustic detection system. In practice, however,
Gaussian models reveal difficulties in fitting data that
often have distinct spiky and impulsive characteristics
leading them deviate from Gaussian distributions which
is known as non-Gaussian [2]. Such non-Gaussian makes
the common Gaussian assumption not valid for tradi-
tional spectrum sensing [3]. One of the most important
challenges in sensor networks is to detect as quickly and
reliably as possible the absence or presence of the signal
in complex radio environments such as those character-
ized by non-Gaussian noises. Thus, the effective model of
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practical noise and the realization of accurate detection
are the main problems to be solved.
Non-Gaussian noise impairments may result from

human factors and the natural factors, such as man-made
impulse noise, electromagnetic equipment, atmospheric
storms, and out of band spectral leakage [4, 5]. The non-
Gaussian noise model should not only take into account
its exact description of the nature for the noise, but
also the simplicity of the calculation. Large measured
data show that the probability density distribution of the
impulse noise process is similar to the Gaussian pro-
cess: symmetrical, smooth, and bell-shaped, but its tail
is heavier than the Gaussian distribution [6]. The Gaus-
sian mixture density (GMD) [7], centered generalized
Gaussian density (GDD) [8], and the symmetric α-stable
(SαS) density distribution [9] are most common models
in recent years. The SαS distribution has proved to be the
most promising model to fit many impulsive noise pro-
cesses in communications channels, and, in fact, includes
the Gaussian density as a special case [10]. Due to its
good performance, the α-stable distribution is used to fit
the noise and interference in cognitive radio multi-sensor
networks [11, 12], but the colored noise is not considered.
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Many spectrum sensing schemes for non-Gaussian
noise has been presented in many literatures. The perfor-
mances of Cauchy detector and global optimal detector
are not ideal in the non-Gaussian noise [13, 14]. Polarity-
Coincidence-Array (PCA)-based spectrum sensing is pro-
posed in [15], a significant performance enhancement is
achieved by the PCA detector, but the prior knowledge
such as the variance of the noise and the PU signal cyclic
frequency are also needed in the algorithm, which is diffi-
cult in practical system. The Lp-Norm Spectrum Sensing
method for cognitive radio networks is presented in [16].
It does not require any prior knowledge about the non-
Gaussian noise, but the condition that the noise do not
have second-order statistics and high-order statistics such
as α-stable distribution are not taken into account, there
are limitations when applied. The authors proposed a
novel FLOM-based detector for the detection of a primary
user in the SαS noises that can significantly enhance the
detection performance compared to other detector algo-
rithms [4, 17]. But it is same to other detection algorithms,
it is applicable only in the background non-Gaussian white
noise. In addition, the algorithm relies on the characteris-
tic exponent α of the SαS distribution, but it is difficult to
obtain in the actual detection process.
Although non-Gaussian noise in sensing networks are

given a variety of modeling and spectrum detection algo-
rithm [18], most of them remain in the simulation and
limit to white noise. We sample the practical noise data in
laboratory environment with CR equipment USRP X-300
and analyze the power spectrum density. The result shows
that it is not flat, which means the CR sensing system is
working in the background of colored noise. That is why
the performance of the algorithm mentioned above is
declined when applied to practice, as pointed in [19, 20].
Therefore, we propose a novel model to describe the
non-Gaussian colored noise and present a new detection
method to sensing signals. What is more, at special
values, Gaussian white noise or non-Gaussian white
noise can be included, which is more widely used in the
practical system.
In this paper, we first fit the curve of practice noise

data to study its characteristics and give a novel model to
present the colored non-Gaussian noise through combin-
ing symmetric α-distribution with a linear system repre-
sented by a matrix. Then we give an improved method
to estimate the parameters (characteristic exponent α

and dispersion γ same to α-stable density distribution)
of the new distribution from a time series [21]. Accord-
ing to the estimation result, we propose a new sens-
ing method of balance parameter-based fractional lower
order moment (BP-FLOM), referred to as BP-FLOM
detector. No prior knowledge is needed and the calcula-
tion is simplified. We also investigate the detection per-
formance with different characteristic exponent α and the

performance at different signal-to-noise ratios. In addi-
tion, multi-sensor performance is also simulated to verify
the validity.
The remainder of this paper is organized as follows: In

Section 2, we present the analysis of practical noise and
establish the model of non-Gaussian noise. The estima-
tion method for the new model is proposed in Section 3,
and we give a new BP-FLOM algorithm based on the
estimation result. Simulations results and analysis are
presented in Section 4 and we conclude the paper in
Section 5.

2 Observationmodels and problem description
In this section, a brief description of the most commonly
models used in survival literature for the CR sensing
node is provided. They include the system model of CR
networks [22] and the symmetric α-stable density distri-
bution [17]. And the new model is presented based on the
analysis of practical noise data.

2.1 Systemmodel
Assume that the CR comprised of one Primer User (PU)
and M Secondary Users (SU). The received observation
vector at the multi-sensors CR form the PU at time n
under each hypothesis (PU absent/present) is given by

H0 : Ym[ n]= ξm[ n] , n = 0, 1, . . . ,N − 1.
H1 : Ym[ n]= Sm[ n]+ξm[ n] , n = 0, 1, . . . ,N − 1.

(1)

where Ym[ n]=[ y1(n), y2(n), . . . , ym(n)]T is the sample
of received signal by mth detector at the time n,
N is the length of the sample sequence. ξm[ n]=
[ ξ1(n), ξ2(n), . . . , ξm(n)]T is an additive background noise
and Sm[ n] is primary signal to be detected. The primary
signal is assumed to be random sequence of Gaussian
distributions, and symmetric α-stable distribution has
proved to be a good way to describe the non-Gaussian
noise [4].
The probability density function (PDF) of an α-

stable random variable cannot be given in closed form,
but the characteristic function can always be given as
followed [23]

φ(t) = exp{−γ |t|α + iδt} (2)

where α ∈ (0, 2] is the characteristic exponent, and it
describes the tail of the distribution. The values α = 2
and α = 1 correspond to the Gaussian distribution and
Cauchy distribution. The other two parameters are γ >

0 for dispersion scale and δ ∈ R for location. Let X∼
(α,β , γ , δ), the symmetric α stable (SαS) distribution is
given by X∼ (α, 0, 1, 0) and only the SαS is considered in
this paper.
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2.2 Noise model
The power spectral density of the practical noise is shown
in Fig. 1. It is obvious that the power spectral density
of practical noise is not flat. So the SαS distribution can
not describe the practical noise perfectly as it is colored.
To describe the practical noise accurately, we analyze the
characteristics of SαS distribution as follows.
if X(n),∀n ∈ {1, 2, . . . ,N} are independent and identi-

cally distributed (I.I.D) copies of X and

N∑

n=1
anX(n) � Xnew (3)

whereN ∈ Z+and an, c ∈ R, then Xnew is the SαS distribu-
tion with same parameter α[17]. According to the nature
of colored noise that the noise in the sequence is corre-
lated at each moment, we consider the colored noise to
be a linear output driven by a white noise sequence. We
propose a novel model for non-Gaussian colored noise as

ξ(n) = XT (n) · A

=
n∑

i=1
Xi ∼ (α, 0, aiγ , 0)

= Xnov ∼ (α, 0, γnov, 0)

(4)

where X[ n]=[ x(n), x(n− 1)] , . . . , x(0)]T , is the sequence
of SαS distribution. A =[ a1, a2, . . . , aN ] is the linear
transformation matrix. ξ(n) = Xnov ∼ (α, 0, γnov, 0) is
the colored noise sequence and has the same character-
istic exponent to X(n) according to [17]. In particular,
when special parameter is taken as A =[ a1, 0, . . . , 0],
the proposed model is the SαS distribution. The PDF of
the new model based on SαS and different characteristic

exponent α are plotted in Fig. 2. As expected, the heavy
tail of non-Gaussian colored noise is consistent with the
characteristics of the α distribution.
The power spectral density of the novel model is shown

in Fig. 3, it can be concluded that it is very close to the
practical noise that proves the validity of themodel. As the
SαS distribution has only the fractional lower moments,
and its variance does not exist, the conventional signal-to-
noise ratio is meaningless. So the signal-to-noise ratio for
non-Gaussian colored noise is defined by mixed signal-
to-noise, we call it general signal-to-noise ratio (GSNR)

GSNRdB = 10log10
(

σ 2
s

γnov

)
(5)

where σ 2
s is the variance of Gaussian signal, and γnov is the

dispersion scale of Gaussian colored noise. The GSNRwill
be applied to the subsequent simulation analysis.

3 BP-FLOM-based spectrum sensing
In this section, we propose a new spectrum sensing
scheme, namely balance parameter-based fractional low-
order moment (BP-FLOM) detector, for the non-Gaussian
colored noise background. Adopted parameter estimation
method associated with the proposed BP-FLOM method
along with the potential of employing BP-FLOM detector
in cooperative sensing is presented.

3.1 Estimation of characteristic exponent α and γnov

As introduced in Section 2, we assume that ξ = aξ1 +bξ2,
ξ1 and ξ2 are I.I.D sequence, the non-Gaussian colored
noise ξ has the same characteristic exponent α with SαS,
and a different dispersion scale γnov. To simplify the cal-
culation, we do not consider the specific value of γnov, and
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Fig. 1 Power spectral density of practical noise. The practical noise data are sampled in laboratory environment with the CR equipment USRP X-300
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Fig. 2 PDF tails of non-Gaussian colored noise with different characteristic exponent α

assume it is a known parameter. Then we improve the esti-
mation method in [21], so it has a finite factional lower
order moment for aξ1 + bξ2

E(|aξ1 + bξ2|p) = C1(p,α)γ
p/α
nov , for 0 < p < α (6)

where C1(p,α) = 2p	(
p+1
2 )	(1−p/α)√

π	(1−p/2) , 0 < α ≤ 2, γ is the
dispersion scale and 	(·) is the gamma function. Then we
obtained from (6)

log γnov = α

p
log

E(| aξ1 + bξ2 |p)
C1(p,α)

(7)

If pth order of ξ satisfies (6), we can write E(|aξ1+bξ2|p))
as E(ep log|aξ1+bξ2|) and define a new variableZ = log|aξ1+
bξ2|. Then

E(|ξ |p) = E
(
ep log|aξ1+bξ2|

)
= E

(
epZ

)
, 0 < p < α

(8)

where E(epZ) is the moment-generating function of Z. The
power series can be expressed by

E(epZ) =
∞∑

k=0
E(Zk)

pk

k!
(9)
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Fig. 3 Power spectral density of simulation colored noise. The data length is 10e4 and the Fs = 10e4 MHz, α = 1.8
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It is obvious that the moment of Z is finite in any order,
together with (6) we have

E(Zk) = dk

dpk
(C1(p,α))γ

p/α
nov , p = 0 (10)

Simplify the above equation according to [21]

E
(
log|aξ1 + bξ2|

) = Ce

(
1
α

− 1
)

+ 1
α
log γnov (11)

where Ce = 0.57721566 . . . is the Euler constant, α is the
characteristic exponent, then combined (6) and (11) we
have

E
{(

log|aξ1 + bξ2| − E
[
log|aξ1 + bξ2|

])2}

= π2

6

(
1
α2 + 1

2

) (12)

Equation (12) can be used to estimate α in this way with-
out calculating the value of γnov, and it is easily obtained
with (11).
Simulation result is given in Table 1. As can be seen from

the table, we can estimate the value of α exactly with a
small relative error when the sampling of noise sequence
is enough. The verification of the estimation method will
be discussed in Section 4.

3.2 Spectrum sensing based on balance parameter
We have known that the fractional low-order moment
detection (FLOM) has a good performance under the SαS
distribution noise that is presented in [4], and it is more
suitable than Cauchy detector. But when applied to the
non-Gaussian colored noise background, the performance
is declined. Based on the analysis in Section 2, we give the
hypothesis A: The practical non-Gaussian colored noise is
obtained by the linear transformation of the non-Gaussian
white noise sequence obeying the SαS distribution.
Since the impulse response of linear transformation is

difficult to compute without prior knowledge, we propose
a simpler and more accurate approximation algorithm.

3.2.1 Derivation of sensing threshold
It is easy for us to obtain a SαS distribution sequence
based on the parameter αe, Xk ∼ (αe, 0, 1, 0), αe is esti-
mated by the estimation algorithm presented in Section 2,

which is same to the practical noise sequence. Then,
the sensing threshold of detector for the constructed
sequence Xk ∼ (αe, 0, 1, 0), which is non-Gaussian white
noise will be derived according to [4]. The detection
statistic obtained in multi-user detection is :

TF = 1
MN

M∑

m=1

N∑

n=1
|Xm(n)|pe (13)

whereM is the number of detectors, andN is the observa-
tion signal of each detector. 0 < pe < αe/2 is the order of
the fractional moment, and it is the only parameter to be
determined. Then make a comparison by statistics TF and
threshold η, if TF > η, it is considered that the primary
signal is present, otherwise it is absent. The detection sig-
nal does not require any priori information such as the
channel gain and primary signal. It is practical and pro-
vides a scheme for the detection of non-Gaussian colored
noise. The expressions for the probability of false alarm
and the detection under the hypothesis H0 and H1 are
derived, including the multi-detectors.
Under hypothesis H0, the mean of the TF is calculated

by

μ0 = E[TF | H0]= 1
MN

E
[ M∑

m=1

N∑

n=1
|Xm(n)|pe

]
(14)

According to the properties of α stable distribution, the
fractional lower order moments of any SαS random vari-
able S can be represented by its characteristic index α and
the dispersion scale γ [24]

E(|S|p) = C(p,α)γ p/α , for p < α (15)

where

C(p,α) = 2p+1	(
p+1
2 )	(−p/α)

α
√

π	(−p/2)
(16)

Here, 	(σ) = ∫∞
0 xσ−1e−xdx. Applying (15) and (16) to

Eq. (14), it can be rewritten as

μ0 = 1
M

M∑

m=1
C(pe,αe)γ

pe/αe (17)

Table 1 Estimation of α. The estimation result of α with different sample size, where real value is 1.5 and 1.2

Sample size 1000 5000 10,000 50,000

Test result 1.5301 1.4994 1.5088 1.5009

Real value 1.5 1.5 1.5 1.5

Relative error 2% 0.4% 0.59% 0.6%

Test result 1.2117 1.2030 1.1946 1.2021

Real value 1.2 1.2 1.2 1.2

Relative error 0.97% 0.25% 0.53% 0.18%
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And the variance of statistic underH0

σ 2
0 = E

[
(TF | H0)

2 − E2 [(TF | H0)]
]

= 1
M2N

{ M∑

m=1
E
[|Vm(n)|2pe]

−
M∑

m=1
E2

[|Vm(n)|pe]
}

(18)

According to the central limit theorem, TF is a Gaussian
random variable when N is large enough. With the result
μ0 in (17)and σ 2

0 in (18), the probability of false alarm is
obtained

Pfa1 = {TF > ηt | H0} = Q

⎛

⎜⎝
ηt − μ0√

σ 2
0

⎞

⎟⎠ (19)

Thus, the sensing threshold for constructed sequence
Xk ∼ (αe, 0, 1, 0) is then

ηt =
√

σ 2
0Q

−1(Pfa1) + μ0, Pfa1 ≤ P̄fa1 (20)

3.2.2 Balance parameter-based FLOMdetector
The simulation curve of ηt and the Pfa1 for the Xk ∼
(αe, 0, 1, 0) constructed in the previous section can be fit-
ted easily.When the Pfa1 is determined, ηt can be obtained
by (21). But if we use this value as standard sensing thresh-
old, detection is invalid. So, another statistics Tp is needed
to calculate the balance parameter.
According to hypothesis A, we assume that ξ(n) is

the non-Gaussian noise sequence under H0, a different
statistics of ξ(n) can be obtained.

TP = 1
MN

M∑

m=1

N∑

n=1
|ξm(n)|pm̄ (21)

When the sampling sequence N is large, according to
the central limit theorem, the statistical values of the
two sequences tend to be stable value. Then we have the
equation

ηp = ηt · � (22)

where � = TF/TP, we call it the balance parameter. ηp is
the sensing threshold for practical sensing node. In partic-
ular, when vector A in Section 2.2 is [ 1, 0, . . . , 0], � = 1
and ηt = ηp. To obtain the false alarm probability and
detection probability, the σ 2

pi and μpi is needed, i = 0, 1.

Substituting (13) to (19), and assume Xm(n) = aξ1(n) +
bξ2(n), combined (15), we obtain

σ 2
p0 = E

⎡

⎣
(

1
MN

M∑

m=1

N∑

n=1

[|Xm(n)|pe]
)2⎤

⎦

−
{

1
MN

M∑

m=1

N∑

n=1
E
[|Xm(n)|pe]

}2

= 1
M2N2

{
NE

[ M∑

m=1
|Xm(n)|2pe

]

+
M∑

Case:a

N∑

n,j=1
E
[|Xm(n)|pe |Xi(j)|pj

]

− N
M∑

m=1
E2

[|xm(n)|pm
]

−
M∑

Case:b

N∑

n,j=1
E
[|Xm(n)|pe |Xi(j)|pj

]

= 1
M2N

{ M∑

m=1
E
[|ξ1(n) + bξ2(n)|2pe]

−
M∑

m=1
E2

[|ξ1(n) + bξ2(n)|pe]
}

(23)

Noting that both case a and case b arem, i = 1,m �= i or
n �= j. As pe < αe/2, using (15) to (24) is then

σ 2
P0 = 1

M2N

M∑

m=1

[
C(2pe,αe)γ

2pe/αe
e

−
(
C(pe,αe)γ

pe/αe
e

)2]
(24)

where γe = γnov and

μp0 = 1
M

M∑

m=1
C(pe,αe)γ

pe/αe
e (25)

Similarly, the mean μ1 and variance σ 2
1 of TF under H1

are derived then

μp1 = E[TF | H1]= μ0 +
M∑

m=1
φm,0 (26)

where

φm,0 = σ 2
s pe(pe − 1)C(pe − 2),αe

2M
γ

(pe−2)/αe
e

And the variance underH1

σ 2
p1 = E

[
(TF | H1)

2 − E2 [(TF | H1)]
]

= σ 2
p0 + 1

N

( σs
M

)2 M∑

m=1
φm,1

(27)
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where

φm,1 = pe(2pe − 1)C(2pe − 2,αe)γ
2(pe−1)/αe
e

− pe(pe − 1)C(pe,αeγ
pe/αe
e )(2pe − 2,αe)γ

(pe−2)/αe
e

According to the central limit theorem, TF is a Gaussian
random variable when N is large enough. With the result
μp0 in (24)and σ 2

p0 in (25), the probability of false alarm is
obtained

Pfa = {TP > ηP | H0} = Q

⎛

⎜⎝
ηt� − μp0√

σ 2
p0

⎞

⎟⎠ (28)

and detection probability with μp1 and σ 2
p1

Pd = {TP > ηP | H0} = Q

⎛

⎜⎝
ηt� − μp1√

σ 2
p1

⎞

⎟⎠ (29)

where μpi and σ 2
i (i = 1, 2) are the mean and variance

of practical noise sequence. The expression of probability
detection can be deduced by the combination of (28) and
(29)

Pd = Q

⎛

⎜⎝

√(
σ 2
0
)
Q−1(Pfa) + μp0 − μp1

√
σ 2
p1

⎞

⎟⎠ (30)

Substituting (26 − 28) into (31)

Pd = Q

⎛

⎜⎝

√(
σ 2
0
)
Q−1(Pfa) − ∑M

m=1 φm,0
√

σ 2
0 + σ 2

s
M2N

∑M
m=1 φm,1

⎞

⎟⎠ (31)

The optimal Pd can be obtained by searching for the order
vector pm̄ because σ 2

0 , φm,0 and φm,1 are all related to pm̄.
Then numerical computation of (31) will be conducted in
Section 4 as well as Monte Carlo simulations to validate
our algorithm.

4 Simulation results
In this section, the simulation result will be discussed to
evaluate the performance of the novel model for non-
Gaussian colored noise as well as the BP-FLOM detector.

4.1 Effectiveness of noise models
First, we investigate the effectiveness of the non-Gaussian
colored noise model as well as the parameter estimated
method. The comparison for power spectral density is
presented in Section 2, the proposed non-Gaussian col-
ored noise model has the same statistical properties to the
practical noise.
Then we construct a new non-Gaussian colored noise

sequence ξ(n), the characteristic exponent α = 1.25, the
linear transformation matrix A = [0.9 −1.25 0.7 0], sample

−10 −5 0 5 10
0

0.05

0.1

Stable fit to sums of non−Gaussian colored random variables

α
e
stimated value = 1.2981

Data
Fit−curve

Fig. 4 The PDF and fit curve of non-Gaussian colored sequence. The blue part are the data distribution, the red line is the fit-curve with estimated
parameters
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Table 2 Estimation of result. The estimation result of α with different sample size, where real value is 1.5

Estimation times 1 2 3 4

Test result 1.2426 1.2513 1.2486 1.2509

Real value 1.25 1.25 1.25 1.25

Relative error 0.59% 0.14% 0.11% 0.07%

size is set to L = 100,000. As shown in Fig. 4, the distribu-
tion of the data follow the shape of the probability density
distribution.
Next we estimate the parameters of the sequence to

draw a new fit curve. It is obvious that the fitted curve
is consistent with the data distribution. The estimation
result is shown in Table 2. The result of parameter esti-
mation is very close to the parameter α of the constructed
sequence, and the estimation relative error is very small.
In conclusion, the proposed model has the same sta-

tistical characteristics, the practical noise is estimated,
and the reconstructed data are consistent with the actual
ones. all the analysis above show that non-Gaussian col-
ored noise model we proposed can describe the real noise
accurately.

4.2 The performance of BP-FLOM detector
We assume that the primary signal is Gaussian with 0
mean, variance σ 2

s , the noise background is the non-
Gaussian colored noise based on I.I.D SαS with dispersion
scale γ = 1. We set the sample size N = 1000, and the
simulation results are achieved by 20,000 Monte Carlo
simulations.

Figure 5 shows the curves of the detection threshold
versus the probability of false alarm, and different values
for the single-node detection parameters. Curves labeled
with “theory” are calculated according to expression (28),
curves labeled with “simulation” are obtained statistic and
detection threshold. In the case of cooperative detection,
we set α1 = 2, p1 = 0.7 for the first detector and α2 =
0.8, p2 = 0.33. Figure 6 shows M = 2 for cooperative
detection, the comparison is also displayed. It proves that
the simulation is consistent with the theory.
Figure 7 shows the comparison of the three sets of

simulation results, and the range of GSNR is − 15 ∼
5 dB. Three different characteristic exponents and corre-
sponding fractional lower order are presented to make a
comparison between FLOM detector and the BP-FLOM
we proposed. When the characteristic component α = 2,
it is the Gaussian colored noise and the performance of
the two algorithm is close to each other. For α = 1.5
and α = 0.8, our proposed detector has a better detec-
tion performance than the FLOM detector under all levels
of GSNR. For instance, when GSNR = −4dB, Pf a = 0.1
and α = 1.5, the probability of detection of our detec-
tor is 71.4%, but that of the FLOM detector is 42% only,
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Fig. 5 Probability of false alarm versus detection threshold of single detector for different values of α, p. The comparison of theory and simulation
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Fig. 6 Probability of false alarm versus detection threshold of a multi-detector. The number of detector is 2, and the comparison of theory and
simulation result are displayed

which fails to detect the primary signal. But the detection
is effective only under a large GSNR when α = 0.8. In
summary, the performance of BP-FLOMdetector is better
than FLOM detector in the background of non-Gaussian
colored noise.
Figure 8 shows the performance of the BP-FLOM detec-

tor under single detection and multi-detection; it is obvi-
ous that the performance of multi-detection is much

better than that of single detection. For example, the prob-
ability of detection of multi-detection is 75% while the
single detection is 42%, under the same condition Pf s =
0.1.
Figure 9 shows the ROC curves of the BP-FLOM detec-

tor, both the simulation and theory curves. The simulation
result are obtained with different values of p = 0.33 and
p = 0.7 under two values of GSNR ( −5 dB and −10 dB ).
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Fig. 7 Probability of false alarm versus detection threshold of BP-FLOM detector for different values of α, p, and M



Dou et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:192 Page 10 of 11

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of false alarm, Pfa

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

M=1,GSNR=−10,P=0.33
M=2,GSNR =−10,P=0.33
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The theory curves are obtained with (31) under the same
conditions. As shown in the figure, our proposed detector
performs better for smaller values of p. For example, the
probability of detection is 70% with p = 0.33 while 37%
with p = 0.7, under the same GSNR = −10 dB.

5 Conclusions
This paper propose a novel non-Gaussian noise model
based on the analysis of practical noise, and present a

balance parameter-based fractional low-order moment
(BP-FLOM) detector. It was shown that although the
BP-FLOM scheme exhibits an approximately identical
detection performance with the FLOM detector when it
is Gaussian colored noise, performance is better when
the background is the non-Gaussian colored noise, and
the multi-detection performance is much better than
FLOM detector and single detector. Simulation results, as
well as the presented analysis, conform to the superior
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Fig. 9 ROC of BP-FLOM detector with multi-detectors. Performance in different conditions when GSNR = − 10 dB or − 5 dB, p = 0.33 or 0.7, the
theory and simulation are all displayed
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performance of the proposed balance parameter-based
sensing scheme relative to competing solutions, in partic-
ular, the balance parameter is self adjusted when the noise
sequence changed, which is practical for the system.
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