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Abstract

In wireless sensor networks, ranging or positioning via ultra-wideband (UWB) has caused widespread research interests
where the non-coherent energy detection (ED) method with low sampling rate and low complexity is widely studied.
However, the traditional energy detection methods only analyze the signal energy in the time domain, so their error is
relatively large. In this paper, the simulation results show that most of the signal energy concentrates in the
low-frequency band, so a novel threshold selection method for time of arrival (TOA) estimation is proposed that
analyzes the signals in both time domain and frequency domain. In this method, the received signal is decomposed by
“db6” wavelet and the kurtosis of energy blocks of the low-frequency wavelet coefficients (Kc) is analyzed. At last, the
mapping relationship between Kc and the normalized threshold for TOA estimation is created using polynomial fitting
with degree 3. The simulation results show that the TOA estimation error of the proposed method is significantly less
than the method without wavelet decomposition.

Keywords: Ranging, Wavelet decomposition, Kurtosis analysis, Ultra-wideband, Energy detection, Threshold selection

1 Introduction
In recent years, with the development of wireless commu-
nication technologies [1, 2], the applications of wireless
sensor networks are more and more widely used. The im-
portant premise of these applications is to obtain the pre-
cise position of the targets [3–5]. Therefore, the precise
positioning of targets becomes the key problem to be
solved urgently.
Ultra-wideband (UWB) is a new wireless communica-

tion technology [6–9], which is widely used in many
fields, such as indoor short-distance communication,
high-speed wireless local area networks (WLAN) [10],
security monitoring, ranging, positioning, and so on.
UWB is the most promising technology for indoor posi-
tioning and tracking [3]. Compared with other short-
range communication technology, UWB has many
advantages for short-range communication: first, UWB
can provide up to GHz bandwidth; second, UWB can
provide data rates of hundreds of megabits per second

or even gigabits per second, so it is an ideal technology
for wireless communication in wireless sensor networks
[11, 12]; third, continuous transmission carrier is not
needed in UWB communication, and the intermittent
pulse is used to transmit data, which make short pulse
duration, low power consumption, and high multipath
resolution.
Wireless positioning methods can be divided into fin-

gerprint positioning algorithm based on received signal
strength indicator (RSSI) [13], geometric or range posi-
tioning algorithm based on the range, time of arrival
(TOA) [14, 15], time difference of arrival (TDOA) [16],
or angle of arrival (AOA) [17], and some fusion posi-
tioning methods together with inertial measurement
units (IMUs) [5]. The signal fingerprint positioning algo-
rithm [4, 18] is based on the mapping relationship
between some parameters obtained from the received
signal and the position information of the target node.
The range-based positioning algorithm with round-trip-
time (RTT) measurements [19] is often used to meet the
requirement of high-precision positioning because of its
high time delay resolution. However, obtaining the
accurate ranging estimation is a very challenging

* Correspondence: cxr@upc.edu.cn
1Department of Computer and Communication Engineering, China
University of Petroleum (East China), Qingdao 266580, China
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Li et al. EURASIP Journal on Wireless Communications and Networking
 (2017) 2017:202 
DOI 10.1186/s13638-017-0990-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-017-0990-4&domain=pdf
http://orcid.org/0000-0002-2326-9518
mailto:cxr@upc.edu.cn
http://creativecommons.org/licenses/by/4.0/


problem due to the effects of thermal noise, multi-path
fading, non-line of sight, and other factors in wireless
transmission channel. For example, in non-line of sight
(NLOS) environment, the range estimation based on
TOA will typically be positively biased [3].
In recent years, ranging algorithms for UWB systems

have been extensively studied. There are three main
approaches. The first approach is matched filter (MF)
based on coherent algorithm with high sampling rate
[20]. The second is machine learning method based on
some selected channel parameters. In [3], a ranging
method based on kernel principal component is pro-
posed, where the channel parameters are projected onto
a high-dimensional nonlinear orthogonal space, and then
the subset from these projections is used for ranging.
The third is energy detection (ED) algorithm based on
non-coherent receiver with low sampling rate and low
complexity [8, 9, 21]. The matched filter approach is not
applicable in many practical situations due to the high
complexity and high hardware requirement. As opposed
to the complex matched filter method, the energy detec-
tion is a non-coherent method for TOA estimation
which consists of a square-law device, an integrator, a
sampler, and a decision mechanism. The TOA value is
estimated by the first signal sample exceeding a specific
threshold which is deemed as the start of the received
signal. Thus, the energy detection method is applicable
in many cases because it is a method with low complex-
ity and low sampling rate. In this method, how to select
an appropriate threshold is a key issue. In literature [9],
a threshold selection method based on kurtosis analysis
of energy blocks was proposed, and in literature [21], a
threshold selection method based on skewness analysis
of energy blocks was also put forward. However, the
TOA estimation accuracy of these methods is not very
high because these parameters such as kurtosis of the re-
ceived signals can only reflect statistical characteristics
in time domain and ignore all the characteristics in fre-
quency domain. At the same time, the received signals
will be affected by the random noise, so the large ran-
domness will result in the poor precision of kurtosis in
time domain.
In this paper, the simulations of UWB signal spectrum

under different signal to noise ratio (SNR) find out that
the UWB signal energy is mainly distributed in the low-
frequency band, while the energy of the white Gauss
noise is evenly distributed over the entire frequency
band. The wavelet transform is equivalent to two chan-
nel filter banks with low-pass and high-pass characteris-
tics, so using the wavelet transform, most of the signal
energy concentrates in the low-frequency coefficients,
while the energy of white Gauss noise distributes in the
coefficients of all frequency bands. Thus, in this paper,
after the wavelet transform used in the received signal,

the high-frequency coefficients are discarded, and only
the low-frequency coefficients are used as the received
signal energy to improve the accuracy of ranging. In this
way, the white Gauss noise interference in the signal can
be reduced effectively.
The remainder of this paper is organized as follows. In

Section 2, the UWB ranging system model is presented.
Section 3 discusses some ranging estimation algorithms
based on traditional energy detection method in the
time domain. Section 4 introduces the proposed thresh-
old selection method for TOA estimation based on
wavelet decomposition, energy detection, and kurtosis
analysis. In Section 5, the simulation results and the per-
formance discussion are presented, and Section 6 con-
cludes the paper.

2 UWB ranging system models
2.1 Pulse waveform
In UWB ranging system, short pulses with sharp rising
and falling edges are usually used as the transmitting sig-
nal to get shorter pulse duration (nanosecond level) or
higher time delay resolution.
The second derivative of Gauss function is in accord

with this characteristic, so it is used as the UWB pulse
signal, which can be expressed as Eq. (1)

f tð Þ ¼ d2q tð Þ
dt2

¼ 1−4π
t2

α2

� �
e−

2πt2

α2 ð1Þ

where q(t) is the Gaussian pulse, α denotes the shape
factor of the waveform, and a smaller value of α results
in a shorter pulse.

2.2 Modulation method
In order to improve the capacity of anti-interference,
pulse position modulation (PPM) and time hopping
spread spectrum (TH-SS) [7] are used which can be
expressed as Eq. (2)

s tð Þ ¼
X
i

f t−iT f −ciTc−aiε
� � ð2Þ

where frame index and frame duration are denoted by i
and Tf respectively, Tc is the chip duration, hopping se-
quence is composed of integer-valued ci ∈ {0, 1,…,Tf/Tc
− 1}, ai is a binary sequence, and ε is the time shift in
pulse position modulation.

2.3 IEEE 802.15.4a channel model
The simulations in this paper are done in the
IEEE802.15.4a channel model [22]. IEEE802.15.4a [22] is
the first international standard for ranging and position-
ing in physical layer which provides high-accuracy ran-
ging and positioning capability. The IEEE 802.15.4a
standard specifies two signaling formats based on
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impulse radio ultra-wideband (IR-UWB) and chirp
spread spectrum (CSS). The former is used for ranging,
and the latter is used for wireless communication. Since
this paper is focused on TOA estimation or ranging
algorithm, therefore, only the IR-UWB is considered in
line of sight (LOS) and NLOS environments. Classifica-
tion of channel models in IEEE 802.15.4a are listed in in
Table 1.
CM1 and CM2 are the indoor residential channel

models with LOS and NLOS environments which are
used for the simulations in this paper. The channel im-
pulse response can be expressed as Eq. (3)

h tð Þ ¼
XL

l¼1

XK lð Þ

k¼1

αl;kδ t−Tl−τl;k
� � ð3Þ

where L is the number of received clusters, K(l) denotes
the number of received multipath components in the lth
cluster, αl, k is the gain factor of the kth multipath com-
ponent of the lth cluster, Tl denotes the TOA of the lth
cluster, and τl, k is the TOA of the kth multipath compo-
nent of the lth cluster. The environments of CM1 and
CM2 are shown in Table 2.
The received signal can be expressed as Eq. (4)

r tð Þ ¼ s tð Þ � h tð Þ þ n tð Þ ð4Þ

where n(t) is the additive white Gaussian noise
(AWGN) with zero mean and two-sided power spec-
tral density N0/2. Thus, the received signal can be
expressed as Eq. (5)

r tð Þ ¼
XL

l¼1

XK lð Þ

k¼1

αl;ks t−Tl−τl;k
� �þ n tð Þ ð5Þ

2.4 TOA estimation error
The mean absolute error (MAE) of TOA estimation re-
sults is expressed as Eq. (6)

MAE ¼ 1
N

XN

n¼1

∣tn−t̂ n∣ ð6Þ

where tn is the real TOA, tn denotes the estimated
TOA, and N is the simulation times.

3 Energy detection method
As shown in Fig. 1, in the traditional energy detection
methods, the received signal is squared by the low noise
amplifier, and then input into an integrator with period
Tb which is much longer than the sampling interval, so
the number of energy blocks within a frame is Nb = ⌊Tf/
Tb⌋ (⌊⌋denotes the integer part) and Tf is the frame
period.
Thus, the sample values of integrator output are given

by Eq. (7)

z n½ � ¼
XNp

j¼1

Z i−1ð ÞTfþ cjþnð ÞTb

i−1ð ÞTf þ cjþn−1ð ÞTb

r tð Þj j2dt ð7Þ

where n = 1, 2, ..., Nb − 1, Nb is the received sample index
in each integration period, and Np is the pulse number
in one symbol. In this paper, Np = 1, so the sample values
of integrator output are given by Eq. (8)

z n½ � ¼
Z i−1ð ÞTfþnTb

i−1ð ÞTf þ n−1ð ÞTb

r tð Þj j2dt ð8Þ

There are many TOA estimation methods based on
the energy blocks z[n] which can detect the start of a re-
ceived signal or estimate the TOA. The simplest one is
the maximum energy method, which chooses the max-
imum energy block z[n] as the first received signal and

Table 1 Classification of channel models specified in IEEE
802.15.4a standard

Channel
models

Channel description

CM1 Residential environment with LOS communication
(7–20 m)

CM2 Residential environment with NLOS communication
(7–20 m)

CM3 Office environment with LOS communication
(3–28 m)

CM4 Office environment with NLOS communication
(3–28 m)

CM5 Outdoor environment with LOS communication
(5–17 m)

CM6 Outdoor environment with NLOS communication
(5–17 m)

CM7 Industrial environment with LOS communication
(2–8 m)

CM8 Industrial environment with NLOS communication
(2–8 m)

CM9 Open outdoor environment with NLOS communication
(e.g., farm, snow-covered area)

Table 2 Channel parameters of CM1 and CM2

Channel parameters CM1
(LOS)

CM2
(NLOS)

Frequency dependency of the channel 1.12 1.53

Standard deviation of the log-normal
shadowing of entire impulse response

2.22 3.51

Mean number of clusters 3 3.5

Cluster arrival rate 0.047 0.12

Two ray arrival rates (rays per nanosecond)
for mixture of Poisson processes

1.54, 0.15 1.77, 0.15

Cluster decay factor (time constant, ns) 22.61 26.27
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the TOA is equal to time responding to the center of the
block. However, as shown in Fig. 2, usually, the max-
imum z[n] is not responding to the first received signal;
in this case, the estimated TOA will have big error, espe-
cially in NLOS environments. Thus, threshold crossing
method has been proposed; with this method, the
received energy blocks z[n] are compared with a selected
threshold. In this case, the TOA estimation can be ob-
tained according to the first threshold exceeding sample
index, which is expressed as Eq. (9)

t̂TC ¼ min njz n½ � > ξf g−0:5½ �Tb; ð9Þ

It is very difficult to determine an appropriate thresh-
old ξ directly because if the big change of energy and
signal, so a normalized threshold ξnorm ranging from 0
to 1 is often used which is expressed as Eq. (10)

ξnorm ¼ ξ−min z n½ �f g
max z n½ �f g−min z n½ �f g : ð10Þ

In [9], the kurtosis of received energy blocks z[n] is
employed to choose the appropriate normalized thresh-
old. Kurtosis can be expressed as Eq. (11),

k ¼ 1

Nb−1ð Þδ4
XNb

n¼1

z n½ �−zð Þ4−3; ð11Þ

where z and δ denote the mean and standard deviation
of z[n] respectively. In this case, the ranging estimation
can be expressed as Eq. (12)

D ¼ C � t̂ TC ; ð12Þ

where C is the speed of electromagnetic wave in the air
and tTC denotes the TOA estimate of signal.
In a positioning system, the coordinates of the target

nodes (x, y ,z) at the intersection of the circles of the ref-
erence nodes can be obtained by solving the following
equations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1−xð Þ2 þ Y 1−yð Þ2 þ Z1−zð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2−xð Þ2 þ Y 2−yð Þ2 þ Z2−zð Þ2

q
……ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xk−xð Þ2 þ Yk−yð Þ2 þ Zk−zð Þ2
q

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼
D1

D2

… …

Dk

8>><
>>:

9>>=
>>;
;

ð13Þ

where (Xk, Yk, Zk) is the coordinate of the kth reference
node, and Dk is the range from the target node to the
kth reference node.

4 The proposed threshold selection method
4.1 Low-frequency wavelet coefficient
Wavelet transform has the characteristics of multi-
resolution analysis, and the received signal is divided
into low-frequency part and high-frequency part using
the wavelet decomposition. In the next layer process of
wavelet decomposition, the low-frequency part is further
divided into low-frequency part and high-frequency part,
but the high-frequency part is no longer decomposed.

Fig. 1 Block diagram of the energy detection method
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Fig. 2 TOA estimation techniques based on received energy
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Figure 3 shows a three-level wavelet decomposition
tree. Multi-resolution analysis is used to decompose the
low-frequency part of the signal to improve the reso-
lution of the frequency. For the signal S, it is decom-
posed into high-frequency part D1 and low-frequency
part A1, and then the low-frequency part of A1 is further
decomposed into high-frequency part D2 and low-
frequency part A2. And so on, the approximation part
and detail part at any scales (resolutions) can be
decomposed.
The above process of wavelet decomposition can be

expressed as Eq. (14)

cjþ1 kð Þ ¼ P
n
h n−2kð Þcj nð Þ

djþ1 kð Þ ¼ P
n
g n−2kð Þcj nð Þ;

8<
: ð14Þ

where c0 is the received UWB signal, j ∈ {0, 1, 2,…} de-
notes the levels of decomposition, cj is the low-
frequency coefficient using the j-level wavelet decom-
position, and dj is the high-frequency coefficient using
the j-level wavelet decomposition. h(n) represents a low-
pass filter, and g(n) represents a high-pass filter, which
are determined by the type of the selected wavelet.
In order to analyze the time domain waveform and en-

ergy spectrum of UWB, different values of Eb/
N0 ={40 dB, 35 dB, 30 dB} are simulated, where Eb is the
energy in each bit and N0 is one-sided power spectral
density of additive white Gaussian noise. The parameters
of the UWB transmission system are set as: Tf = 50 ns,
Tc = 1 ns , ε = 0.5 ns, sampling frequency Fc = 50 GHz,
and transmission delay = 20 ns. The simulation results
are shown in Figs. 4, 5, and 6.
From the above simulations, the following conclusions

can be drawn:

(1)Either in time domain or in frequency domain, when
SNR decreases, the amplitude of the noise increases
obviously comparing with the amplitude of the
signal.

(2)The energy of signal is mainly distributed in the low
frequency band, while the energy of white Gauss

noise is evenly distributed over the entire frequency
band.

Because the wavelet decomposition is equivalent to
two channel filter banks with low-pass and high-pass
characteristics, after the wavelet decomposition, most
energy of the received UWB signal concentrates in the
coefficients of low-frequency bands, while the energy of
the white Gauss noise distributes in the coefficients of
different frequency bands. Therefore, in the energy de-
tection receiver of this paper, after the wavelet trans-
form, the high-frequency wavelet coefficients are
discarded, and only the low-frequency wavelet coeffi-
cient is regarded as the received energy to improve the
accuracy of ranging. In this way, the white Gauss noise
interference in the signal can be reduced effectively.

4.2 Kurtosis of the energy blocks of low-frequency
coefficients
In order to examine the characteristics of kurtosis of the
energy blocks of the received signal (Ks) [9] and the kur-
tosis of the energy blocks of the decomposed low-
frequency wavelet coefficients (Kc), the CM1 (residential
LOS) and CM2 (residential NLOS) channel models in

Fig. 3 Three-level wavelet decomposition

Fig. 4 Time domain waveform and energy spectrum
with Eb/N0=40 dB
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the IEEE802.15.4a standard are employed. Ks can be
expressed as Eq. (15),

Ks ¼ 1

Ns−1ð Þδ4
XNs

n¼1

Zs n½ �−Zs
� �4

−3; ð15Þ

where Zs[n] is the received signal energy blocks, Zs and
δ denote the mean and standard deviation of Zs[n] re-
spectively. The number of samples in each energy inte-
gration interval is represented as Ni = Tb × Fc, where Tb

is the integration period, and Fc is the sampling fre-
quency. The number of signal samples in each frame
is represented as Nf = Tf × Fc, where Tf is the frame
period. The number of energy blocks within a frame
is Ns ¼ b Nf

Ni
c ¼ Nb , where ⌊⌋ denotes the integer part.

Kc can be expressed as Eq. (16),

Kc ¼ 1

Nc−1ð Þδ4
XNc

n¼1

Zc n½ �Zc
� �4

−3; ð16Þ

where Zc[n] is the energy blocks of the decomposed
low-frequency coefficients, Z and δ denote the mean

and standard deviation of Zc[n] respectively. The num-
ber of the low-frequency coefficients in each integration
interval Nic is represented as Eq. (17)

Nic ¼ ⌊Tb � Fc � Nfc

Nf
⌋; ð17Þ

where Nfc is the number of the low-frequency coeffi-
cients in each frame. And then the number of the energy
blocks of low-frequency coefficients is Eq. (18)

Nc ¼ ⌊Nfc

Nic
⌋: ð18Þ

For each Eb/N0 value of {5 dB, 6 dB, ..., 25 dB}, 1000
channel realizations were generated with Fc = 50 GHz.
The second derivative Gaussian pulse was employed
with Tb = 0.2 ns, Tf = 50 ns, and Ns = 1. The “db6” wave-
let with two-layer decomposition was used. The simula-
tion of average Ks and Kc are as shown in Figs. 7 and 8.
Figures 7 and 8 illustrate that the characteristics of Ks

and Kc with respect to different values of Eb/N0 is almost

Fig. 5 Time domain waveform and energy spectrum with Eb/N0=35 dB
Fig. 6 Time domain waveform and energy spectrum with Eb/N0=30 dB
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the same for the two different channels. Furthermore,
Figs. 7 and 8 show that Ks and Kc increase as Eb/N0 in-
creases, but Kc changes more rapidly. Therefore, Kc can
better reflect the changes with different values of Eb/N0

and it is more suitable for threshold selection.

4.3 Relationship between Kc and threshold
To determine the optimal threshold ξbest based on Kc,
the relationship between the MAE, Kc, and the normal-
ized threshold ξnorm for different Kc was determined.
One thousand channel realizations with different values
of Eb/N0 were simulated. There are four steps to estab-
lish the relationship:

(1)Generate a large amount of receive signals for each
channel model under different Eb/N0 values of {5 dB,
6 dB, …, 25 dB}.

(2)Calculate the average MAE values with respect to
different normalized thresholds ξnorm of {0.1, 0.2, …,

1.0} for each Kc value.With each channel realization,
the thresholds are compared with Zc[n] to find the first
sample index crossing the normalized threshold, as
shown in Eq. (10). In the simulation, because of the
random noise signal, there are different MAE values
with respect to one specific normalized threshold and
one specific Eb/N0 value, so the average MAE is
calculated with respect to one specific normalized
threshold. Moreover, because Kc is a real value, Kc is
rounded to the nearest integer value.

(3)Select the normalized threshold with the lowest
MAE as the best threshold ξbest with respect to
specific Kc for each channel model.

(4)A polynomial with degree 3 is fitted to the best
threshold ξbest for each value of Kc by using the
method of least-squares where Kc is the x-coord-
inate and ξbest is the y-coordinate. To obtain the
coefficient estimates, the least-squares method
minimizes the summed square of residuals. The

Fig. 7 Ks and Kc in CM1

Fig. 8 Ks and Kc in CM2
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ith residual ri for the ith pair of (Kc, ξbest) is
defined as

ri ¼ yi−ŷi; ð19Þ
where yi is the best threshold and ŷi is the fitted thresh-
old value for the ith Kc, so the summed square of resid-
uals SK is given by

SK ¼
Xn

i¼1

r2i ¼
Xn

i¼1

yi−ŷið Þ2 ð20Þ

where n is the number of (Kc, ξbest). The fitting result
based on Kc are shown in Eq. (21)

CM1 : ξc1 ¼ −3:1079� 10−8Kc
3 þ 2:5191� 10−5Kc

2−7:0462� 10−3

�Kc þ 0:82585

CM2 : ξc1 ¼ −2:6988� 10−8Kc
3 þ 2:2681� 10−5Kc

2−6:5214� 10−3

�Kc þ 0:7816:

ð21Þ
where ξc1 and ξc1 are the optimal thresholds for CM1
and CM2.

5 Performance results and discussion
5.1 TOA estimation error
In order to compare with the method without wavelet
decomposition [9], the optimal thresholds ξs1 and ξs1 for
CM1 channel and CM2 channel based on Ks are gener-
ated as Eq. (22) using the similar method as shown in
[9].

CM1 : ξs1 ¼ −8:0514� 10−8Ks
3 þ 4:5232� 10−5Ks

2−8:7546� 10−3

�Ks þ 0:78051

CM2 : ξs1 ¼ −7:7291� 10−8Ks
3 þ 4:4374� 10−5Ks

2−8:7246� 10−3

�Ks þ 0:76794

ð22Þ
In this section, the MAE is examined for Kc-based and

Ks-based threshold selection algorithms in the CM1 and
CM2 channel models of IEEE 802.15.4a standards. As
before, 1000 channel realizations were simulated for
each case. The performance results are shown in Figs. 9
and 10.
Figures 9 and 10 present the following:

(1)In CM1 and CM2, the MAE of the Kc-based and Ks-
based threshold selection methods decrease as the
Eb/N0 increase. But when Eb/N0 is between 9 and
20 dB, the proposed method is better than that of
the Ks-based method proposed in [9]. It can be
found that in CM1 channel, when Eb/N0 is 14 dB,
the MAE of Kc-based method is about 5 ns better
than that of the Ks-based method. In CM2 channel,
when Eb/N0 is 15 dB, MAE of Kc-based method is

about 5.87 ns better than that of the Ks-based
method.

(2)When Eb/N0 is less than 8 dB, the MAE of the two
algorithms are very near. This is because now the
energy of the noise is very high, which will affect the
decomposed low-frequency coefficients seriously, so
the advantage of the proposed method is little
compared with the Ks-based method.

(3)When Eb/N0 is higher than 21 dB, the MAE of the
two methods is almost the same. This is because
now the energy of the noise is very low compared
with the signal energy, which will not affect the two
methods.

5.2 Computational complexity
In order to compare the computational complexity of
different methods, 100 iterations were performed for
each Eb/N0 value of {5 dB, 6 dB, ..., 25 dB}, and the total
running time of 100 × 25 = 2100 iterations is given in
Table 3. In the simulation, the amount of energy blocks
of Kc is 472 and for Ks is 375. At the same time, the

Fig. 9 MAE in CM1

Fig. 10 MAE in CM2
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signal decomposed using wavelet transform needs extra
computation, so the running time of the Kc method is a
little higher than that of the Ks method. For Each TOA
estimation process, the difference of running time is just
2 ms, so this is acceptable.

6 Conclusions
In the UWB ranging system, the energy detection method
based on non-coherent receiver is widely used. However,
because of the interference, such as multi-path fading,
thermal noise, inter-symbol interference, and reflection
interference, the precision of ranging is not very high. The
simulation results show that in the UWB signal decom-
posed by wavelet transform, most of the signal energy is
concentrated in the low-frequency band, while the energy
of noise is evenly distributed over the entire frequency
band. Therefore, this paper proposes a new threshold
selection method based on wavelet decomposition and
kurtosis analysis, that is, the UWB signal is decomposed
by wavelet transform, the threshold is obtained based on
the kurtosis of energy blocks of low-frequency wavelet
coefficient, and then the first energy block exceeding the
threshold is treated as the TOA of signal. The simulation
results show that the new method can obviously improve
the precision of TOA estimation.
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