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Abstract

To meet the ever-increasing demands of mobile traffic, femtocells are considered as one of the promising solutions.
In this paper, we study a sensing-based resource allocation scenario in cognitive femtocell networks and present an
efficient distributed imperfect-spectrum-sensing-based resource allocation (DIRA) algorithm while considering the
channel uncertainty to maximize the total data rate of cognitive femtocell networks by jointly optimizing both
subchannel assignment and power allocation taking into account the influence of the sensing accuracy. However, the
general optimization problem turns out to be a mixed integer programming problem. In order to make it tractable, the
original optimization problem is divided into two sub-optimization problems,namely,optimal subchannel allocation
and optimal power allocation. Specifically, the proposed distributed fairness-based subchannel allocation (DFSA)
algorithm guarantees fairness by introducing channel condition difference and satisfaction degree as the indicators of
subchannel allocation. Additionally, optimal power allocation with the consideration of imperfect spectrum sensing
and interference uncertainty is performed using the proposed chance-constrained power optimization (CPO)
algorithm. Bernstein’s approximation is conducted tomake the chance constraint tractable. Simulation results illustrate
that the distributed imperfect-spectrum-sensing-based resource allocation (DIRA) algorithm can provide considerable
fairness among femtocells and at the same time maximize the total data rate of the cognitive femtocell network.

Keywords: Cognitive femtocell, Resource allocation, Imperfect spectrum sensing, Interference uncertainty

1 Introduction
To accommodate with this ever-increasing demand for
mobile data transmission, the mobile network operators
(MNOs) is facing with urgent requirement of seeking for
new technologies to enhance the capacity by 1000 times
[1]. In this context, small cell deployment has been viewed
as one of the most effective and cost-efficient solutions
[2]. Small cell is an umbrella term for low-powered radio
access nodes with a range of 10 m up to several hundred
meters. It can be generally categorized into femtocells,
picocells, or microcells according to their coverage range
in ascending order. As several studies showmore than 70%
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of data traffic occurs indoors [3], this has led to increas-
ing interest in femtocells, which is known as home base
station. The low-power, short-range, easy plug-and-play,
and self-organization features of femtocells benefit both
the users and operators.
Embedding femtocells in traditional cellular system

helps offloading the overloaded traffic in macrocells,
expanding coverage, and boosting network capacity. How-
ever, the scarcity of the available wireless spectrum
resource becomes a challenging issue in the develop-
ment of wireless communication technologies [4], which
urges MNOs to optimally utilize the bandwidth in order
to obtain the maximization of network capacity. In this
case, dedicated-channel deployment of femtocells is no
longer preferable from the operator’s perspective because
of radio resource shortage and implementation diffi-
culty. Compared with dedicated-channel deployment,
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co-channel deployment is more attractive due to easy
implementation and more efficient utilization of wireless
spectrum. However, co-channel deployment might intro-
duce severe cross-tier interference between macrocells
and femtocells where they share the same spectrum [5],
especially when they are close to each other [6], and co-
tier interference between co-channel deployed femtocells
in dense deployment scenario. Therefore, interference
mitigation in such two-tier networks needs to be tack-
led. Moreover, the random deployment, restricted/closed
access of femtocells, and no coordination between two
tiers turn this problem into a hard nut to crack [7]. Fac-
ing with the above challenges, cognitive radio has emerged
as a potential technology which enables radio devices to
monitor the radio environment and dynamically adjust
transmission parameters according to the sensing result.
A femtocell base station (FBS) equipped with cogni-
tive function will be capable of identifying and choosing
the suitable subchannel that provides the least harmful
influence to others.

1.1 Related works
A considerable amount of literature is available for
resource allocation and interference management in cog-
nitive femtocell system. In [8], a hybrid overlay/underlay
spectrum access mechanism was proposed to improve
the overall system performance of cognitive femtocell
networks. The subchannel allocation problem was for-
mulated as a coalition formation game, and a modified
recursive core algorithm was proposed to achieve stable
and efficient allocation. In [9], a distributed joint power
control method came up with a proper solution tomanage
the interference in two-tier femtocell networks.
Usually, subchannel allocation and power control are

jointly considered in literatures. In [10], a resource allo-
cation scheme was proposed to maximize the total data
rate of cognitive small cells without causing intolera-
ble interference to macrocell users, in which femtocell
user equipments (FUEs) could estimate the interfer-
ence channel through the pilot signals broadcasted by
macrocell base station (MBS). Moreover, the proposed
algorithm could ensure the fairness with only a tiny reduc-
tion in throughput performance. In [11], a decentralized
approach for dynamic subchannel and power allocation
was considered. Reinforcement learning-based algorithm
was applied to solve the uncoordinated spectrum shar-
ing problems. The spectrum allocation was based on
reinforcement learning algorithm, while the power allo-
cation applied convex optimization algorithm which was
decided by each femtocell independently. Besides, game
theory is also a feasible solution which has been widely
investigated in existing researches to jointly investigate
the subchannel and power allocation in femtocell net-
works. In [12], a cooperative Nash bargaining game

model was developed to study the subchannel alloca-
tion and power control problem jointly for cognitive
small cell networks with the consideration of cross-tier
interference mitigation, outage limitation, imperfect CSI,
and fairness.
Due to the inherent hardware limitations and vari-

able wireless environment, spectrum sensing errors are
inevitable, causing interference to macrocell user equip-
ments (MUEs) in cognitive femtocell networks [13].
Hence, owing to the imperfectness of the spectrum sens-
ing, the traditional resource allocation algorithms might
experience performance decrease. In [14], authors used
the particle swarm optimization (PSO) algorithm to solve
a joint uplink resource allocation problem for cognitive
networks under the consideration of imperfect spectrum
sensing. In [15], a multi-objective optimization problem
that jointly considered the femtocell throughput maxi-
mization and transmit power minimization was formu-
lated, subject to interference constraints on both femtocell
and macrocell including the co-channel interference and
adjacent channel interference constraints under spectrum
sensing error probabilities. In [16], pricing and power
allocation strategies were studied in a two-tier femtocell
network with the aim of maximizing energy efficiency,
where both perfect and imperfect spectrum sensing cases
were considered.
Besides, the information uncertainty is also signifi-

cantly important for the variable wireless environment,
including channel state information uncertainty [17], net-
work access state uncertainty [18], and background noise
uncertainty [19]. Particularly, those kind of uncertainty
problems can be presented as a probabilistic problem by
relaxing the constraint into an equivalent chance con-
straint [20–22]. Based on the aforementioned solutions,
jointly considered subchannel allocation and power allo-
cation are a proper way to solve resource allocation prob-
lems. The objectives of resource allocation mainly focus
on interference management [9, 10, 12, 13, 19–22], capac-
ity enhancement [8, 10, 13, 15, 20–22], power efficiency
improvement [15, 16, 19], and fairness [10, 12]. However,
to the best of our knowledge, resource allocation for cog-
nitive femtocell network jointly considering interference
management, fairness, imperfect spectrum sensing, and
interference uncertainty has not been studied in previous
works.

1.2 Contributions
Traditionally, the distribution of femtocells is modeled by
a hexagonal grid. However, in two-tier femtocell networks,
topological randomness causes the grid-based model too
idealized for both macrocells and femtocells, especially
when most of femtocells are installed by their subscribed
users. Recently, a new analytical method has gathered
considerable attention, named stochastic geometry. It can
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not only capture the topological randomness but also pro-
vide tractable analytical results [23]. Hence, we model
the cognitive femtocell network using stochastic geomet-
ric tools [24]. In this paper, resource allocation problem
including subchannel scheduling and power allocation
was jointly investigated for cognitive femtocell networks,
where the overall objective is to maximize the total data
rate, taking into account the influence of the imperfect
spectrum sensing and channel uncertainly. The main con-
tributions of the paper are the following:

- Firstly, the distribution of femtocells is modeled by a
hexagonal grid in the existing literature. However, the
topological randomness causes the grid-based model
too idealized for both macrocells and femtocells,
especially when most of femtocells are installed by
their subscribed users. In this paper, the cognitive
femtocell network topology is based on stochastic
geometry; macrocell and femtocell base stations are
modeled as two independent Voronoi tessellations,
where MBSs and FBSs follow Poisson point process
(PPP) distribution in their own tessellation.

- Secondly, the reliability of the spectrum sensing is
taken into consideration which will affect the
interference constraint. Moreover, the
femto-to-macro interference constraint under
channel uncertainty can be cast as the chance
constraint. Bernstein’s approximation is conducted
to make the chance constraint tractable.

- Thirdly, in order to maximize the total data rate of
femtocells under the consideration of imperfect
spectrum sensing and channel uncertainty while

balancing the fairness of networks, a distributed
fairness-based subchannel allocation (DFSA)
algorithm is implemented which uses channel
condition difference as an indicator of subchannel
allocation, taking the satisfaction degree of each FBS
into consideration. To further increase the total
capacity of femtocell network, transmit power of
femtocells on each subchannel will be adapted
subject to interference constraints and minimum
quality of service (QoS) requirements using the
chance-constrained power optimization (CPO)
algorithm.

The layout of this paper is outlined as follows. Section 2
describes the network model. Section 3 formulates our
optimization task with imperfect spectrum sensing and
interference uncertainty. In Section 4, the DIRA algorithm
is proposed. Section 5 evaluates the performance of our
proposed algorithm, and numerical results are presented
with discussions. Section 6 concludes this paper.

2 Systemmodel
2.1 Network topology
In this paper, a cognitive femtocell network where macro-
cells are overlaid with multiple cognitive femtocells is
considered. We model this two-tier femtocell network by
stochastic geometry tools. Figure 1 shows an example of
a two-tier network scenario; the coverage area of each
cell depends on its location and other cells’ locations.
Assuming that the MBSs and FBSs are distributed via
an independent Poisson point process (PPP) of density
dm and df , respectively. The two-tier network model can

Fig. 1 A two-tier network scenario



Huang et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:201 Page 4 of 13

be abstracted as two Voronoi tessellations as shown in
Fig. 2. By construction, each user located in the inter-
section of two cells will associate with either the MBS
or the FBS of the Voronoi cell covering that user. We
denote the sets of MBSs and FBSs as M =[ 1, ...,M] and
F =[ 1, ..., F]. In each femtocell, there are K FUEs. An
orthogonal frequency-division multiple access (OFDMA)
downlink system is considered, where the total bandwidth
of Bw is divided into N subchannels.

2.2 Channel model
Cognitive FBSs opportunistically access the licensed sub-
channels belong to the macrocells. Through periodic
spectrum sensing performed by the cognitive FBS, sub-
channels can be identified as busy or idle. In this paper, we
apply overlay spectrum sharing mode between MBSs and
FBSs, which means subchannels which are determined as
idle can be utilized by the FBS.
We assume that the knowledge of interference is uncer-

tain for each FBS due to the uncertainty of channel gain.
Let gf ,k,n be the channel gain of the kth FUE in femto-
cell f ∈ F on subchannel n ∈ N . Hence, the received
signal-to-interfernece-plus-noise ratio (SINR) of FUE k in
femtocell f on subchannel n is given as

SINRf ,k,n =
pFf ,k,ngf ,k,n
I + N0

(1)

where pFf ,k,n is the transmit power of FBS f to FUE k on
subchannel n; I is the received interference from other
FBSs, where I = ∑F

e=1,e�=f pFe,k,nge,k,n; and N0 is the noise
power. The data rate of FUE k in femtocell f on subchan-
nel n is presented as

rf ,k,n = Bw/N log2
(
1 + SINRf ,k,n

)
(2)

Fig. 2 The network is modeled as a superposition of two
independent Voronoi tessellations

Assume that the estimated channel gain gf ,k,n can be
acquired accurately through traditional channel estima-
tion techniques. However, the channel gain gf ,n from FBS
f to the MUE on subchannel n is difficult to estimate due
to the lack of cooperation between MBSs and FBSs. Thus,
we model gf ,n as

gf ,n = gf ,n + g̃f ,n (3)

where gf ,n denotes the estimated channel gain on sub-
channel n obtained by averaging gf ,k,n and g̃f ,n represents
the uncertain part of the channel gain.

3 Problem formulation with imperfect spectrum
sensing

In this section, firstly, we discuss the cross-tier interfer-
ence caused by femtocells, which consists of co-channel
interference caused by imperfect spectrum sensing and
out-of-band interference introduced by sidelobe power
leakage of orthogonal frequency division modulation
(OFDM) signals. Secondly, an optimization framework
which aims to maximizing the total data rate of the cog-
nitive femtocell network is formulated with the consid-
eration of imperfect spectrum sensing and interference
uncertainty.

3.1 Interference from imperfect spectrum sensing and
out-of-band emission

To ensure the QoS performance ofMUEs, the interference
caused by opportunistic access of FBSs in the licensed
channel should be controlled. The interference introduced
to the macro-tier consists of two parts: (i) co-channel
interference as a result of imperfect spectrum sensing and
(ii) cognitive radio out-of-band (OOB) emission.
Due to the inherent hardware limitations and variable

wireless environment, the spectrum usage can be falsely
detected by cognitive femtocells. The result of spectrum
sensing on subchannel n is a binary event denoted by
Sn0(x̃n = 0) and Sn1(x̃n = 1), where x̃n = 0 or 1 identifies
that subchannel n is sensed to be idle or busy. Similarly,
the actual state of the subchannel n can be denoted as
Hn
0 (xn = 0) and Hn

1 (xn = 1), where xn represents the
actual status of subchannel n, with xn = 0 or 1 indicat-
ing that the subchannel n is vacant or occupied. Generally,
there are four types of spectrum sensing probabilities:
(i) idle channel detection probability: pnnd = Pr{Sn0 |Hn

0 };
(ii) false alarm probability: pnf = Pr{Sn1 |Hn

0 }; (iii) miss
detection probability, pnm = Pr{Sn0 |Hn

1 }; and (iv) detection
probability, pnd = Pr{Sn1 |Hn

1 }. Among the above sensing
cases, false alarm and miss detection are considered as
sensing errors. Since FBSs make access decisions based
on the results of spectrum sensing, leading to four possi-
ble cases of spectrum sensing, which are given in Table 1,
where the sensing results of femtocells are considered as
priori probabilities.
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Table 1 Possibilities of spectrum sensing results for MUEs

Sensing state Actual state Probability

Case 1 Sn0 Hn
0 P1,n = Pr{Hn

0 |Sn0}
Case 2 Sn1 Hn

0 P2,n = Pr{Hn
0 |Sn1}

Case 3 Sn0 Hn
1 P3,n = Pr{Hn

1 |Sn0}
Case 4 Sn1 Hn

1 P4,n = Pr{Hn
1 |Sn1}

Among the possible cases shown in Table 1, subchannel
n is occupied by the MBSs only in cases 3 and 4. In case
3, the spectrum sensing result of subchannel n is vacant;
however, the actual state of n is busy, resulting in great
cross-tier interference from FBS to MUE on subchannel n
since FBS has no idea that this subchannel is not vacant as
detected. In case 4, although the detection made by FBS is
correct, MUE on subchannel n can still suffer from OOB
emissions due to sidelobe power leakage.
We can calculate P3,n and P4,n using Bayes’ theorem.

Thus, we have

P3,n = Pr{Hn
1 |Sn0}

= Pr{Sn0 |Hn
1 }Pr{Hn

1 }
Pr{Sn0}

= Pr{Sn0 |Hn
1 }Pr{Hn

1 }
Pr{Sn0Hn

0 } + Pr{Sn0Hn
1 }

= Pr{Sn0 |Hn
1 }Pr{Hn

1 }
Pr{Sn0 |Hn

0 }Pr{Hn
0 } + Pr{Sn0 |Hn

1 }Pr{Hn
1 }

= pnmpns
pnnd(1 − pns ) + pnmpns

(4)

P4,n = Pr{Hn
1 |Sn1}

= Pr{Sn1 |Hn
1 }Pr{Hn

1 }
Pr{Sn1}

= Pr{Sn1 |Hn
1 }Pr{Hn

1 }
Pr{Sn1Hn

0 } + Pr{Sn1Hn
1 }

= Pr{Sn1 |Hn
1 }Pr{Hn

1 }
Pr{Sn1 |Hn

0 }Pr{Hn
0 } + Pr{Sn1 |Hn

1 }Pr{Hn
1 }

= pndp
n
s

pnf
(
1 − pns

)+ pndpns
(5)

where pns represents the occupation probability of MBS on
subchannel n.
In addition to the effect of imperfect spectrum sensing,

OOB emission can also cause interference to MUEs. The
amount of OOB interference introduced toMUEs on sub-
channel j by the femtocell transmission on subchannel n,
with unit transmit power, is given as

Isf ,k,n,j =
∫ jBw/N−(n−1/2)Bw/N

(j−1)Bw/N−(n−1/2)Bw/N
ϕ(f )gf ,ndf (6)

where ϕ(f ) = Ts
[
sin(π fTs)

π fTs

]2
represents the power spectral

density (PSD) of an OFDM signal; Ts is the duration of an
OFDM signal.
Based on the above analysis, to jointly consider the effect

of imperfect spectrum sensing and OOB emission in the
interference constraint, we formulate the cross-tier inter-
ference from FBS to MUE s with unit transmit power as

Isf ,k,n =
∑

j∈Nv

P3,nIsf ,k,n,j +
∑

j∈No

P4,nIsf ,k,n,j (7)

where Nv represents the set of vacant subchannel in
N and No is the set of subchannel occupied by MBSs.
Considering the uncertainty of interference, we introduce
ε ∈ (0, 1) to guarantee the interference constraint in prob-
ability. Hence, the interference constraint can be written
as a chance constraint as follows:

Pr

⎧
⎨

⎩

F∑

f=1

K∑

k=1

N∑

n=1
Isf ,k,n ≤ Ithre,s

⎫
⎬

⎭
≥ 1 − ε ∀s (8)

where Ithre,s is the interference limitation from FBSs to
MUE s.

3.2 General optimization framework
In this paper, our major target is to maximize the total
data rate of the femtocell network under the constraints
of minimumQoS requirement and cross-tier interference,
taking into account the influence of sensing accuracy as
well as channel uncertainty. Thus, the general optimiza-
tion problem can be formulated as follows:

max
τf ,k,n ,pFf ,k,n

F∑

f=1

K∑

k=1

N∑

n=1
τf ,k,nRF

f ,k,n

s.t. C1: pFf ,k,n ≥ 0 ∀f , k, n

C2:
K∑

k=1

N∑

n=1
pFf ,k,n ≤ pFmax ∀f

C3:
N∑

n=1
τf ,k,nRF

f ,k,n ≥ R0
f ,k ∀f , k

C4: τf ,k,n ∈ {0, 1} ∀f , k, n

C5:
K∑

k=1
τf ,k,n ≤ 1 ∀f , n

C6: Pr

⎧
⎨

⎩

F∑

f=1

K∑

k=1

N∑

n=1
pFf ,k,nI

s
f ,k,n ≤ Ithre,s

⎫
⎬

⎭
≥ 1 − ε ∀s

(9)

where τf ,k,n = 1 or 0 indicates whether subchannel n
is allocated to FUE k in femtocell f or not, pFmax is the
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maximum transmit power of a FBS, and R0
f ,k is the mini-

mum QoS requirement of FUE k in femtcoell f.
In our optimization problem, C1–C2 are power con-

straints indicating the transmit power of a FBS should
not exceed the maximum transmit power pFmax. C3 is
the minimum QoS requirement for FUEs. C4–C5 are
constraints of subchannel allocation, representing that
a subchannel n can not be assigned to two different
FUEs in the same femtocell. C6 is the cross-tier interfer-
ence constraint represented by chance constraint, taking
both imperfect spectrum sensing and interference uncer-
tainty into consideration. Via C6, the cross-tier inter-
ference from FBSs to MUE s will be limited below the
threshold Ithre,s with a probability not less than 1 − ε.
In practice, it is difficult to acquire channel informa-
tion accurately; thus, it is more reasonable to present the
interference constraint as a chance constraint. Accord-
ing to the above analysis, C4 and C5 are integer con-
straints, which, as a result, lead the optimization problem
to be a mixed chance-constrained integer programming
problem.

4 Distributed imperfect-spectrum-sensing-based
resource allocation

The optimization problem in (9) is a mixed chance-
constrained integer programming problem which
is computationally complex to address. To make it
tractable, we divide the original problem into two sub-
optimization problems and solve them in two steps.
Firstly, in order to remove the integer constraints of
the optimization problem, we address the subchannel
allocation problem using DFSA algorithm with the con-
sideration of fairness among FBSs. In this way, the mixed
chance-constrained integer programming problem is
simplified as a chance-constrained programming prob-
lem without integer variables. Secondly, optimal power
allocation to the subchannels is achieved by CPO algo-
rithm. Bernstein’s approximation is applied to transform
the chance constraint into a convex constraint, and the
Lagrangian dual algorithm is used to solve the convex
power optimization problem.

4.1 Subchannel allocation by DFSA algorithm
We propose a distributed fairness-based subchannel allo-
cation algorithm to assign the subchannels with unit
power allocation. The aim of the DFSA scheme is to
achieve a fair subchannel allocation, while maintaining
considerable data rate of the whole network.
Through spectrum sensing, cognitive femtocells can

identify the available subchannels and estimate their chan-
nel conditions. For FBS f, the channel condition cf ,n of
subchannel n is considered as the average estimated chan-
nel gain from FBS f to all FUEs associated with this FBS,
given by

cf ,n =
∑K

k=1 gf ,k,n
K

(10)

As a result, the channel condition table (CCT) is created
based on this channel condition. FBS f sorts its sensing
results, namely, the available subchannels in a descending
order with respect to the cf ,n, as shown in Table 2. By
calculating the channel condition difference between cer-
tain subchannel and the next subchannel ranked in CCT,
we can obtain the channel condition difference table
(CCDT), as shown in Table 3.
The DFSA algorithm is based on CCDT instead of

CCT. In the CCT-based subchannel allocation scheme,
FBS f may suffer large quality degradation if FBS l
accesses f ’s first rank subchannel, although there are not
too much differences between the second rank and first
rank subchannel of FBS l, leaving FBS f with no choice but
to access the second rank subchannel with relatively worse
channel condition. However, our DFSA algorithm is based
on CCDT; the FBS with larger first rank difference value
may have the prior chance to access its first rank sub-
channel, which decrease the risk of suffering performance
degradation due to the loss of the preferred subchannel.
By taking channel condition difference as the indicator of
subchannel allocation, the fairness between FBSs based on
the average data rate can be guaranteed.
Finally, a subchannel requirement table (SRT) is formu-

lated, which consists of the subchannel requirement of
a FBS, as shown in Table 4, where Nf

A is the number of
total available subchannels of FBS f under spectrum sens-
ing result and Nf

D is the number of subchannels desired
by FBS f. The actual subchannel access will take place
once the whole subchannel selection procedure is fin-
ished; otherwise, there exists an available subchannel list
to be accessed by FBS f. Nf

to is the number of subchannels
for FBSs to access, which is initialized as 0 at the begin-
ning of the algorithm. counterf represents the number of
subchannels still required by FBS f, given by

counterf = Nf
D − Nf

to (11)

which is initialized as Nf
D and should be updated during

the allocation procedure. Nf
R is the number of remaining

Table 2 Channel condition table (CCT) for FBS f

Rank Subchannel ID Channel condition

1 n cf1 = cf ,n

2 m cf2 = cf ,m

· · · · · · · · ·
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Table 3 Channel condition difference table (CCDT) for FBS f

Rank Subchannel ID Channel condition difference

1 n df1,2 = cf1 − cf2

2 m df2,3 = cf2 − cf3

· · · · · · · · ·

available subchannels of FBS f, which is initialized as Nf
A

and also changes during the allocation procedure. SDf is
the satisfaction degree of FBS f, given by

SDf = Nf
to

Nf
D

(12)

Furthermore, with the consideration of satisfaction
degree, the fairness in the number of subchannels allo-
cated to FBSs can be guaranteed.
Once the DFSA algorithm starts, FBSs share the CCDT

and SRT with other FBSs in the same macrocell via broad-
cating. As a result, FBSs in the same macrocell have the
knowledge of CCDTs and SRTs of each other. With this
information, each FBS can perform the subchannel alloca-
tion process individually without causing collisions on the
same subchannel.
In the proposed DFSA algorithm, only one sub-

channel can be selected by a certain FBS each time.
The detail procedure of DFSA algorithm is shown in
algorithm 1. The CCT, CCDT, and SRT of FBS f is denoted
by CCTf , CCDTf , and SRTf , respectively. Besides, the
table update procedure is shown in algorithm 2.

4.2 Power allocation for femtocells by
chance-constrained power optimization

Once the subchannel allocation is obtained based on
DFSA algorithm, the integer variable τf ,k,n in the orig-
inal optimization problem in (9) can be substituted by
the subchannel allocation result. To further maximize the
total data rate of cognitive femtocell network, we opti-
mize the transmit power under the constraints of power,

Table 4 Subchannel requirement table (SRT) for FBS f

Number of total available subchannels Nf
A

Number of desired subchannels Nf
D

Number of subchannels to access Nf
to

Number of subchannels still needed counterf

Number of remained available subchannels Nf
R

Satisfaction degree SDf

QoS requirement, and cross-tire interference. Thus, the
optimization problem can be written as

max
pFf ,k,n

F∑

f=1

K∑

k=1

N∑

n=1
τ ∗
f ,k,nR

F
f ,k,n

s.t. C1: pFf ,k,n ≥ 0 ∀f , k, n

C2:
K∑

k=1

N∑

n=1
pFf ,k,n ≤ pFmax ∀f

C3:
N∑

n=1
τ ∗
f ,k,nR

F
f ,k,n ≥ R0

f ,k ∀f , k

C6: Pr

⎧
⎨

⎩

F∑

f=1

K∑

k=1

N∑

n=1
pFf ,k,nI

s
f ,k,n ≤ Ithre,s

⎫
⎬

⎭
≥ 1 − ε ∀s

(13)

where τ ∗
f ,k,n is the subchannel allocation achieved

by employing the DFSA algorithm in the previous
subsection.
However, the optimization problem in (13) is still

intractable due to the non-convex chance constraint in C6.
To achieve a convex feasible set of C6, a convex approxi-
mation of C6 should be performed, which can be achieved
by using the Bernstein approximation method [25, 27].

4.2.1 Bernstein’s approximation of the chance constraint
Consider a chance constraint written as a form of

Pr
{

f0(p) +
N∑

n=1
ζnfn(p) < 0

}

≥ 1 − ε (14)

Assuming that

1) p is a vector of decision parameters.
2) {ζn} is the set of random variables, with marginal

distribution denoted by {πn}.
3) {πn} belongs to a given family of probability

distribution with bounded support of [−1, 1], which
means ζn varies in the range of [−1, 1].

Let us set

�n(y) = max
πn

ln
(∫

exp(xy)dπn(x)
)

(15)

It is shown that the function

�(t,p) = f0(p) + t
N∑

n=1
�n
(
t−1fn(p)

)+ t ln
(
1
ε

)

(16)
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Algorithm 1 Distributed fairness-based subchannel
allocation algorithm(DFSA)
1: Let 	 = F .
2: for FBSs f ∈ 	 do
3: Assume that FBS w ∈ W(W ⊆ 	) meets Nw

A ≤
Nw
D , |W| = W .

4: ifW > 1 then
5: Select FBS f ∗ ∈ W with the lowest SD.
6: else ifW = 1 then
7: The only FBS w inW will be selected FBS f ∗.
8: else ifW = 0 then
9: Compare the first rank subchannels in W CCTs.

Select FBS f ∗ ∈ F with the largest first rank
channel condition difference.

10: end if
11: Mark the first rank subchannel n∗ in CCDTf ∗ as a

selected subchannel for FBS f ∗. Subchannel n∗ will
be allocated to FUE k∗ with the lowest data rate in
FBS f ∗. Let τf ∗,k∗,n∗ = 1.

12: Update the CCT, CCDT and SRT for FBS f ∗ and its
neighbors.

13: if counterf ∗ �= 0 and Nf ∗
R �= 0 then

14: Delete f ∗ from 	.
15: end if
16: end for

Algorithm 2 CCDT and SRT Table update procedure
1: The subchannel n is selected for FBS f.
2: for FBS f do
3: 1) Delete subchannel n from CCDTf and re-

calculate the differences;
4: 2) Update parameters in SRTf :N

f
to = Nf

to + 1,Nf
R =

Nf
R − 1, counterf = counterf − 1, and re-calculate

SDf .
5: end for
6: for FBSs l(l ∈ F/f ), l is a neighbor of f do
7: if Subchannel n is one of the available subchannel

for FBS l then
8: 1) Delete subchannel n from CCDTl and re-

calculate the differences;
9: 2) Update parameters in SRTl: N

f
R = Nf

R − 1.
10: end if
11: end for

is convex in (t > 0,p) [27]. The Bernstein approximation
of (14) can be formulated as

inf
t>0

[

f0(p) + t
N∑

n=1
�n
(
t−1fn(p)

)+ t ln
(
1
ε

)]

≤ 0

(17)

which is a safe convex approximation of the chance con-
straint, that is, p satisfies the chance constraint if it satisi-
fies Eq. (17). This approximation is tractable if {�n(y)}
can be evaluated efficiently [25]. Consider a case of �n(y)
when

�n(y) ≤ max
{
μ−
n y,μ+

n y
}+ σ 2

n
2
y2, n = 1, ...,N

(18)

where both−1 ≤ μ−
n ≤ μ+

n ≤ 1 and σn ≥ 0 are constants.
By choosing appropriate μ−

n , μ+
n , and σn and replacing �n

in (17) with its upper bound given in (18), Eq. (17) can be
bounded by

inf
t>0

[

f0(p) + t
N∑

n=1

(

max
{
μ−
n t

−1fn(p),μ+
n t

−1fn(p)
}

+σ 2
n
2
(
t−1fn(p)

)2
)

+ t ln
(
1
ε

)]

= f0(p) +
N∑

n=1
max

{
μ−
n fn(p),μ+

n fn(p)
}+ 1

2t

N∑

n=1
σ 2
n f

2
n (p)

+ t ln
(
1
ε

)

≤ 0

(19)

Invoking the arithmetic-geometric inequality for (19),
the convex constraint can be written as

f0(p) +
N∑

n=1
max

{
μ−
n fn(p),μ+

n fn(p)
}+

√

2 ln
(
1
ε

)

×
( N∑

n=1
σ 2
n f 2n (p)

) 1
2

≤ 0 (20)

which is a safe conservative approximation of Eq. (14).
Ben-Tal and Nemirovski [25] give some examples of the
value of μ−

n , μ+
n , and σn ≥ 0 based on some prior knowl-

edge (e.g., support, unimodality, and symmetry) of the
distributions.
Suppose Isf ,k,n follows a given distribution with bounded

support of
[
asf ,k,n, b

s
f ,k,n

]
. Introduce constants αs

f ,k,n �
1
2
(
bsf ,k,n − asf ,k,n

)
and βs

f ,k,n � 1
2
(
bsf ,k,n + asf ,k,n

)
to make

a normalization of support of [−1, 1]; that is, αs
f ,k,nζ

s
n +

βs
f ,k,n ∈[αs

f ,k,n,β
s
f ,k,n], where ζ s

n �
Isf ,k,n−βs

f ,k,n
αs
f ,k,n

. Let

f0(p) = −Isf ,k,n +
F∑

f=1

K∑

k=1

N∑

n=1
βs
f ,k,np

F
f ,k,n (21)

fn(p) =
F∑

f=1

K∑

k=1
αs
f ,k,np

F
f ,k,n (22)
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Then, C6 in (13) is equivalent to (14). Substitute f0(p) and
fn(p) into (20), noting that pFf ,k,n ≥ 0, then we obtain

− Ithre,s +
F∑

f=1

K∑

k=1

N∑

n=1
βs
f ,k,np

F
f ,k,n +

F∑

f=1

K∑

k=1

N∑

n=1
μ+
n αs

f ,k,np
F
f ,k,n

+
√

2 ln
(
1
ε

)
⎛

⎜
⎝

N∑

n=1

⎛

⎝
F∑

f=1

K∑

k=1
σ s
nα

s
f ,k,np

F
f ,k,n

⎞

⎠

2
⎞

⎟
⎠

1
2

≤ 0

(23)

According to the mean inequality theorem, arithmetic
mean cannot be greater than quadratic mean, which
means

√∑N
n=1 X2

n ≥
∑N

n=1 Xn√
N . Thus, we can further

approximate the above inequality as

−Ithre,s+
F∑

f=1

K∑

k=1

N∑

n=1

(

γ s
f ,k,n +

√

2
1
N

ln
(
1
ε

)

σ s
nα

s
f ,k,n

)

pFf ,k,n ≤ 0

(24)

where γ s
f ,k,n � μ+

n αs
f ,k,n + βs

f ,k,n. Therefore, the chance
constraint C6 in Eq. (13) is transformed into a convex
constraint.

4.2.2 Optimal power allocation for femtocells
Based on the above analysis, the chance-constrained pro-
gramming problem in (13) can be transformed into a
convex optimization problem. Thus, we can obtain opti-
mal power allocation by solving the following convex
optimization problem:

max
pFf ,k,n

F∑

f=1

K∑

k=1

N∑

n=1
τ ∗
f ,k,nR

F
f ,k,n

s.t. C1−C3

C7: − Ithre,s +
F∑

f=1

K∑

k=1

N∑

n=1

(

γ s
f ,k,n+

√

2
1
N

ln
(
1
ε

)

σ s
nα

s
f ,k,n

)

pFf ,k,n ≤ 0 ∀s

(25)

which can be solved by applying the Lagrangian dual
decomposition method. By introducing dual variables λ,
ν, and δ, the Lagrangian function is given by

L
({

pFf ,k,n
}
,λ, ν, δ

)

=
F∑

f=1

K∑

k=1

N∑

n=1
τ ∗
f ,k,nR

F
f ,k,n −

F∑

f=1

K∑

k=1
λf ,k

(

Pmax −
N∑

n=1
pFf ,k,n

)

−
F∑

f=1

K∑

k=1
νf ,k

( N∑

n=1
τ ∗
f ,k,nR

F
f ,k,n − R0

f ,k

)

− δ

⎛

⎝Ithre,s −
F∑

f=1

K∑

k=1

N∑

n=1

(

γ s
f ,k,n +

√

2
1
N

ln
(
1
ε

)

σ s
nα

s
f ,k,n

)

pFf ,k,n

⎞

⎠

(26)

where λ, ν, and δ are the Lagrange multiplier vectors for
C2, C3, and C7, respectively. In OFDMA-based cognitive
femtocell system, a subchannel can be assigned to only
one FUE in the same FBS; thus, the subchannel set allo-
cated to each FUE in the same FBS is independent of each
other. Hence, the Lagrangian dual problem can be decom-
posed into a master problem and F × N subproblems,
which can be solved iteratively. Accordingly, we have

L
({

pFf ,k,n
}
,λ, ν, δ

)

=
F∑

f=1

N∑

n=1
Lf ,n

({
pFf ,k,n,λ, ν, δ

})

−
F∑

f=1

K∑

k=1
λf ,kPmax +

F∑

f=1

K∑

k=1
νf ,kR0

f ,k − δIthre,s (27)

where

Lf ,n
({

pFf ,k,n
}
,λ, ν, δ

)

=
K∑

k=1
τ ∗
f ,k,nR

F
f ,k,n +

K∑

k=1
λf ,kpFf ,k,n −

K∑

k=1
νf ,kτ

∗
f ,k,nR

F
f ,k,n

+
K∑

k=1
δ

(

γ s
f ,k,n +

√

2
1
N

ln
(
1
ε

)

σ s
nα

s
f ,k,n

)

pFf ,k,n (28)

The Karush-Kuhn-Tucker (KKT) conditions of (26) can
be expressed as

∂Lf ,n
({

pFf ,k,n
}
,λ, ν, δ

)

∂pFf ,k,n
=

K∑

k=1

(
�f ,k,n − �f ,k,n

) = 0

(29)

λf ,k

(

Pmax −
N∑

n=1
pFf ,k,n

)

= 0 (30)

νf ,k

( N∑

n=1
τ ∗
f ,k,nR

F
f ,k,n − R0

f ,k

)

= 0 (31)

δ

⎛

⎝Ithre,s −
F∑

f=1

K∑

k=1

N∑

n=1

(

γ s
f ,k,n+

√

2
1
N

ln
(
1
ε

)

σ s
nα

s
f ,k,n

)

pFf ,k,n

⎞

⎠ = 0

(32)

where

�f ,k,n =
Bw/N

(
1 − νf ,k

)
τ ∗
f ,k,ngf ,k,n

ln 2
(
I + pFf ,k,ngf ,k,n + N0

) (33)

�f .k.n = λf ,k +δ

(

γ s
f ,k,n +

√

2
1
N

ln
(
1
ε

)

σ s
nα

s
f ,k,n

)

(34)
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The optimal power allocation for FBS f to FUE k on
subchannel n can be expressed as

p∗
f ,k,n =

[
Bw/N

(
1 − νf ,k

)
τ ∗
f ,k,n

�f .k.n ln 2
− I

gf ,k,n
− N0

gf ,k,n

]+

(35)

where [ x]+ � max(0, x); thus, the boundary constraint C1
in (25) is contained in Eq. (35) .
The subgradient search algorithm is used to calculate

the non-negative Lagrange multipliers λf ,k , νf ,k , and δ,
given by

λ
(t+1)
f ,k =

[

λ
(t)
f ,k + ε

(t)
1

(

Pmax −
N∑

n=1
p∗
f ,k,n

)]+
(36)

ν
(t+1)
f ,k =

[

ν
(t)
f ,k + ε

(t)
2

( N∑

n=1
τ ∗
f ,k,nR

F
f ,k,n − R0

f ,k

)]+
(37)

δ(t+1) =
⎡

⎣δ(t) + ε
(t)
3

⎛

⎝Ithre,s −
F∑

f=1

K∑

k=1

N∑

n=1

(

γ s
f ,k,n

+
√

2
1
N

ln
(
1
ε

)

σ s
nα

s
f ,k,n

)

p∗
f ,k,n

⎞

⎠

⎤

⎦

+

(38)

where ε
(t)
1 , ε(t)

2 , and ε
(t)
3 are step sizes and t is the iteration

number.

5 Simulation results and discussions
In this section, we evaluate the performance of the pro-
posed DIRA scheme. In the simulation, we consider the
downlink of a cognitive femtocell network in which fem-
tocells are overlaid with macrocells. We assume that there
are multiple macrocells and femtocells distributed in a
manner of PPP with density dm and df in a 4000× 4000 m
scenario. MUEs and FUEs are distributed randomly in
the scenario. The number of FUEs associated with an
FBS is 4. The channel gains are modeled as i.i.d. expo-
nential random variables. Shadowing effect is modeled
as a log-normal variable with standard deviation 6 dB.
The false alarm probability pnf and miss detection prob-
ability pnm are uniformly distributed over (0.05, 0.1) and
(0.01, 0.05). The occupation probability of MBSs on
subchannel n is uniformly distributed over (0, 1). The
Bernstein approximation parameters μ−

n , μ+
n , and σn are

chosen from [25]. The simulation parameters are given
in Table 5.
In the simulation, a comparison between the proposed

CCDT-based DFSA algorithm and the CCT-based sub-
channel allocation algorithm has been adopted to evaluate
the fairness performance of the algorithm. Figure 3 shows

Table 5 System simulation parameters

Parameter Value

Density of MBS distribution dm 2 BS/km2

MBS transmit power 43 dBm

FBS transmit power 20 dBm

Carrier frequency 2 GHz

Total bandwidth 10 MHz

Number of subchannels N 50

Thermal noise PSD −174 dBm/Hz

Shadowing standard deviation 6 dB

Pathloss from FBS to FUE (dB)[26] 38.6 + 20 log10(d) + 0.7d

the satisfaction degree fairness for different density of
FBS, where the satisfaction degree fairness is represented
by the variance of satisfaction degree. As shown in the
figure, compared with the CCT-based algorithm, the pro-
posed CCDT-based DFSA algorithm achieves lower sat-
isfaction degree variance, which illustrates that the pro-
posed algorithm outperforms the CCT-based algorithm in
respect of satisfaction degree fairness.
Figure 4 shows the data rate fairness comparison of

the proposed algorithm and the CCT-based algorithm. As
we can observe from the figure, the proposed algorithm
achieves a lower variance of average FUE data rate of FBSs
than the CCT-based algorithm. The outstanding fairness
performance for average data rate of the proposed algo-
rithm is achieved by applying the channel condition differ-
ence as an allocation indicator. According to Figs. 3 and 4,
it becomes harder to guarantee fairness among different
FBSs with increasing density of FBSs. This is becausemore
and more FBSs compete to access the same subchannel,
resulting in difficulty for maintaining fairness.

Fig. 3 Variance of satisfation degree for different density of FBSs
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Fig. 4 Variance of average data rate of FUEs of FBSs for different
density of FBSs

The total data rate of the FBSs for different density of
FBSs is shown in Fig. 5, where the data rate achieved by
two algorithms is almost the same. Through this figure,
obviously, the proposed algorithm can improve the fair-
ness performance without influencing the data rate.
We investigate the effect of ε in the total data rate of

FBSs, where df = 12 BS/km2, Ithre,s = −110 dBm,
R0
f ,k = 5 kbps. As shown in Fig. 6, the total data rate of

FBSs increases when the ε gets larger. Obviously, a larger ε

relaxed the interference constraints to FBSs, which results
in higher tolerance for cross-tier interference from FBSs
to MUEs. It illustrates that the higher data rate of FBSs
can be achieved at the cost of increasing interference to
MUEs.
Furthermore, we compare the total cross-tier interfer-

ence from FBSs to MUEs for perfect and imperfect spec-
trum sensing cases, where df = 12 BS/km2, Ithre,s = −110

Fig. 5 Total data rate of FBSs for different density of FBSs

Fig. 6 Total data rate of FBSs vs. Pmax for different ε

dBm, and R0
f ,k = 5 kbps. As shown in Fig. 7, the cross-

tier interference is an increasing function of Pmax. The
cross-tier interference from FBSs to MUEs in imperfect
spectrum sensing case is lower than that in perfect spec-
trum sensing case. This is because the imperfect spectrum
sensing case overestimates the cross-tier interference with
the consideration of sensing errors, such as false alarm and
miss detection.
Figure 8 shows the total data rate of FBSs is an increasing

function of maximum transmit power of FBS. As a com-
parison, the random subchannel allocation (RSA) and the
equal power allocation (EPA) schemes are also evaluated
in the simulation. In the RSA scheme, FBSs opportunis-
tically access vacant subchannels in CSMA/CA manner.
The equal power allocation allocates equal power for
each subchannel, while the proposed algorithm performs
an optimal power allocation with the consideration of
imperfect spectrum sensing, cross-tier interference, and

Fig. 7 Cross-tier interference from FBSs to MUEs
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Fig. 8 Total data rate of FBSs vs. Pmaxs

QoS requirements. Figure 8 compares the following kinds
of combination of subchannel allocation scheme and
power allocation scheme: (i) RSA+EPA; (ii) RSA+CPO;
(iii) DFSA+EPA; and (iv) DFSA+CPO(DIRA). In the simu-
lation, df = 12 BS/km2, Ithre,s = −110 dBm, and R0

f ,k = 5
kbps. It can be seen that the total data rate grows with
the increase of Pmax, and the proposed DIRA scheme
significantly increases the total data rate of FBSs.

6 Conclusions
In this paper, we investigated the resource allocation
problem in cognitive femtocell networks. A joint sub-
channel and power allocation algorithm was proposed to
maximize the total data rate of femtocells with the con-
sideration of fairness and imperfect spectrum sensing.
Particularly, a CCDT-based subchannel allocation algo-
rithm DFSA was developed to allocate subchannels to
FBSs while guaranteeing the fairness among femtocells.
We introduced spectrum sensing error probabilities to
capture the imperfect spectrum sensing influence and
combined them with OOB emission to formulate the
cross-tier interference constraint. Furthermore, due to the
interference uncertainty, we formed the interference con-
straint as the chance constraint and implied Bernstein’s
approximation to make it tractable. Finally, the optimal
power allocation problem was solved by the Lagrangian
dual method. Simulation results verified that our pro-
posed algorithm can achieve fair subchannel allocation
and significant data rate improvement.
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