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Abstract

formulas are partly validated in a real LTE network.

For cellular operators, estimating the end-user experience from network measurements is a challenging task. For
video-streaming service, several analytical models have been proposed to estimate user opinion from buffering
metrics. However, there remains the problem of estimating these buffering metrics from the limited set of
measurements available on a per-connection basis for encrypted video services. In this paper, a system testbed is
presented for automatically constructing a simple, albeit accurate, Quality-of-Experience (QoE) model for encrypted
video-streaming services in a wireless network. The testbed consists of a terminal agent, a network-level emulator, and
Probe software, which are used to compare end-user and network-level measurements. For illustration purposes, the
testbed is used to derive the formulas to compute video performance metrics from TCP/IP metrics for encrypted
YouTube traffic in a Wi-Fi network. The resulting formulas, which would be the core of a video-streaming QoE model,
are also applicable to cellular networks, as the test campaign fully covers typical mobile network conditions and the
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1 Introduction

In the next few years, it is expected that the traffic
in mobile broadband networks continues its exponential
growth. It is foreseen that, in the period between 2016
and 2022, mobile communications traffic will dominate
even more than it does today, experiencing an eightfold
raise in half a decade [1]. In parallel, user expectations are
increasing due to the availability of more sophisticated ter-
minals and the large variety of services offered. Because
of this constant evolution, mobile operators have been
forced to change the way of managing their networks,
from a network-centric approach focused on network
performance to a more modern user-centric approach
focused on user experience. Thus, the upcoming fifth gen-
eration on mobile technology (5G) should address these
challenges, when mobile traffic will be clearly dominated
by video services, accounting for 70% of the total traffic
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demand [1, 2], and Quality-of-Experience (QoE) manage-
ment will be of the utmost importance [3].

Amongst video services, YouTube is the predominant
service provider by far, representing 40—70% of total video
traffic (depending on the network considered) [1]. For
this reason, a deep understanding of the characteristics
of this application has become mandatory to monitor and
control the QoE perceived by the great amount of users
consuming videos [4—6]. Thus, it has become mandatory
to understand the relationship between service perfor-
mance indicators and end-user experience, known as a
QoE model. In [6], the YouTube stack at different layers
is characterized and modeled, going from the generated
network traffic to the QoE perceived by the users watch-
ing YouTube videos. In line with the work presented here,
the buffer level at the YouTube application layer is pre-
sented as the central parameter of the models introduced
there. A more classical approach is to perform surveys
with real observers under different network conditions
in controlled lab environments. The main considerations
to take into account when choosing the surveys’ path is
deeply described in [7]. The result of these surveys is a
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Mean Opinion Score (MOS) for each network condition.
As surveys are impractical for large-scale monitoring, sev-
eral works have proposed different ways of estimating the
QOE of video-streaming services.

QoE monitoring methods can be classified into application-
layer and network-layer approaches. Application-layer
monitoring leads to accurate QoE measurements as it
checks the service performance at the sides of the con-
nection, but requires installing specific software at the
terminal. Terminal agents used by operators in drive tests
fall into this class. Alternatively, network-layer monitor-
ing provides a highly scalable solution for network and
service providers, but it has the problem of identifying
relevant Transmission Control Protocol (TCP) and Inter-
net Protocol (IP) metrics on a per-connection basis from
which user QoE can be estimated [8—10]. In [8], a user-
centric approach for evaluating YouTube (and Facebook)
performance is presented, relying on the QoE assessed
by a group of mobile broadband users and network-layer
Quality-of-Service (QoS) measurements collected in a
field trial. It is demonstrated that the ratio between video
bitrate and downlink bandwidth has strong impact on user
experience, which is in line with the findings shown in
this work. However, Casas et al. [8] use laptops as termi-
nals. This difference possesses important implications in
software employed and traffic behavior, and, thus, con-
clusions could not be still valid when mobile terminals
are involved. Similarly, in [9], a buffer-level estimation
algorithm based on TCP flow is proposed to estimate
the QoE of a video user in terms of the expected num-
ber and duration of stalling events. In [10], the impact of
delivery via the Internet on the QoE of YouTube video-
streaming is quantified, comparing also different QoE
monitoring approaches and evaluating QoE estimation
accuracy.

Instead of estimating QoE from TCP/IP metrics, the
vast majority of QoE video-streaming models in the lit-
erature (e.g., [11-13]) rely on the estimation of interme-
diate Service Key Performance Indicators (S-KPIs) (a.k.a.
key quality indicators). For buffered video-streaming ser-
vices, such as YouTube, the main S-KPIs are the initial
buffering time (i.e., time elapsed from clicking play until
the first image appears on the screen) and the num-
ber and duration of re-buffering events (i.e., how many
times and for how long the video freezed)[14]. In the
past, these S-KPIs could be derived from the analysis of
higher-layer protocol messages (e.g., HyperText Transfer
Protocol, HTTP). However, content providers are becom-
ing increasingly aware of security and confidentiality risks
and hence the introduction of encryption in their services.
In 2016, Google reported that 97% of YouTube traffic
was encrypted via HTTP Secure (HTTPS) connections
with Transport Layer Security (TLS) and Secure Sockets
Layer (SSL) protocols. Such an encryption process makes
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it difficult to compute S-KPIs. One of the few options
left is analyzing TCP/IP traffic to isolate those fundamen-
tal parameters needed to estimate S-KPIs. TCP video-
streaming traffic analysis have already been done with
different purposes [15, 16]. In recent works [17], TCP/IP
metrics have proved to be very valuable to obtain YouTube
S-KPIs and, based on them, QoE perceived by the user.
Alternatively, terminal agents can be used to obtain accu-
rate S-KPI measurements. By accessing the corresponding
Application Programming Interface (API), these agents
can analyze decrypted protocol messages. Due to its suc-
cess, YouTube is included in the most popular terminal
agents [18-21]. Nevertheless, terminal agents are not a
scalable monitoring solution as installing any background
application needs authorization from the customer, which
is rarely granted. Thus, terminal agents are only used by
operators for validation purposes, as a trusted source to
assess S-KPI measurements obtained by other means.

Due to constant increase of encryption, it is becoming
more a more important to make a testing environment
available, in order to analyze YouTube traffic and try to
obtain meaningful information from it. In [22], a test-
ing framework for analyzing encrypted video streams is
presented. Its approach is based on a man-in-the-middle
proxy for storing the decrypted video bitstream, active
probing and traffic shaping. Furthermore, the influence of
the man-in-the-middle proxy on KPIs for video stream-
ing quality is also monitored (a constant offset is created).
In [23], a laboratory tested similar to the one presented in
this work is shown. A system called YouQ was developed
to monitor and analyze application-layer KPIs and cor-
responding traffic traces. Then, machine learning tech-
niques are applied to classify video instances and, based
on that classification, estimate QoE associated. Neverthe-
less, QoE classes proposed in [23] are just experimental
(i.e., non-standardized) and it has been left for future work
further testing using network traces from real mobile
networks.

In this paper, a system testbed is presented for automati-
cally constructing a simple, albeit accurate, QoE model for
encrypted video-streaming services in a wireless network.
The testbed allows to (a) emulate video user interaction
through a smartphone with a terminal agent, (b) change
link conditions as in the radio or core network by a
network-level emulator, (c) process all the traffic at dif-
ferent layers by network probe software [24] to obtain
significant TCP/IP metrics, and, more importantly, (d)
compare end-user and network-level measurements by
correlating the output of the Probe and the terminal agent.
For illustration purposes, the testbed is used to derive
the formulas to compute video performance metrics from
TCP/IP metrics for encrypted YouTube traffic in a Wi-Fi
network. The resulting formulas, which would be the core
of a video-streaming QoE model, are also applicable to
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cellular networks, as the test campaign fully covers typical
mobile network conditions. The models, based on aggre-
gated values, are partly validated with a terminal agent in a
real LTE network. It is expected that by using not averaged
values, or averaged over shorter periods, results would be
better in the majority of cases. Live mobile networks, how-
ever, usually make available only one throughput value per
video reproduction. Actually, current probes [24, 25] usu-
ally aggregate information obtaining only one value per
session. Moreover, it should be emphasized that models
developed in this work are not designed for a video server,
where an end to end connection is available, but for net-
work optimization based in QoE terms, where aggregated
information in the most commonly available informa-
tion. Operators demand working with not too complex
processes and/or information. Furthermore, models using
aggregated live information are able to be included into
mobile network optimization tools, where the trade-off
between accuracy and complexity is quite active, and,
thus, models should remain as simple as possible without
compromising accuracy.

The main contributions of this work are as follows: (a)
a system testbed to perform automatic QoS and QoE
measurements that can be used for any kind of mobile
communications service and radio access technology and
(b) three very accurate network-layer models to estimate
YouTube S-KPIs precisely from TCP/IP metrics, meet-
ing nowadays network operator demands. The rest of the
paper is organized as follows. Section 2 describes the sys-
tem testbed developed to automate the construction of
the S-KPI estimation models. Then, Section 3 presents
the video-streaming service performance model proposed
in this work, which is derived with the testbed. Section 4
presents the results of the model in a real LTE network.
Finally, Section 5 outlines the conclusions drawn from this
work.

2 System testbed

In this section, a system testbed to automate the
construction of QoE models in wireless networks is
presented. Automation includes generating video ses-
sions, shaping traffic to emulate different network
conditions and measuring network and service per-
formance. For clarity, the main components of the
testbed are first described. Then, it is explained how
traffic is generated, controlled, and captured in the
testbed.

2.1 Testbed elements

In Fig. 1, a diagram representing the structure of the
testbed is shown. The testbed comprises a terminal agent,
a radio access network (e.g., Wi-Fi access point), an IP-
level network emulator, and a network probe [24]. All
these elements are described below.
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2.1.1 Terminal agent

The mobile terminal is a Samsung Galaxy S5 G-900F
smartphone with Android 4.4.2 Operating System (OS).
The terminal is rooted to have full access to system
resources. Then, a terminal agent is installed to mimic
user interaction and collect end-user application-level
measurements (i.e., S-KPIs) for YouTube. With this soft-
ware, both video playing and measurement collection are
executed in the background, reducing user interaction to
the minimum. In this work, the terminal agent is V3D
[18]. V3D solution combines a mobile application and
a powerful server interacting together over-the-air. The
mobile app monitors the user activity on the device, such
as web browsing, using an application, watching a video,
or making a call, and collects all relevant data related to
the network performance and customer experience. After
the session has finished, the data is transferred to the
server for further computing, aggregation, and real-time
display. With regard to YouTube, V3D app has an embed-
ded video player that is connected to public YouTube APIL
Due to this, all the important events (e.g., the playback
end of a video) are not exactly detected but inherent in
the app since all the playback information is accessed
through the API. Thus, the output of the terminal agent is
a report with video S-KP1I statistics per session. These ser-
vice performance measurements are then used to validate
the formulas to estimate YouTube S-KPIs from TCP/IP
metrics.

2.1.2 Wireless network

The testbed includes a Wi-Fi Access Point (AP). A Wi-Fi
AP acts as a tunnel between the terminal and the traffic
control element. For this purpose, a standard Wi-Fi router
is used. The Wi-Fi router model is HG556a, with Wireless
802.11 b,g,;n and Ethernet 802.3u as interfaces, operating
at 2.4 GHz [26]. The wireless router is wired to the com-
puter performing the traffic control through an Ethernet
cable. This connection allows traffic from the terminal to
go through the network emulator.

2.1.3 Network emulator
The network emulator is the last element before the
Internet. It consists of a computer with Linux OS includ-
ing NetEm [27] software. NetEm is a network emulator
that controls delays, losses, duplication, and reordering
of IP packets [28]. It is included in the Linux kernel
since version 2.6, as part of the iproute2 package. It com-
prises a small kernel module for a queueing discipline
and a command-line utility (¢c) for configuration pur-
poses. The latter can be automated using shell scripts for
convenience.

In NetEm, packet delay and its variation (jitter) are
described by the mean value and standard deviation, and,
optionally, a correlation coefficient. By default, a uniform
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jitter distribution is used, which can be substituted by
other functions, such as Pareto, Pareto-normal, normal,
or custom distributions created from experimental or
simulation data [29].

The use of NetEm in order to create laboratory
testbeds has been already done [30-32]. In this work,
the network emulator is treated as a black box, used
to see the impact that different conditions may have
on network-layer indicators. Thus, the goal behind
NetEm use is not to perfectly emulate each net-
work feature, but generating network performance
conditions as similar as those encountered in live
networks.

The network emulator is installed on a personal com-
puter with an Intel 4-core ™ i3 CPU 540 at 3.07
GHz with 4 GB of RAM and Ubuntu 14.04 LTS 64-
bit OS. This computer has two network cards for con-
necting the AP to the Internet (one is wired to the
Wi-Fi AP via an Ethernet cable and the other one is
connected to a local area network with access to the
Internet).

2.1.4 Network probe

In the previous computer, tcpdump is used to capture
messages exchanged at different levels of the proto-
col stack. Tepdump is an open source command-line
tool for sniffing network traffic [33]. Its output is a
capture file in [libcap format file (.pcap extension),
supported by most packet analyzing tools. Then, a
Probe software provided by a mobile vendor is used to
derive relevant TCP/IP metrics, from which S-KPIs are
estimated.

2.2 Testbed processes
The main processes executed for collecting measurements
with the testbed are explained in the following paragraphs.

2.2.1 Traffic generation

Video-streaming traffic is generated by emulating user
interactions with a terminal agent installed in the smart-
phone. In this work, the terminal agent is V3D [18]. An
associated web tool allows the creation of automatic tests,
reducing human intervention to a minimum. Automation
starts by defining the URL of YouTube videos selected
to obtain S-KPI measurements together with the time
gap between videos, i.e., the minimum amount of time
between the end of one video and the beginning of the
next one. The time gap chosen must be long enough
to avoid that measurements of two consecutive videos
affect each other. It should be pointed out that time gap
is only included for model construction purposes, mak-
ing easier the process of extracting statistics and building
the models. Once the models are created, they can be
applied to any single video or playlist without any time gap
between videos. In addition, the time scheduled during
which the terminal agent is taking background measure-
ments must be also set up. Thus, the time period selected
must be aligned to the other testbed processes explained
hereafter.

2.3 Traffic control

NetEm is used to model different network conditions.
The term “network” includes access (i.e., radio, transmis-
sion and core) and transport (i.e., Internet) segments. The
command tc is used to configure NetEm parameters, with
the following syntax:

tc qdisc ... dev DEVICE add /change netem OPTIONS
OPTIONS := [LIMIT]| [DELAY] [LOSS] [RATE]
LIMIT := limit packets

DELAY:= delay TIME [JITTER [CORRELATION]] ’
LOSS := loss PERCENT

RATE := rate RATE

(1)
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where gdisc is the queue associated to interface DEVICE
through which packets are sent. Regarding OPTIONS
parameters, LIMIT limits the effect of other selected
options to the indicated number of next packets, DELAY
adds the chosen average delay in milliseconds to the
packets outgoing to chosen network interface, JITTER is
used to quantify delay variation (uniformly distributed by
default) also in milliseconds, CORRELATION is a per-
centage controlling how much the current delay value
depends on the previous one, LOSS is the packet loss
probability (as a percentage) and RATE limits the through-
put to the specified value in kilobytes per second (i.e.,
throttling) by a token bucket filter [28]. In this work, only
delay, packet loss, and throttling features in the down-
link (i.e., server-to-client link) are modified by the network
emulator for simplicity.

2.4 Traffic capturing

Traffic capturing is a key part of the whole process,
since TCP/IP metrics, required for the construction of
S-KPI models, are obtained from .pcap files. In this work,
tcpdump is used for this purpose. This tool works by
capturing and displaying a description of packets on a
network interface that match certain criteria. Criteria
comprise boolean search operators, host names, IP
addresses, network names, and protocols. In the testbed,
traffic is captured both at the terminal and the connection
to the Internet only for validation purposes. .pcap files
captured at the terminal are uploaded to the computer
where NetEm is installed and automatically deleted from
the terminal to avoid draining its storage capacity.

3 Video-streaming service performance model

In this section, an analytical model to estimate S-KPIs
for an encrypted video-streaming service from TCP/IP
metrics collected on a per-connection basis is proposed.
For clarity, the relevant S-KPIs for video-streaming ser-
vice are first defined. Then, the methodology used to
identify the main TCP/IP metrics affecting video perfor-
mance is described. Finally, the formulas relating S-KPIs
and relevant metrics are presented for YouTube traffic.

3.1 S-KPI definition

Video-streaming experience is mainly affected by two
issues: delay before the video starts and image freezes due
to buffer underruns at the client (known as re-buffering or
stalling events). As in [14], three S-KPIs are selected here
to cover these issues: Initial Buffering Time, Re-buffering
Ratio, and Re-buffering Frequency.

e [nitial Buffering Time
From the user point of view, it is defined as the time
elapsed from the moment the user clicks the play
button until the first video image appears on the
screen (in seconds).
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e Re-buffering Ratio
It is defined as the total re-buffering time (i.e., the
total time the video is frozen during its reproduction)
divided by the time since the video starts until the
video ends, computed as

Re-buffering Time [s]

%] .
Re-buffering Time [s]+Video Duration [s] %]

)

Re-buffering Ratio=

® Re-buffering Frequency
It is the number of re-buffering events per minute of
played video (in events/min), computed as

# Re-buffering Events

Re-buffering Frequency = [1/min].

®3)

Reproduction Time [min]

3.2 Experimental methodology
A test campaign is carried out to derive a simple and
robust model for YouTube S-KPIs in wireless networks,
and, more specifically, to identify which metrics show a
higher impact on video performance. It should be noted
that test campaigns are configured and launched from
a web portal to the specific terminal where the termi-
nal agent app is installed. In fact, both video playing
and measurement collection are executed in the back-
ground, reducing user interaction to the minimum. Thus,
all measurements are collected with a static terminal agent
downloading video sequences through a Wi-Fi radio link.
The selected sequences were the four most visited
videos of YouTube history until 2015 [34-37]. All videos
are tested with the same fixed resolution (640 x 360 pixels),
as the terminal agent software does not support Dynamic
Adaptive Streaming over HTTP (DASH) [38, 39]. How-
ever, since resolution is fixed at an intermediate value (not
very low or very high), a wide range of S-KPI perfor-
mance results can be found when network conditions are
changed. Other video features as duration and bitrate have
been also summarized for each video tested in Table 1.
To check the impact of network conditions on S-KPIs,
NetEm parameters are configured in the following ranges,

Table 1 YouTube videos tested

Name Resolution  Duration [s] VBR [kbps]
PSY - GANGNAM 253 7573
STYLE M/V [34]

Taylor Swift -

Blank Space [35] 640 x 360 573 4175
Justin Bieber -

Baby ft. Ludacris [36] 225 653.2

Katy Perry -

Dark Horse (Official) ft. Juicy J. [37] 226 7233
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according to values experienced by users in a live LTE
downlink:

e Packet loss ratio [%]: 0, 0.75, 1.5, and 3.

e Packet delay [ms]: 0, 50, 100, 200, and 400.

e Maximum throughput limit [kbps]: 250, 500, 1000,
2000, and 4000.

All the combinations of these values are considered in
the sensitivity analysis. Each combination is applied for 40
min, during which between six and nine videos are down-
loaded, depending on network conditions. As a result,
more than 700 video measurement samples are gener-
ated, each correspond to a video sequence and a noise
configuration.

The previous NetEm parameter sweep is used to detect
TCP/IP metrics with a higher impact on the above
described video S-KPIs. For this purpose, .pcap files
obtained with tcpdump are processed off-line by the Probe
software. A set of candidate predictors must be selected
in order to find which one(s) of them are relevant for
the video S-KPI model. Two main requirements for the
selection of candidates can be stated as follows: (a) fea-
sibility, i.e., any candidate predictor must be able to be
measured by the Probe and testbed platform, and (b)
significance, i.e., the set of predictors must reflect any
(or the majority of) possible effects in the network and
should have a significant impact on the selected video
S-KPI. Three TCP/IP metrics are selected as candidate
predictors, namely average downlink throughput (THRU),
overall downlink packet loss ratio (PLR), and average
downlink round trip time (RTT), all of them measured
at the IP level. These three predictors provide mean-
ingful information about the available bandwidth [40]
and, furthermore, are closely related to network indica-
tors. Although TCP/IP protocols possess other parame-
ters providing additional information, the three predictors
selected have been already validated as a reliable source of
information [41, 42].

Once S-KPI models are built, a second campaign is
launched in order to assess the robustness of the models in
a new set of network situations. In this second campaign,
there is no throughput limitation and only packet loss
and packet delay were modified using NetEm. Moreover,
the packet loss and delay ranges are very wide, covering
all performance cases in a real mobile network. These
ranges are:

e Packet loss [%]: 0-19 (1% step).
e Packet delay [ms]: 0-900 (100 ms step).

As in the previous campaign, every possible combina-
tion of packet loss and packet delay is considered (e.g., 2%
and 400 ms).
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3.3 Identification of relevant variables

A preliminary sensitivity analysis is carried out to come
up with a model including only significant predictors.
NetEm parameters are swept and THRU, PLR, and RTT
metrics are collected from the Probe. Figure 2a shows
how THRU varies with the PLR, both measured by the
Probe, when the packet delay parameter in NetEm is
fixed at 100 ms. Likewise, Fig. 2b shows the THRU and
RTT, both measured by the Probe, when the packet loss
ratio parameter in NetEm is fixed to 1.5%. In both subfig-
ures, it is observed that, when either PLR or RTT move
around low values, the limiting factor is the bandwidth
throttling feature of NetEm that sets an upper bound
to THRU. That maximum value is not always reached
since it is possible that the throughput requested by a
video user is below that bound. In contrast, as PLR and
RTT increase, these tend to limit the experienced user
throughput. Trends in Fig. 2a, b also support the idea that
the three TCP/IP metrics (i.e., THRU, PLR and RTT) are
highly correlated, and, therefore, using all of them would
increase model complexity without increasing estimation
accuracy. To confirm this statement, a thorough multi-
variate regression analysis was performed and several
estimation models combining these three metrics were
tested, being the most accurate, a linear model including,
from the three candidates, only THRU metrics. From
these results, it can be concluded that THRU provides
enough information about TCP/IP performance from
those selected from the Probe, as any change in the
other two TCP/IP metrics (PLR and RTT) is reflected
immediately in THRU measurements reported by
the Probe.

At this point, it could be stated that a S-KPI estima-
tion model can be constructed from the representative
THRU network indicator. Note, however, that THRU has
been selected from parameters only reflecting network
performance and none parameter including any video
feature has been studied. It is expected that video require-
ments (bandwidth, typically) also influences on S-KPIs
additionally to network conditions (i.e., different videos
would result in different S-KPI values for the same THRU
value). Thus, a second predictor variable is required to
be included in a complete S-KPI model, describing the
bandwidth requirements of the specific video downloaded
by the user. As previously stated, all YouTube videos
are tested with the same fixed resolution (640 x 360).
Nonetheless, each of the four videos has its own band-
width requirements, depending on the coding scheme and
video content. After checking all the information reported
by the Probe and the terminal agent, the average video
bitrate (VBR) (reported by the terminal agent) arises as
the best choice since it is a key indicator directly related to
video resolution and, therefore, quality experienced by the
video consumer. In the four selected videos, VBR ranges
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from ~ 400 to ~ 800 kbps. Note that, in spite of the name,
VBR is the sum of video and audio data rate.

3.4 S-KPl estimation models

In this section, three formulas are derived to estimate the
most relevant S-KPIs for YouTube from THRU measure-
ments obtained by the Probe and VBR video bandwidth.
Once predictors are known, a model structure is selected.
Taking into account the trade-off between complexity and
accuracy, always inherent in network optimization tools
for which models proposed in this work are designed, a
linear regression model structure with a single predic-
tor variable is chosen. Not shown in the text, it has been
confirmed that more complex non-linear models (e.g.,
quadratic, piecewise, ...), does not supply additional accu-
racy. Thus, a composite predictor for the lineal model is
defined as the ratio of the average IP-level throughput

(THRU) and average video bitrate (VBR), VBR/THRU
(i.e., demanded vs experienced bandwidth). This predic-
tor was already presented in [8], where it is demonstrated
that QoE highly depends on downlink-encoding bottle-
necks. The resulting linear models only have two con-
stants (i.e., intercept and slope) and are therefore easy to
calibrate. In spite of their simplicity, it is shown that the
models provide accurate estimates of S-KPIs. Likewise,
the proposed models, constructed with 700 measurement
samples, show good results when applied to other sets of
samples (i.e., second campaign previously described). In
fact, models provide very accurate results for the three
video S-KPI (R?* > 0.65 in every case). The robustness of
the models is also assessed since performance is already
good when no calibration is involved and there is not
great change when calibration (i.e., constants of the linear
models are recalculated) appears.
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It should be pointed out that VBR is known in the
testbed as it is provided by the terminal agent. However,
this is not the case in the real network due to YouTube
traffic encryption, so VBR would have to be estimated by
other means, such as (a) most common VBR values from
non-encrypted videos, (b) VBR estimation from probe live
measurements calculated as video size divided by video
duration, or (c¢) VBR estimation from probe measure-
ments based on YouTube traffic ON-OFF behavior [4].

3.4.1 Initial Buffering Time

From a regression analysis, it is deduced that the Initial
Buffering Time of a connection c (i.e., the time the user
must wait until the video starts) can be estimated by the
formula

— VBR
Initial Buffering Time [¢] = 591 ————
¢

(4)

Figure 3 shows a scatter plot to check the correlation
between the initial buffering time measured by the termi-
nal agent and that estimated with TCP/IP metrics from
the Probe using (4). Each point corresponds to one video
reproduction. It is observed that estimation accuracy is
reasonably good, with all the samples around the unit line
(representing a perfect estimation). Those samples more
distant from the unit line can be explained by the fact
that all the estimation models are based on average val-
ues. In this case, samples above the unit line (i.e., estimate
larger than measurement) are related to videos where the
download throughput at the beginning is evidently higher
than the average throughput through the whole download,
causing that the initial buffering time is less than expected
(i.e., overestimated). On the other hand, samples below
the unit line correspond to the opposite situation, where
download throughput at the beginning is much lower than
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on average. Nonetheless, in general, results are promis-
ing, since the regression equation is reasonably close to
the identity (i.e., y = 0.8309x + 1.6967), the determination
coefficient is large (i.e, R> = 0.81), and the goth per-
centile error is just 3.15 s. Note that a great range of values
is covered in the figure (from 0 to 50 s), as a result of
the different packet loss, delay, and bandwidth throttling
parameters in NetEm.

3.4.2 Re-buffering Ratio

A regression analysis shows that the Re-buffering Ratio of
a connection ¢, defined as the percentage of time the video
is frozen, can be estimated as

THRU [c]

Re—buff?rag Ratio [¢] = max | 0, —91.5 -
VBR[c]

+ 96.67) (%] .

(5)

Figure 4 compares the re-buffering ratio measured by
the terminal agent and that estimated with throughput
measurements from the Probe using (5). In the figure, it
is observed that estimation in this case is very accurate
for most of the samples. The determination coefficient is
close to 1 (R? = 0.98), and the 80t percentile error is very
low (2.15%) compared to the whole percentage range.

For completeness, a detailed analysis is carried out to
explain those outliers where the terminal agent measures
a non-negligible re-buffering ratio (up to 40%), but the
model estimates that no re-buffering should occur. In all
these cases, the average throughput is much greater than
the video bitrate and hence the absence of re-buffering
events estimated by the model. However, at some point
of time, an isolated packet loss may eventually cause
a temporary decrease in THRU, or some larger video
frames (e.g., intra-frame coded frames) may cause a sud-
den increase in the instantaneous VBR, draining out the
buffer and staying without anything to reproduce for a
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£ 30
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s 20 - R2=0.8140
=
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10 | .
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Initial Buffering Time [s]
Fig. 3 Comparison of initial buffering time measured by the terminal agent and estimated by the model
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Fig. 4 Comparison of re-buffering ratio measured by the terminal agent and estimated by the model

significant period of time. Note that the small-time granu-
larity required in measurements to reflect these situations
is lost when average values for the whole connection are
considered, although simplicity in model construction is
gained, which is highly appreciated by network operators.
Models’ integration in network optimization tools and the
use of live data is also easier with long-time (e.g., hourly)
averages.

3.4.3 Re-buffering Frequency

A regression analysis shows that the Re-buffering Fre-
quency of a connection ¢, defined as the number of video
freezes per minute, can be estimated as

THRU [c]

Re—bufferi/n\gFrequency [c] =max <0,77.75 VR B

+8.37> [1/min].
(6)

Figure 5 compares the re-buffering frequency measured
with the terminal agent and that estimated from through-
put metrics in the Probe with (6). Once again, estimates
are very accurate, with the vast majority of samples around
the identity line. Specifically, R = 0.95 and the 80"
percentile error is 0.365 [1/min].

As in previous S-KPlIs, there are some samples located
on the horizontal axis, i.e., videos for which the model
predicts zero freezes, but the terminal agent measures
several freezes. The explanation is exactly the same as in
the previous case, directly related to sudden VBR peaks or
a temporary decrease in THRU. Moreover, there are a few
samples well above the unit line. A closer analysis shows
that, in all these cases, the average throughput is lower
than the video bitrate, and because of that, the estimated
number of re-buffering events per minute is large. The
mismatch between estimates and measurements from the
terminal agent can be due to the buffer strategy, which is
specific of each player. In those situations where the buffer
content is fluctuating around the level needed for the

player to start video reproduction again, the player may
decide to delay the reproduction until the buffer is re-filled
again. In these situations, the TCP/IP model might esti-
mate more than one re-buffering event when actually only
one longer re-buffering event has happened. Since these
cases are represented by a few outliers, the robustness and
accuracy of the model proposed are not compromised.

The application of the previous three S-KPI models (i.e.,
(4)-(6)) in a second test campaign, described in Section 3.4
is assessed. Models show good results in this new set
of network conditions. More specifically, initial buffering
time reaches a R = 0.635 (0.743 if model constants are
recalibrated), re-buffering ratio model shows a very good
behavior with R2 = 0.98 (and no need of constant cali-
brations), and, finally, re-buffering frequency shows R? =
0.653 (0.808 if constants are recalibrated). These values
demonstrate model robustness, since S-KPI models can
be easily adapted, or they are even still valid, for two very
different network scenarios.

4 Model assessment in a real network

In this section, the above described service performance
models are tested in a live LTE network. The trial setup is
explained first and results are presented later.

4.1 Trial setup

In the trial, a smartphone with a terminal agent is located
in a fixed position within a cell of the LTE system. Due
to operator constraints, a different terminal agent is used
(Nemo [21]). As in the V3D case, Nemo is an application
provisioned and installed over-the-air on commercial
smartphones, and it calculates KPIs for professional
customer experience monitoring of wireless network per-
formance and services from the end-user point of view.
With Nemo, operators can easily and discreetly collect
QoE data for mobile customer experience management
directly from their customers while they are using their
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Fig. 5 Comparison of re-buffering frequency measured by the terminal agent and estimated by the model

smartphones. The server side of the solution aggregates
KPIs transferred via HTTP from one or a million smart-
phones simultaneously. Note that the definition of S-KPIs
may differ between terminal agents, as not all of them
consider the same components (e.g., the decoding delay,
the presentation delay, ...). Likewise, the live network
may add new elements and processes that might have
an impact on the model. Thus, even if the methodology
to construct the model is still the same (i.e., regression
analysis), the model has to be calibrated, resulting in
different constants in the formulas. Unlike lab tests, no
network emulator is needed in the field trial, since data
transmission is carried out over the real network. As
the terminal is static, throughput fluctuations are only
due to changes in interference and cell load conditions
(mainly in the downlink). In this campaign, the same
video [43] is tested continuously during three consecu-
tive days (from 11.30 AM of day 1 until 4 PM of day 3).
Thus, 365 video measurement samples (one per video
reproduction) are available for comparison. Due to a low
network load and a good terminal position, link perfor-
mance was extremely good throughout the tests, and no
re-buffering events were observed in any of the YouTube
video playbacks. Thus, the analysis is hereafter restricted
to the initial buffering time. Nonetheless, it is worth
noting that the models proposed for re-buffering S-KPIs
(i.e., re-buffering ratio and re-buffering frequency) were
capable of estimating the proper value (i.e., 0) in every
tested case.

4.2 Trial results

The experimental model for the initial buffering time
resulting from the regression analysis in the live net-
work is

— VBR
Initial Buffering Time [c] = 5.91- WU[C[]C] [s]. (7)

When comparing it with the model obtained in the lab,
shown in (4), it is observed that the slope is exactly the
same (i.e., 5.91), and the only difference is the intercept
point, which is now 0 (instead of 1.43), due to the fact that
Nemo does not follow the same measurement strategy as
V3D, i.e., video S-KPI definition is not the same for those
two terminal agents. That minor change is a clear indica-
tion of the robustness of the model. Figure 6 compares the
initial buffering time measured by the terminal agent and
that estimated with the model. Results are promising, with
all the samples very close to the identity line. Likewise,
the regression equation is reasonably close to the identity,
the determination coefficient is large, and the goth per-
centile error is 0.255 s. All these results confirm the great
accuracy and robustness of the proposed model.

5 Conclusions

In this paper, a methodology for deriving models to esti-
mate key service performance indicators from TCP/IP
metrics for video-streaming in a wireless network has
been presented. In the proposed testbed, a terminal agent
(V3D) is used to automate user interaction with the video
service provider (YouTube). In parallel, a network emula-
tor (NetEm) is used to modify network conditions in terms
of packet delay, packet loss ratio and maximum through-
put in the downlink. At the same time, all the traffic gen-
erated by the terminal agent is captured with a network
traffic analyzer (tcpdump) and processed by Probe soft-
ware to obtain TCP/IP metrics. Then, the models relat-
ing TCP/IP metrics with service performance indicators
are obtained by simple regression analysis. The models
proposed have all the features desired by network oper-
ators: simplicity, robustness, usability, and accuracy. The
variable defined as VBR/THRU (i.e., demanded vs expe-
rienced bandwidth), was already presented in [8] were its
dependency with QoE was proved and has been endorse
in this work. Results in the lab with a Wi-Fi network have
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Fig. 6 Comparison of initial buffering time measured and estimated by the model in a real network

shown that service performance estimates obtained with
the models are very close to measurements obtained with
the terminal agent, reaching a determination coefficient
of 0.98 in some cases. The methodology has been partly
validated in a real network, where it has been checked
that the models obtained in the lab are still valid for a
live network with minor changes. The proposed method-
ology could be applied to any radio access technology and
service, provided that models are calibrated with mea-
surements from the live network. Based on the field trial
results, it is also expected that the formulas presented
here could be applied to other network operators with
few modifications. It is left for future work further testing
models in real networks to assess the S-KPI models under
any circumstances, including the derivation of the for-
mulas for adaptive video-streaming services (e.g., DASH),
already supported by many content providers. Further-
more, next tests are intended to use different videos and
terminals in order to widen the validity range of the
models proposed.
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