
RESEARCH Open Access

Data classification algorithm for data-
intensive computing environments
Tiedong Chen1, Shifeng Liu1, Daqing Gong1,2* and Honghu Gao1

Abstract

Data-intensive computing has received substantial attention since the arrival of the big data era. Research on
data mining in data-intensive computing environments is still in the initial stage. In this paper, a decision tree
classification algorithm called MR-DIDC is proposed that is based on the programming framework of MapReduce
and the SPRINT algorithm. MR-DIDC inherits the advantages of MapReduce, which make the algorithm more
suitable for data-intensive computing applications. The performance of the algorithm is evaluated based on an
example. The results of experiments showed that MR-DIDC can shorten the operation time and improve the
accuracy in a big data environment.

Keywords: Data-intensive, Data mining, MR-DIDC, MapReduce

1 Introduction
Microblog, personal blog, and photo and video sharing
based on Web2.0 have produced large amounts of new
data on the Internet and wireless network; among which
data stored in semi-structured XML documents, HTML
documents, and unstructured photos, audio and video
are becoming increasingly abundant. There are massive
amounts of data in the fields of web search, commercial
sales, biomedicine, natural observation, and scientific
computing [1]. Although the data types are diverse, they
have common characteristics including massive scale,
rapid changes, distributed storage, heterogeneity, and
semi-structured or non-structured features. Outlier-
mining algorithms based on data flow cannot satisfy the
needs [2]; thus, data-intensive computing has emerged
to satisfy the needs of obtaining, managing, analyzing,
and understanding massive and rapidly changing data
effectively [3].
In a data-intensive computing environment, massive

amounts of data must be filtered, analyzed, and stored.
Algorithm efficiency is not the only aim; distribution,
effectiveness, and availability in a heterogeneous data
environment are also considered. Massive data sets that
change rapidly require high data storage efficiency

[4–10]. In addition to the algorithm efficiency, we con-
sider the effectiveness and the feasibility of the algorithm
in distributed and heterogeneous data environments
[11–15]. The network transmission speed restricts the
free transfer between different computers. The bottle-
neck of data management and task analysis lies not only
in computational capacity but also in data availability,
namely, whether the network transfer speed can match
the speed of system collection, processing, and analysis
[16]. Obtaining the needed information is the current
focus of data-intensive computing.
Clustering is one of the most important technologies

in data mining. It aims at associating physical or abstract
subjects with similar subjects. Jiang et al. proposed the
use of the k-means clustering algorithm with
MapReduce and realized the transformation of the k-
means [17] algorithm by MapReduce [18]. Hong et al.
presented the DRICA (Dynamic Rough Increment
Clustering Algorithm) [19] as an approach for solving
the data updating problem; they ensured the stability of
the algorithm and overcame the inefficiency of imple-
menting the algorithm on all data. HDCH (High Dimen-
sional Clustering on Hadoop), which was designed for
clustering massive audio data by Liao et al. [20], uses a
large cutting granularity in every dimension, thereby
implementing clustering efficiently.
Most common classification algorithms are based on

prior knowledge and forecast unknown data by extracting

* Correspondence: gongtuipigua@163.com
1School of Economics and Management, Beijing Jiaotong University, No.3
Shangyuancun, Haidian District, Beijing 100044, People’s Republic of China
2School of Economics and Management, Tsinghua University, Beijing, China

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Chen et al. EURASIP Journal on Wireless Communications and Networking
 (2017) 2017:219
DOI 10.1186/s13638-017-1002-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-017-1002-4&domain=pdf
http://orcid.org/0000-0001-9421-6379
mailto:gongtuipigua@163.com
http://creativecommons.org/licenses/by/4.0/

a data model [21]. Li et al. proposed the analysis of classi-
fication research based on distributed data warehousing
[22], which is only available in single machines on GAC-
RDB. Because the Internet is becoming increasingly com-
plicated, it is difficult to perform mining network classifi-
cation accurately. Li et al. proposed an active collaborative
method that combined feature selection and a link filter-
ing method [23]. To solve the problem of being unable to
process machine-learning data in memory, Liu et al. pre-
sented the LS-SVM classification algorithm coordinate
descent I2 [24], which involves the optimization problem
of improving the objective function mode to transform a
multi-objective problem into a single objective problem.
Frequent item set mining is the most basic and im-

portant procedure of association rule mining, sequence
pattern mining, relevance mining, and multi-layer min-
ing [25, 26]. The Apriori mining algorithm, which is
based on cloud computing, implements dual binary en-
coding on the transaction set and the item set based on
the MapReduce model. Because the algorithm requires
only Boolean AND and OR operations, its efficiency is
high [27]. Li et al. proposed the CMFS algorithm [28]
based on closed-item-set mining algorithms [29], which
uses the constrained maximum-frequent-item-set deep
priority strategy and a pruning algorithm. Hong et al.
proposed the FIMDS [30] algorithm, which can mine
frequent item sets from distributed data. The algorithm
uses a frequent-mode tree structure to store data, which
facilitates the acquisition of the item-set frequency from
each partial mode tree (FP-tree) root.
Outlier mining is one of the main approaches used in

data mining. An outlier is a data object that is different
from other data objects because it is produced by a differ-
ent mechanism [31]. Since outlier mining was first pro-
posed, it has been researched continuously. Most outlier
mining algorithms in data-intensive computing involve
expanding and improving classic outlier mining algorithms.
Recently, many traditional outlier detection algorithm
based on data flow have been proposed; however, research
on applying outlier detection algorithms to data is still in
the primary stage. Due to high time complexity, liable re-
sponse speed has not been achieved, result errors are large,
and the accuracy is unsatisfactory [32]. Therefore, research
on outlier detection in data-intensive computing environ-
ments is of great importance. Pan [33] utilized the SPRINT
algorithm, which is based on the Hadoop platform, by
employing a parallel method of constructing a decision tree
and then solving the parallel problem in the Hadoop plat-
form. In this paper, systematic research on an outlier detec-
tion algorithm is carried out. It focuses on integrating and
improving an existing algorithm by proposing a coding
framework based on MapReduce and the decision-tree
classification method MR-DIDC of the SPRINT algorithm,
which takes advantage of the outstanding features of

MapReduce to make the approach more suitable for data-
intensive environments.

2 Basic algorithm analysis
Shafer et al. proposed the SPRINT decision tree algorithm,
which is based on SLIQ, in 1996 [34]. The SPRINT algo-
rithm combines the property list and category list. The
property list is used to store attribute values, a histogram
plot is used to record the category distributions of the parti-
tion before and after a specified node, and a hash table is
used instead of SLIQ to record the attribute sub-node in-
formation of the training tuple. The attribute list and histo-
gram plot data structures do not require storage or
memory, which eliminates the size limitation of the
memorization capability. The SPRINTalgorithm is not only
simple, accurate, and fast, it also improves the data struc-
ture, which makes mining problems easier to solve.
The SPRINT algorithm uses the property list and the

histogram to help calculate the best split point and split
property (shown in Table 1). Every tuple of the property
list consists of a data record index, a property value, and a
category ID. In the initialization of the SPRINT algorithm,
a property list is created for each property. The property
list of continuous attributes needs to be pre-sorted ac-
cording to its attribute values, which are shown in Fig. 1.
The property list maintained by the current node will

expand as the node is divided into sub-nodes in a sub-
property list. Every node maintains a histogram, tally
matrix, hash table, etc. The histogram is used to describe
the classification distribution information of the selected
continuous property division, as shown in Fig. 2. The
tally matrix is used to determine the classification quan-
tity and property value relationship in the property list
of the discrete attribute property chosen by the selected
node, as shown in Fig. 3. The histogram and the tally
matrix are used to support the calculation of the Gini
index. The hash table records the best split property and
the available sub-node information after splitting; then,
these are used to assist in splitting other property lists.
The calculation of the best property itemization point

and the split point of the property list are the core tasks
of the SPRINT algorithm. The SPRINT algorithm uses
the Gini index as the property measurement standard.

Table 1 SPRINT algorithm flow

Function Partition(DataSet S){S:training set}

Begin
If (all s∈S the same mark) then

Return;
Foreach a∈A Do
calculate column attribute a
split S into S1 and S2 using the best split attribute
Partition(S1);
Partition(S2);

End SPRINT

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 2 of 10

The Gini index performs better and is easier to calculate
than the information gain, and Gini index minimization
splitting will yield the minimal information gain. The
Gini index method is described as follows:
Suppose the training set contains n categories and m

records. The Gini index is defined by Eq. 1, in which Pi
is the frequency of typei.

Gini Tð Þ ¼ 1−
Xn

i¼1

Pi
2 ð1Þ

The training set T is split into T1 and T2, with m1 and m2

records, respectively. Then, the Gini index is defined by
Eq. 2.

Ginisplit Tð Þ ¼ m1

m
Gini T 1ð Þ þm2

m
Gini T2ð Þ ð2Þ

The split with the minimum Gini index is the best
split of set T. The inputs for calculating the Gini index
are the histogram and the counting matrix.
For a specific node, after determining the best splitting

property and its split node, the property list that corre-
sponds to this property can be directly divided among
the sub-nodes. Because the sequences of different prop-
erty lists differ, they cannot be divided directly. Instead,
a hash table (shown in Fig. 4) should be produced from
the node’s best split property and its split-point informa-
tion before dividing other property lists. The hash table

is used to record the sub-node to which the node be-
longs. The hash table is also used to split other property
lists. The hash table for node N0 is shown in Fig. 5.

3 Modified algorithm
3.1 Data structure that is used by the MR-DIDC algorithm
The property list has the same function as in the SPRINT
algorithm: it is used to record the distribution informa-
tion. The training data set is decomposed into independ-
ent property lists based on the properties during the
initialization period. Each property list consists of property
values, category values, and index values. The number of
property lists depends on the number of properties. Ini-
tially, the root node is used to maintain the whole prop-
erty list. Each property list that corresponds to a
continuous property is pre-ranked and the property lists
are split as the number of nodes increases. The split prop-
erty lists belong to the corresponding sub-nodes.
A histogram is used to describe the class distribution

and corresponds to the tree node in the decision tree in
the SPRINT algorithm; however, it is structured differ-
ently than the histogram in the MR-DIDC algorithm.
The histogram is used to calculate the best split property
and its split nodes that belong to the tree node. How-
ever, to utilize the MapReduce programming framework,
some changes have been made to the histogram struc-
ture. Data are split into several chunks and stored in the
clustering environment for data processing with

Fig. 2 Continuous property calculation and its histogram

Fig. 1 Example of attribution list

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 3 of 10

MapReduce. The histogram is used to record the property
value distribution that belongs to each data chunk scan
node. For a continuous property, every data chunk has
two corresponding histograms, namely, Cbelow and Cabove,
which depend on the scan location in the property list of
the current data chunk. Cbelow represents all the records
of the class distribution conditions for a ≤ R and Cabove

represents all the records of class distribution conditions
for a > R, in which parameter a is the continuous property
of the scan value and D represents the best split value.
However, every histogram record consists of a data chunk
index and all class records, as shown in part B in Fig. 6.
The piece histogram is a new kind of data structure intro-

duced by this algorithm to assist in the calculation of the split
property and split nodes. The form of the piece histogram is
similar to that of the histogram; however, the piece histogram
is used to record the total record number of data chunks in
the property list, which is shown in part A of Fig. 6.

3.2 MR-DIDC algorithm description
The core program of Build Classifier in Master Server
consists of launching, planning, and controlling the whole
decision tree model. A series of MapReduce tasks, which
are run on Slaves, are used to calculate the split property
and the splitting of the property list. The core processes
maintain a global decision tree. The global decision tree is

used to save the established part of the built part. The
Build Classifier program flow is shown in Table 2.
In the initial stage, the core program builds the root

nodes according to information from the pre-processed
property list. Then, the root nodes are added to the global
nodes queue and the Build Tree function is invoked to
create the sub-tree of the queue nodes. The program flow
of BuildTree is shown in Table 3.
Each non-leaf sub-node has only two branches, and only

binary splitting is performed in the decision tree model. In
the course of building the decision tree, Tcurr denotes the
tree nodes that are extracted from the global node queue
and processed sequentially. First, we need to check whether
Tcurr is a leaf node. If the training data tuple Tcurr is “pure”
(all three components belong to the same class) or the
number of training data tuples reaches the threshold value,
which is defined by the user, Tcurr is labeled a leaf node.
Under the first condition, each node is labeled according to
the class to which it belongs. Under the second condition,
the number of categories to which each node belongs is
used as a label. The third to tenth steps comprise the core
of the decision tree modeling algorithm, which will be
discussed in the next section. The core calculates the split
nodes and chooses the best split property. Tcurr is labeled
according to best split information and split property.
Training set is used to split the property list of Tcurr into
leftD and rightD, which are used to produce the sub-trees

Fig. 3 Discrete property calculation and its count matrix

Fig. 4 Hash table

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 4 of 10

Tleft and Tright. Then, Tleft and Tright are added into the
global node queue. Nodes in queue NQ are removed itera-
tively. When the queue is empty, the program ends and the
decision tree model is complete.

3.3 Calculation of the best split point
The algorithm for calculating the best split point is
similar to the SPRINT algorithm and involves scanning
the property list of the continuous property calculation
split point or the discrete property technology matrix.
This algorithm uses MapReduce technology to realize
the parallel processing of the best split point, thereby
improving the efficiency of the algorithm. Assume that
N Mapper tasks are used to process the scan statistics,
so that each Mapper task only processes 1/Nth of the
training data set. The information aggregation and
split-point calculation are performed through the Re-
ducer, which returns the best split information and the
split property.
The main advantage of the algorithm is that it needs

to calculate only the category distribution of each data

chunk. This algorithm executes a series of MapReduce
tasks to build the histogram and block histogram of the
current tree nodes. Then, it calculates the Gini index to
determine the best split points for every property. The
descriptions of the Mapper part and the Reducer part of
the FindBestSplit algorithm are shown in Tables 4 and 5,
respectively.
The pseudo code above describes the Mapper tasks

during the Map phase of FindBestSplit. Each Mapper
gathers the category distribution information of each
data chunk independently and outputs a key table, in
which the key is the property subscript index of the
property index and the values consist of the data
chunk series number and the category key value.
In the Reduce phase, the output, histogram, and

block histogram are collected. Then, the other group
of MapReduce tasks calculate the Gini index. In the
Map phase, the histogram and block histogram that
were obtained in the Reduce phase are used to calcu-
late the best split point of each available property. In
the Reduce phase, we need to collect the results of

Fig. 5 Property list split of node N0

Fig. 6 Piece histogram (A) and histogram (B)

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 5 of 10

Map phase to select the best split point and split
property.

4 Environment construction of the MapReduce
algorithm
The experiment is carried out on a Hadoop0.20.2 distrib-
uted platform, which is made up of nine PC machines, with
a 2.93-GHz CPU, 2-GB memory, 150-GB hard disk, and
the Ubuntu Linux operating system. Eclipse3.3.2 is a devel-
opment tool, in which one is the Name node server and
the other eight are data nodes. We show them in Table 6.
The installation and allocation of Master and Slave in

Hadoop are the same, and it is only necessary to
complete the installation and allocation in Master. Then,
the results are transferred to every corresponding folder
of Slave through SSH no-password public key authenti-
cation (in this paper, the decompressions are performed
in the administrator folder). The files of Hadoop alloca-
tion are stored in the folders of /hadoop/conf. The allo-
cation of core-site.xml, hdfs-site.xml, and mapred-
site.xml is necessary for version 0.2 and above. The mas-
ter file and slave files need to be allocated by writing to
the node machine the names of the Master and Slaves.
Eventually, hadoop-env.sh is allocated, by writing to the
environment variable JAVA_HOME. The value is the

root of node machine JDK. The allocation process of
Hadoop for Master nodes is as follows:
After finishing the file allocation process, the Hadoop

task of Master node allocation is complete. The Hadoop
nodes in Slaves do not need to be allocated independ-
ently. It is only necessary to copy the Hadoop files into
Master to obtain the customer indices of the Slave nodes
through SSH no-password public key verification and
complete the allocation process. The specific commands
are as follows:
~$scp -r /home/ administrator /hadoop-0.20.2 ubun-

tu@C1:/home/administrator/
The above command copies the allocated Hadoop lo-

cation to SlaveC1 using Master; the allocated Hadoop
locations are copied to other Slave machines similarly.
In particular, the allocated locations of Hadoop and JDK
in Master have a one-to-one correspondence with those
of Slave. However, they are not all the same. Therefore,
the JAVA_HOME value must be allocated based on the
corresponding location.

5 Case study
The UCI database is one of the main data sources for
data mining. The KDD Cup 1999 data set in the UCI
database is used in this experiment, which is made up of
4,000,000 records and 40 properties, among which 34
are continuous properties, 5 are discrete properties, and
1 is a class-labeled property (discrete property).
To analyze the performance of the MR-DIDC algo-

rithm, we evaluate the time efficiency, scalability, paral-
lelism, and accuracy. The experimental data are the
mean values of repeated experiments. The operation
time consists of the algorithm operation time, I/O com-
munication time, and data pre-processing time.
In experiment 1, the calculation times of SPRINT and

MR-DIDC are compared, to evaluate the time perform-
ance and test the scalability of the MR-DIDC algorithm.

Table 2 Build Classifier program flow

Require: NodeQueue NQ, TreeModel TM, Training record

(x,y) ∈D, Attribute set Att
1. Troot = new Node
2. Initiate(Troot, D,Att)
3. TM = Troot
4. NQ.push_back(Troot)
5. BuildTree(NQ)

Table 3 Program flow of BuildTree

Require: NodeQueue NQ, TreeModel TM, Training record

(x,y) ∈D
1. For each Tcurr∈NQ do
2. If JudgeLeaf(Tcurr) is false then
3. bestSplit=FindBestSplit(Tcurr)
4. Tcurr→splitAtt=bestSplit→splitAtt
5. If bestSplit→splitAtt is category then
6. Tcurr→leftAttSet=bestSplit→leftAttSet
7. Tcurr→rightAttSet=bestSplit→rightAttSet
8. Else
9. Tcurr→splitValue=bestSplit→splitValue
10. parationTrainingSet(Tcurr→D, leftD, rightD)
11. remove(Tcurr→splitAtt)
12. Create new nodes Tleft, Tright
13. Initiate(Tleft, leftD,Att)
14. Initiate(Tright, rightD,Att)
15. Tcurr→left=Tleft
16. Tcurr→right=Tright
17. NQ.push_back(Tleft)
18. NQ.push_back(Tright)
19. Else
20. Tcurr→isLeaf = true
21. Tcurr→label =y //y is the most common label

Table 4 Mapper task flow of FindBestSplit

Require: Current node Tcurr, Attribute set Att, Class set Y

1. For each A ∈ Att do
2. Class Count array countY for Y
3. Index=firstreCord(Tcurr→D)
4. For all (x,y)∈(Tcurr→D,Attribute list of A) do
5. county[findY(Y,y)]++
6. Output((findA(A)),(Index, countY))

Table 5 Reducer task flow of FindBestSplit

Require: Key k, Value Set V, Attribute set Att, Class set Y

1. For All k do
2. If Att[k] is continuous then
3. For all distinct values ∈V do
4. If sameBlock(value [i]) then
5. Output((k),(value [i], sumCount(value [i])))

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 6 of 10

The trends of the operation times of SPRINT and MR-
DIDC are compared by using the same training data set
and increasing the size of the training set. For every experi-
ment, the parameters remain the same. The operation
times are shown in Table 7.
As shown in Fig. 7, the operation efficiency of MR-DIDC

gradually becomes superior to that of SPRINTas the size of
the training data set increases. When there is only a small
amount of data, HDFS needs to split the training data and
store the distribution in the data nodes; therefore, the pre-
processing time of MR-DIDC is far higher than the oper-
ation time of the algorithm and results in the lower total
time efficiency of MR-DIDC compared to that of SPRINT.
However, after the data set reaches a certain size, the
parallelization makes building the decision tree of MR-
DIDC more efficient, which shortens the calculation time.
Moreover, at the same time, for a large data set, the operat-
ing time of the SPRINT algorithm increases rapidly. Al-
though the SPRINT algorithm has good scalability for big
data, there are still many restrictions, such as data structure
restrictions and restrictions on hash table and histogram
storage in memory. The MR-DIDC algorithm uses the

Table 6 Hadoop clustering environment

A. Edit conf/master, by replacing the master hostname (every host has
one independent name). The specific commands are as follows:

~$cd /home/ administrator /hadoop-0.20.2
~$gedit conf/master
Write the following in the edit window:
C0

B. Edit conf/slaves, by adding all hostnames of the slaves. The specific
commands are as follows:
~$cd /home/ administrator /hadoop-0.20.2
~$gedit conf/slaves
Write the following in the edit window:
C1
C2
C3
C4
C5
C6
C7
C8
Save and close the edit window.

C. Editconf/hadoop-env.sh, by setting variable JAVA_HOME to the JDK
installation index. The specific commands are as follows:

~$cd /home/ administrator /hadoop-0.20.2
~$gedit conf/hadoop-env.sh
Write the following in the edit window:
export JAVA_HOME /usr/local/java/jdk1.7.0_03
Save and close the edit window.

D. Allocatecore-site.xml file. The specific commands are as follows:
~$cd /home/ administrator /hadoop-0.20.2
~$gedit conf/core-site.xml
Write the following in the edit window:
Save and close the edit window.

E. Allocatehdfs-site.xml file. The specific commands are as follows:
~$cd /home/ administrator /hadoop-0.20.2
~$gedit conf/hdfs-site.xml
Write the following in the edit window:
Save and close the edit window.

F. Allocatemapred-site.xml file. The specific commands are as follows:
~$cd /home/ administrator /hadoop-0.20.2
~$gedit conf/mapred-site.xml
Write the following in the edit window.

Table 7 Operation times for training data sets of different sizes
(unit: seconds)

Sample size SPRINT algorithm MR-DIDC algorithm

4,000,000 102.3 176.5

197.4 310.3

305.5 391.8

412.5 452.6

504.8 516.9

611.1 552.4

766.4 594.7

977.2 619.8

The line chart of the experimental results is shown in Fig. 7

Fig. 7 Time efficiency of MR-DIDC and SPRINT

Table 8 Total operation time trends of the MR-DIDC algorithm

Sample size Number of data nodes Total operation time

4,000,000 2 857.6

3 664.0

4 526.8

5 431.7

6 385.1

7 356.9

8 327.4

The line chart of the experimental results is shown in Fig. 8

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 7 of 10

MapReduce framework and the HDFS distributed file sys-
tem to improve the scalability of the algorithm.
In experiment 2, the parallelization performance of the

MR-DIDC algorithm is evaluated.
The trend of the total operation time of the MR-DIDC al-

gorithm as the number of Hadoop clustering data nodes in-
creases using the same training data set is examined. Other
parameters of the algorithms stay the same for every ex-
periment. The mean values of multiple observations are
shown in Table 8.
According to Fig. 8, as the number of clustering nodes in-

creases, the operating time of MR-DIDC declines
exponentially.
In experiment 3, the trends of test algorithm split-

point calculation time and property-list splitting are
examined.
Using the same training data set and keeping its size

constant, the number of Hadoop clustering data nodes is
increased and the trends of the MapReduce task split-
point calculation time and property-list splitting time of
the MR-DIDC algorithm are examined. Other parame-
ters of the algorithm are kept the same. The mean values
of the results are shown in Table 9.

As shown in Fig. 9, as the number of nodes increases,
the split-point calculation time decreases linearly and
the property-list splitting time increases linearly. As the
number of nodes increases, the split-point calculation
optimization process improves, and the efficiency of the
algorithm is improved. However, the property-list split-
ting methods restrict the improvement of the algorithm
in terms of efficiency.
Experiment 4 is the testing and accuracy comparison

of the MR-DIDC algorithm and the SPRINT algorithm.
In this experiment, the number of Hadoop clustering

data nodes stays the same and the same training data set
is used. We change the data set size and observe and
compare the accuracy degree between MR-DIDC and
SPRINT algorithms. For every experiment, all other pa-
rameters stay the same. The mean values of the observed
results are shown in Table 10.
As seen in Fig. 10, the accuracy degree of MR-DIDC

algorithm does not vary obviously compared with that
of the SPRINT algorithm, and as the data set increases,
the two algorithms acquire similar accuracy degrees,
because the accuracy lookup technology is still adopted
in MR-DIDC algorithm. Therefore, the accuracy degree
will not be influenced by the change in the algorithmic
framework.

Fig. 8 Trends of algorithm operation time with the number of
data nodes

Table 9 Trends of algorithm property-list splitting time and
split-point calculation time

Sample size Property-list splitting time Split-point calculation time

4,000,000 825.44 102.5

643.57 174.54

504.45 234.49

421.86 295.32

342.26 328.95

281.61 366.81

209.74 394.71

156.65 427.49

The line chart of the experimental results is shown in Fig. 9

Fig. 9 Split-point calculation time and property list splitting

Table 10 Compared accuracies of MR-DIDC and SPRINT

Sample size Number of data nodes SPRINT MR-DIDC

3,000,000 2 0.56 0.54

3 0.65 0.63

4 0.7 0.69

5 0.73 0.74

6 0.76 0.78

7 0.79 0.8

8 0.81 0.83

9 0.82 0.84

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 8 of 10

To conclude, from the results, the time efficiency of
the algorithm will improve with the same MR-DIDC ac-
curacy. The algorithm has good scalability, and it could
satisfy the needs of massive data. However, the structure
of the algorithm is complicated and that complexity be-
comes the performance restriction.

6 Conclusions
With the development of big data, mining useful infor-
mation has become a subject of interest. Data-intensive
environments have been considered only in the context
of big data mining research. Current research on data
mining algorithms in data-intensive calculation environ-
ments have concentrated on improving traditional large-
scale clustering algorithms. In this paper, a decision tree
classification algorithm called MR-DIDC is introduced
that is based on the SPRINT algorithm and the MapRe-
duce calculation framework and that is suitable for data-
intensive calculations. We tested the performance of the
MR-DIDC algorithm experimentally. The results show
that the MR-DIDC algorithm has good scalability and a
high level of data availability. The running time for
large-scale clustering is reduced when there are large
amounts of data.

Acknowledgements
We gratefully acknowledge the International Center for Informatics Research,
Beijing Jiaotong University, China, which provided the simulation platform.

Availability of data and materials
Data were collected from the UCI database.

Authors’ contributions
The proposed algorithm was designed to be suitable for data-intensive cal-
culations. We tested the performance of the MR-DIDC algorithm experimen-
tally and proved that the MR-DIDC algorithm has good scalability and a high
level of data availability. CT collected the data, LS planned and conducted
the experiments, and GH analyzed the results. GD wrote the paper and we
all approved the paper.

Funding
The study is supported by a project funded by Beijing Natural Science
Foundation (041501108), the China Postdoctoral Science Foundation
(2016M591194), and the National Natural Science Foundation
(71132008,71390334). We greatly appreciate their support.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 29 August 2017 Accepted: 1 December 2017

References
1. R.E. Bryant. Data-intensive supercomputing: the case for DISC. Technical

report CMU-CS-07-128, Available as http://repository.cmu.edu/compsci/258/.
2. C Liu, H Jin, W Jiang, H Li, Performance optimization based on MapRecuce.

J. Wuhan Univ. Technol. 20(32) (2010)
3. Pacific Northwest National Laboratory.Data intensive computing project

overview. https://www.pnnl.gov/publications/results.asp.
4. Yang, Z., Awasthi, M., Ghosh, M., & Mi, N. (2016). A fresh perspective on total

cost of ownership models for flash storage in datacenters. In Cloud
computing technology and science (CloudCom), 2016 IEEE International
Conference on (pp. 245–252). IEEE

5. Yang, Z., Tai, J., Bhimani, J., Wang, J., Mi, N., & Sheng, B. (2016). GReM:
dynamic SSD resource allocation in virtualized storage systems with
heterogeneous IO workloads. In Performance Computing and
Communications Conference (IPCCC), 2016 IEEE 35th International
(pp. 1–8). IEEE.

6. Roemer, J., Groman, M., Yang, Z., Wang, Y., Tan, C. C., & Mi, N. (2014).
Improving virtual machine migration via deduplication. In Mobile Ad Hoc
and Sensor Systems (MASS), 2014 IEEE 11th International Conference on
(pp. 702–707). IEEE.

7. J TAI et al., Improving flash resource utilization at minimal management
cost in virtualized flash-based storage systems. IEEE Trans. Cloud Comp. 5(3),
537–549 (2017)

8. Yang, Z., Wang, J., Evans, D., & Mi, N. (2016). AutoReplica: automatic data
replica manager in distributed caching and data processing systems. In
Performance Computing and Communications Conference (IPCCC), 2016
IEEE 35th International (pp. 1–6). IEEE.

9. Gong D, Liu S. A holographic-based model for logistics resources
integration, Studies in Informatics and Control. 22(4):367-376 (2013)

10. Bhimani, J., Mi, N., Leeser, M., & Yang, Z. (2017). FiM: performance
prediction for parallel computation in iterative data processing
applications. In Cloud Computing (CLOUD), 2017 IEEE 10th International
Conference on (pp. 359–366). IEEE.

11. Bhimani, J., Yang, Z., Leeser, M., & Mi, N. (2017). Accelerating big data
applications using lightweight virtualization framework on enterprise cloud.
In High Performance Extreme Computing Conference (HPEC), 2017 IEEE (pp.
1–7). IEEE.

12. WANG, Jiayin, et al. eSplash: efficient speculation in large scale
heterogeneous computing systems. In: Performance Computing and
Communications Conference (IPCCC), 2016 IEEE 35th International. IEEE,
2016. p. 1-8.

13. WANG, Jiayin, et al. SEINA: a stealthy and effective internal attack in Hadoop
systems. In: Computing, Networking and Communications (ICNC), 2017
International Conference on. IEEE, 2017. p. 525-530.

14. GAO, Han, et al. AutoPath: harnessing parallel execution paths for efficient
resource allocation in multi-stage big data frameworks. In: Computer
Communication and Networks (ICCCN), 2017 26th International Conference
on. IEEE, 2017. p. 1-9.

15. WANG, Teng, et al. EA2S2: an efficient application-aware storage system for
big data processing in heterogeneous clusters. In: Computer
Communication and Networks (ICCCN), 2017 26th International Conference
on. IEEE, 2017. p. 1-9.

16. RT Kouzes, GA Anderson, ST Elbert, et al., The changing paradigm of data-
intensive computing. Computer 42(1), 26–34 (2009)

Fig. 10 Trends of accuracy rate of MR-DIDC algorithm

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 9 of 10

http://repository.cmu.edu/compsci/258/
https://www.pnnl.gov/publications/results.asp

17. Rajashree Dash, Debahuti Mishra, Amiya Kumar Rath, Milu Achrua. “A
hybridized K-means clustering approach for high dimensional dataset”, Int.
J. Eng. Sci. Technol., vol 2(2), (2010), pp.59-66.

18. J Dean, S Ghemawat, MapReduce: a flexible data processing tool[J].
Commun. ACM 53(1), 72–77 (2010)

19. L Hong, K Luo, Rough incremental dynamic clustering method. Comp. Eng.
Appl. 47(24), 106–110 (2011)

20. Liao S, He Z. HDCH: audio data clustering system in the MapReduce
platform. Comput. Res. Dev.. 2011,48(Suppl.):472-475.

21. Lee S D, Kao B, Cheng R. Reducing UK-means to K-means: data mining
workshops, 2007. ICDM Workshops 2007. Seventh IEEE International
Conference on, 2007[C]. IEEE.

22. Li W, Li M, Zhang Y, etc. Classification analysis based on distributed data
warehouse. Comp. Appl. Res., 2013,30(10):2936-2943.

23. Li L, Ouyang J, Liu D etc. Active collaboration classification combining
characteristics selecting and link filter. Computer Comput. Res. Dev.
2013,50(11):2349-2357.

24. Liu J, Fu J, Wang S etc. Coordinate decend l2normLS-SVM classification
algorithm. Mode Identification and Artificial Intelligence.

25. R Agrawal, T Imielinski, A Swami, in Proceeding of the ACM SIG-MOD
International Conference Management of Date. Mining association rules
between sets of items in large databases (Washington DC, 1993), pp. 207–216

26. Yan Y, Li Z, Chen H. Frequent items set mining algorithm. Computer
Science, 2004,31(3):112-114.

27. Q Wu, Apriori mining algorithm based on cloud computing. Comput.
Measuring Control. 20(6), 1653–1165 (2012)

28. Y Li, Q Li, Maximal frequent itemsets mining algorithm based on
constraints. Comput. Eng. Appl. 43(17), 160–163 (2007)

29. I Zak, H Siao, in Proc 2002 SIAM Int Conf Data Mining(SDM'02). CHARM: an
efficiental algorithm for closed itemset mining (Arlington,VA, 2002), pp. 457–473

30. Hong Y. Distributed sensor network data flow mining algorithm of frequent
itemsets. Computer Science 2013, 40(2):58-94.

31. Su L, Han W,Zou P, et al. Continuous kernel-based outlier detection over
distributed data streams [C]. Proc of Berlin:Springer, 2007:74–85.

32. P Wang, D Meng, J Yan, B Tu, Research development of computer programming
model of data intensive computing. Comput. Res. Dev. 47(11) (2010)

33. TM PAN, in Advances in future computer and control systems. The
performance improvements of SPRINT algorithm based on the Hadoop
platform (Springer, Berlin Heidelberg, 2012), pp. 63–68

34. Shafer, J., Agrawal, R., & Mehta, M. (1996). SPRINT: a scalable parallel classi er for
data mining. In Proc. 1996 Int. Conf. Very Large Data Bases (pp. 544–555).

Chen et al. EURASIP Journal on Wireless Communications and Networking (2017) 2017:219 Page 10 of 10

	Abstract
	Introduction
	Basic algorithm analysis
	Modified algorithm
	Data structure that is used by the MR-DIDC algorithm
	MR-DIDC algorithm description
	Calculation of the best split point

	Environment construction of the MapReduce algorithm
	Case study
	Conclusions
	Availability of data and materials
	Funding
	Competing interests
	Publisher’s Note
	References

