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Abstract

A large quantity of failure data for subway vehicles was collected from long-term field investigations and technical
exchanged. These failure data has a guiding significance for preserving subway system. By preprocessing (screening,
refining, and classification) the original data and statistical analysis, we establish some selected model, then we use
A-D test to verify the degree of fitting in selected model so that we can determine the optimal failure distribution
model, and then the reliability characteristic quantities could be calculated by the optimal failure distribution model.
These reliability characteristic quantities can predict failure rate, failure number, etc. It can be used to assist proper
maintenance scheduling to reduce the occurrence of accidents and significant to important practical guiding.
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1 Introduction

Since the first subway line was put into operation in
October 1969, there are more than 20 cities owned their
subway systems in China, with a total operating mileage
over 2400 km. Chinese subway companies have accumu-
lated large amounts of failure data up to now, these data
truly reflect field operating conditions. However, there
are certain shortcomings in the data, much of it does
not comply with uniform standards or is derived from
complex data resources, and it may be missing import-
ant information [1, 2]. A large-scale subway system in
China requires the successful prevention of major acci-
dents and sudden incident; otherwise, catastrophic results
might occur. Therefore, how to analyze and deal with such
complex large-scale operation failure data, to ensure the
safety of urban rail transit has become a major research
topic in the field of subway reliability research.

Wang et al. presented the service life estimation
method based on the three-parameter Weibull max-
imum likelihood estimation, respecting to the compo-
nent wearing of high speed multiple units [3]. A new
product data management method was created in [4] to
process the component maintenance and historical
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failure data of electric multiple units, which resulted in a
30% increase in the reliability. Others performed the re-
liability analysis in [5] for the Bogie system of Sweden’s
railways based on data collected by a wireless sensor net-
work. The problem with this method was that the uncer-
tainty in the time domain was not considered. In [6],
they adopted the random process and reliability theory
to investigate the failure distribution rules and reliability
of rail vehicle components [6]. Yu et al. deduced the
safety domain curve of high-speed trains through
deducting the extreme sensitivity of system reliability
[7]. Some articles used the nonparametric method to esti-
mate the reliability function of the mechanism under ex-
treme impact [8, 9], and Jiang analyzed the application of
the proportional risk function in a repairable system [10].

The existing failure-data-based reliability analyses were
mainly focused on railway passenger and freight vehicles
and high-speed train. However, little analyses attention
has been paid to the subway system. In essence, the
subway is different from the railway in various aspects,
such as the departure intervals, operating cycle, line
conditions, the failure position, frequency, and mainten-
ance data.

Parameter estimation method of reliability can only be
used in known lifetime distribution. Unknown distribu-
tion usually uses probabilistic paper graph method and
similar WPP graphic estimation method to study the
distribution; these methods need to draw the curve of
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reliability and failure time. By further studying the shape
of the curve, the reliability model of the failure data is
determined. If the distribution model of a group failure
data is not known, survival analysis theory can assume
the group failure data conforms to all models, then each
distribution model is fitted and the best fitting distribu-
tion model is selected, Finally, the parameter estimation
and hypothesis testing are carried out. Survival analysis
method can effectively solve uncertain failure time inter-
val problems under the mechanism of censored data on
subway vehicles, in order to get more reasonable results
of reliability analysis. Therefore, we used survival ana-
lysis technology to perform the reliability analysis of the
subway vehicles for the purpose of accurately grasping
the working status of key subway systems, including
identifying failures, performing maintenance, and
securing the subway’s operation. The survival analysis
method has particular advantages in the processing
and analysis of censored data during the application
of non-parametric, parametric, and semi-parametric
survival analysis.

2 Fault distribution model and methods analysis
2.1 Survival analysis

Survival analysis is a technology of statistical analysis
about survival time. Based on data collected via experi-
ment or survey, it statistically analyzes the survival time
of living creatures, human, or other things with a sur-
vival cycle and represents the results in the form of a
survival function, probability density function, danger
scale function, and average life [11, 12].

2.1.1 Survival function
Survival function which is also called reliability function
is defined as

R(tj) = S(tj) = P(T > tj) = I—P(Tﬁtj)
= 1-F(t)) (1)

On the equation, R(%)) is reliability function and S(z)) is
survival function. The probability that the individual fail-
ure interval T is greater than #;, which has the following
properties R(0) = 1 and R(e) = 1. F(t;) is unreliability
function. It indicates the probability that product is unable
to complete the function under the specified time and
conditions. F(t) is the distribution function of T [13].

F(t,):P(Tst,):%,Ostsoo (2)

On the equation, N is the product sample and #n(t) are
the numbers of failure at samples time.
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2.1.2 Probability density function

Probability density function p(t) is the ratio of the
failure numbers D; and the total observation numbers N
that during the period ¢; _ ; to ¢,

plo) =f(6) = p(T =) = 1<jsn ©

2.1.3 Danger scale function

Danger scale function A(Z) represents the instantaneous
failure rate of the observing objects at the moment ¢
which is not failure at the moment ¢; _ ;. It is also called
damage function and the failure rate function. It is used
to measure whether an individual is prone to fail at
some time [14].

My) = P(T = 5IT>5) = p()/[S(, )] @
On the equation, there is the following relationship

s(e) =TT, ., 1-A(s) (5)

2.1.4 Average life

Average life means trouble-free working time of product.
For repairable products, average life is the mean operat-
ing time between failures [15].

u=E(t)= Z::ls(tj)(tj—tj—l) (6)

2.2 Model building and methods

Figure 1 shows a flowchart of reliability analysis via the
determination of failure distribution model using sur-
vival analysis theory.

2.2.1 Fault data collection and pretreatment

In terms of fault data collection and pretreatment, we
use statistics method, eliminate or merge the fault entry,
and eventually determine the effective subway vehicles
failure data.

2.2.2 Candidate distributions

A large number of articles were reviewed to determine the
candidate distributions, including the exponential distri-
bution, logarithmic normal distribution, two-parameter
Weibull distribution, and three-parameter Weibull distri-
bution [16].

2.2.3 The maximum likelihood estimation

The maximum likelihood estimation method was used
in this study for the parameter estimation of the optimal
distribution. The basic principle of this method is as fol-
lows: assuming the known population distribution and
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Fig. 1 Flowchart of determination of the failure distribution model

an unknown parameter 6, one value 6 is chosen from all
possible values, which can result in the maximal prob-

ability of the observed results. @ is then defined as the
maximum likelihood estimation value of 6, and the
parameter estimation method was named as maximum
likelihood estimation method [17].

X1, X5,..., X, are samples from the X, thus the joint
density of X3, X,,..., X,, is

[T f:6) (7)

X1, X2,..., %, is a sample value corresponding to the
sample X;, X5,..., X,,, the function is

L(6) = L(x1,%, -, %3 0) = [ [ f (xi0) 8)
L (0) is called the likelihood function of the sample. If

L(x1,%2, . %3 0) = maxgeoL(x1,%2, ;%45 6)  (9)

The 6(x1,%2, -+, %,) is called the maximum likelihood
estimation of 6.

Thus, the problem to determine the maximum likeli-
hood estimation is attributed to seek the maximum in
the differential calculus problem.

In many cases, f (x; 0) is differentiable on 6, 0 served
from the equation

d
L) =0

2.2.4 Degree of fitting
For the degree of fitting and hypothesis testing in the candi-
date model, Minitab software was used to perform the A-D
(Anderson-Darling) test to verify the effectiveness of the
models. The statistics from the A-D test can be used to
compare the fitting condition of several distributions,
thereby identifying the optimal distribution. In engineering
practice, the A-D test statistical variable A2 can be calcu-
lated from common discrete expressions (11). Specifically,
it is the weighted square distance between data points and
the fitting curve. The closer to the end of distribution the
point is, the bigger the weight becomes [18, 19]. Hence, a
small A2 represents a higher degree of fitting, the expres-
sion is:
A= -n-%z;(zi-l)[lnﬂ’“ + 1n“-F<xnff+l>>] (11)

On the equation, # is the sample size and F(xi) is the
empirical cumulative distribution function obeying to
the normal distribution.

Fla) = 9(2%)

First, the p values of the four candidate distributions
were compared. If p>0.05, it indicated that the corre-
sponding distribution was able to fit the failure data. The
distributions with good fitting results were preserved, and
then the A-D statistical variable was calculated. The

(12)
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distribution with a minimum A-D value was chosen as
the optimal distribution model.

3 Example analysis and results

3.1 Fault data statistics

The structure of subway vehicles includes the running
gear, traction system, brake system, control and
diagnostic system, and the auxiliary system. All of these
subsystems play a significant role in the vehicle’s
reliability and safe operation. There are frequent subway
failures and accidents due to the rapid development of
the urban subway transportation system. Therefore, we
investigated the reliability of the key subsystems in sub-
way vehicles in this study.

The original data of operational failures covered the
above five systems were screened and calculated statisti-
cally, including a total of 8000 entries from January 2009
to December 2013. Each failure was recorded with its
number, date of occurrence, vehicle number, failure de-
scription, and failure consequences. Figure 2 shows the
statistics of the annual failures about each subsystem,

vehicle door system, the illumination system, and other
incorporate into the auxiliary system. Figure 3 shows the
statistics of the data. By sorting the data based on the
number of failures, we found that most failures were
related to the auxiliary systems, followed by the traction
system, running gear, braking system, and control and
diagnostic systems.

Because most of the subway vehicles system life distribu-
tion data is censored data, we use the survival analysis in
the system time between failures to process censored data.
In the fault data statistics, censored data mainly includes
two categories. One kind is interval-censored data, if the
maintenance work is reliable and the failure occurs between
the overhaul and the last overhaul, so fault time is an inter-
val, uncertain value, and fault specific time unknown. One
kind is the right censored data, statistical period of the be-
ginning and the end will have censored data, and fault time
is greater than a certain value of tracked. We use common
failure distribution function on censored data for maximum
likelihood method of parameter estimation to calculate A-
D statistics to select fitting of better distribution function.

Traction system 13%

Auxiliary system 60%

Fig. 3 Statistics of the operational failure of subway key components

‘The running gear 12%

————Break system 9%

Control and diagnostic system 6%
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3.2 Result and discussion

Based on the screened data, the operating time between
failures was calculated and imported into Minitab [20, 21].
The “Reliability/Survival Statistics” tool was used to
perform the maximum likelihood estimation for four

Table 1 Fault distribution fit test table of the key subsystems

candidate distributions (the exponential distribution,
logarithmic normal distribution, two-parameter Weibull
distribution, and three-parameter Weibull distribution).
Figure 4 shows the fitting graph of the service life distribu-
tion for traction system. Table 1 presents the p value,

Subsystems Candidate distribution model P A-D Optimal distribution Parameter

Running gear Two-parameter Weibull 0.249 0.704 Two-parameter Weibull Shape 09124
Three-parameter Weibull 0.007 1.325 Scale 135450
Exponential 0.253 0.921
Logarithmic normal 0.097 0.876

Traction system Two-parameter Weibull 0.086 1.380 Two-parameter Weibull Shape 0.9940
Three-parameter Weibull <0005 5463 Scale 106495
Exponential 0.021 1.705
Logarithmic normal 0.052 1.700

Brake system Two-parameter Weibull 0014 1.120 Logarithmic normal Location 2.3693
Three-parameter Weibull 0.224 0.657 Scale 1.3003
Exponential <0.003 3376
Logarithmic normal 0.236 0.644

Control and diagnostic system Two-parameter Weibull 0.242 0672 Logarithmic normal Location 2.5573
Three-parameter Weibull 0.123 0.796 Scale 1.3581
Exponential 0.005 2277
Logarithmic normal 0.353 0.595

Auxiliary system Two-parameter Weibull 0.096 1.974 Logarithmic normal distribution Location 1.4915
Three-parameter Weibull <0.005 4.060 Scale 09349
Exponential 0.010 2.080
Logarithmic normal 0.080 1.016
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Table 2 The reliability characteristic functions of each subsystem
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Subsystem Failure density function

Cumulative distribution function

Running gear

Traction system

F(r) = 2% (1/13.5450) %70 exp[f(r/ 13.5450)09124]

F(O) =1 — expl[—(t/13.5450)1%4]
F(t) = 1 — exp[—(t/10.6495)%%°%]

£(t) = 2920 (1/10.6495) % exp{f(t/ 10.6495)0'9940]

T 10.6495

(Int-2.3693)°
1 2 x 1.3003% Int-2.3693
Brake system f(t) = W\/Z—m‘e ,6>0 F) = (D( 1.3003 )
0,t=0
(Int-=2.5573)*
) ) 1 2 x 1.3581° Int=2.5573
Control and diagnostic system f(t) = W\/z—me >0 F(t) = (D( e )
0,t=0
(Int—1.4915)*
. 1 2 x 0.9349° Int-1.4915
Auxiliary system f(t) = W\/z_me ,t>0 F(t) = (D( 0.9349 )
0,t=0

A-D statistical variable, screen for the optimal distribu-
tion, and parameter estimation obtained from the max-
imum likelihood estimation method.

The parameter value of the maximum likelihood
estimation that meets the distribution of the operating
time between failures in Table 1; every subsystem was
substituted into the reliability characteristic functions of
the optimal distribution, thereby allowing for the
derivation of the reliability characteristic functions of
each subsystem (failure density function, cumulative dis-
tribution function, reliability function, and failure rate
function). The mean time between failures was based on
the operating time between failures; it was calculated
and is shown in Tables 2 and 3. Similarly, the graph of
the reliability characteristic function of traction system
was plotted, as shown in Fig. 5.

Tables 2 and 3 shows that the mean operating time be-
tween failures for the running gear, traction system,
brake system, control and diagnostic system, and auxil-
iary systems was 14, 11, 25, 32, and 7 days. The mean
operating time between failures, namely, the failure rate,

Table 3 The reliability characteristic functions of each subsystem

increased in the following order: auxiliary systems, trac-
tion system, running gear, brake system, and control and
diagnostic systems. These results are consistent with the
number of failures collected from the field data.

The reliability characteristic function model can be
used to predict various reliability characteristics, such
as the reliability, unreliability, and the mean time
between failures. In addition, the subway system can
reduce the occurrence of incidents by mean of vehicle
maintenance schedules according to the characteristic
variables. For example, assuming that the reliability of
the running gear of a subway vehicle should be above
95%, R(t) = 0.95 was substituted into the reliability
characteristic function of the running gear in Tables 2
and 3. We can get the formula as follows:

1 oo
t=13.5450|In——| =05224 (13)
R(z)
F(t) = 1-exp {—(t/ 13.5450)0'0“4} =0.05 (14)

Subsystem Reliability function

Failure rate function Average life (days)

R(t) = expl—(t/13.5450)°°'%]
R(t) = expl—(1/10.6495)°9)

Running gear

Traction system

Brake system R(t) = 1-0(ni236%3)

1.3003

Control and diagnostic system R(t) = 1-O(Hn=273)

1.3581

R(t) = ]-@(M)

Auxiliary system 0.9349

At) = {5555 (1/13.5450) " 14

Mt) = 2240 (1/10.6495) % 1

(Int—2.3693)2

— e 2x1.30032
)\(T) __ 1.3003V2nt
T —(ntz23693
13003

25

(Int-2.5573)2
— e 2x1.35812

Ar) = % 32

3581

(Int—1.4915)2

%e 2x0.93492
At) = % 7

0.9349
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It can be concluded that maintenance should be
scheduled every other day in order to meet the reliability
requirements of the running gear. Similarly, the main-
tenance plan for the other subsystem can be formulated.

4 Conclusions

Based on the operational failure data of subway vehicles,
a reliability analysis method of subway subsystems was
developed based on the survival analysis theory. By fil-
tering, classification, and the preprocessing of the failure
data, the numbers of failure and mean operating time
between failures were obtained for each subsystem. The
results showed that the failure rate increased in the fol-
lowing order: auxiliary systems, traction system, running
gear, brake system, and control and diagnostic systems.
The optimal failure distribution model of every subsys-
tem was determined by the use of Minitab. We can for-
mulate the vehicle maintenance schedule to direct our
daily maintenance work, which could observably reduce
the failure of subsystem.

The reliability characteristic functions can be used to
obtain a scientific estimation of the reliability character-
istic variables. As the rapid construction and increasingly
complex of domestic subway system, reliability charac-
teristic function for future subway has guiding signifi-
cance to the construction and systemic maintenance. In

the future, reliability analysis of the subway will get
widespread attention and long-term development.

Due to the limitation of time and ability, this article
only focuses on the subject of each subsystem. We will
analyze the reliability of the specific components to find
fault specific reason and provide guidance for train
maintenance to reduce the incidence of failure.
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