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Nowadays, wireless mobile services have been going through a paradigm shift due to three reasons: (i) the
increasing needs for ubiquitous connectivity, (i) an unprecedented volume of mobile data traffic, and (iii)
technologically advanced mobile devices with enhanced capabilities. To address these challenges, user-provided
network (UPN) is an emerging technology and can be extensively deployed with the aim of providing substantial
improvements to cellular coverage and capacity. In this study, we focus on the design of novel UPN control
scheme based on the game theory. Motivated by the Stackelberg game model, our proposed scheme allows
mobile devices to play changeable roles, i.e, hosts or clients, to improve the UPN system performance. Under
dynamically changing UPN environments, it is a suitable approach. Based on the decentralized, individual non-
cooperative manner, we capture the dynamics of UPN system while leading a deep progress for future networks.
Simulations and performance analysis verify the efficiency of proposed scheme, showing that our approach can
outperform existing schemes in terms of bandwidth utilization, quality of experience (QoE) of service success, delay
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1 Introduction

Today, we are witnessing technological advances that
herald the advent of a new era in telecommunication
networks. With widespread wireless techniques, and
variety of user-friendly terminals, cellular networks are
expected to face new challenges. The traditional existing
cellular systems might run out of capacity in the near
future due to significantly increasing machine-to-
machine (M2M) data traffic with various service require-
ments [1, 2]. With the emergence of a variety of new
wireless network paradigms, it is envisioned that a new
era of personalized services has arrived, which empha-
sizes users’ quality of experience (QoE). 5 Generation
(5G) network standards represent a promising technol-
ogy to support users’ QoE; it will become one of the key
features in future networks [3].
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QoE is a measure of customers’ experiences with ser-
vices. It focuses on the entire service experience and is a
more holistic evaluation than the more narrowly focused
user experience. Traditionally, quality of service (QoS)
parameters have been employed to evaluate the
network-oriented service quality. However, QoE expands
this horizon to capture people’s esthetic and even
hedonic needs. Therefore, QoE emphasizes the end-to-
end performance from both the subjective and objective
perspectives and takes into consideration user percep-
tion in the loop [4, 5]. While the QoE concept is easily
motivated, it remains a difficult and complex problem to
specially support device-to-device, ultra-reliable, and
massive machine-based 5G networks.

Within the past few years, the increasing demand
for mobile data in current cellular networks and the
proliferation of advanced handheld devices have led
to a new network paradigm, known as user-provided
network (UPN). The concept of UPN was first
defined by R. Sofia as “such a networking technology
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where the end-user is, at the same time a customer
and a provider of network access” [6]. Based on the
socio-technological advance, mobile devices have
surplus capacities as a “micro-provider” to provide
related services for other nearby users without
additional network infrastructures. In particular, the
rise of social networks inspires end users’ willingness
to be micro-providers to spread the common interests
by means of shared connectivity [4].

Recently, two UPN models have been implemented
through different approaches. One method enables mobile
devices to create a mesh network and share their Internet
connections without the intervention of network opera-
tors. The other method adopts a virtual mobile operator
that enables its subscribers to act as mobile Wi-Fi hot-
spots to serve non-subscribers by offering some free data
quota. Open Garden and Karma are well-known startup
examples of two methods of UPN services, respectively
[7]. Even though these two methods have different control
mechanisms, there has been growing consensus that UPN
operations rely on the participation of self-organizing user
equipments (UEs). Therefore, a central issue in UPNs is
that users must agree to serve each other. However, par-
ticipating users have conflicting interests, and existing
UPN methods lack proper control algorithms to coordin-
ate conflicts of interests [8].

In this paper, we study and design a novel UPN con-
trol scheme where individual users share their mobile
connections and act as hosts for other users, who are
acting clients in hosts’ vicinity. Providing UPN services,
users in the proposed scheme can benefit from sharing
leftover resources to/from other users. To share users’
connectivity and resources both fairly and efficiently, we
need a new control paradigm. Nowadays, the game the-
oretic approach is widely recognized as a practical per-
spective for the implementation of real-world network
operations. Game theory is the study of strategic interac-
tions between multiple intelligent rational decision
makers trying to maximize the expected value of their
own payoffs, which is measured in some utility scale [8].
Motivated by the UPN’s situation that users are rational
individuals and able to make control decisions logically
in order to pursue their own interests, we have adopted
a game theoretic mechanism. In this way, we are able to
ease the heavy computational burden of theoretically op-
timal centralized solutions.

To model the interaction among multiple hosts and
clients, Stackelberg game is a suitable and proper model;
it was initially proposed by the German economist H.
von Stackelberg in 1934 to explain some economic
monopolization phenomena. In a classical Stackelberg
game, one player acts as a leader and the rest as fol-
lowers, and the main goal is to find an optimal strategy
for the leader, assuming that the followers react in such
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a rational way that followers optimize their objective
functions given the leader’s actions [8, 9]. In the study,
we devise a new Stackelberg game, called position
changeable Stackelberg (PCS) game, to adapt effectively
to the UPN situation. In the PCS game, each individual
user can be a leader, ie., host, or a follower, ie., client,
dynamically to maximize his payoff. Based on the
current position, each user learns the UPN condition
and dynamically selects his strategy.

The success of UPN systems relies on the users’ will-
ingness to contribute their Internet connectivity and net-
work resources [10]. For practical UPN operations, it is
important to design effective incentive mechanisms for
encouraging hosts to participate UPN services. As exam-
ples, the Karma UPN system offers some free data quota
reward to UPN hosts who share their connectivity, and
the Open Garden UPN system designs a distributed
bargaining-based virtual currency approach to fairly and
efficiently share the resource. However, these prior stud-
ies neither focused on interactions between a particular
host and his clients, or on dynamic UPN structures with
changeable topologies [10].

In the proposed scheme, hosts collect the UPN ser-
vice fee from their clients; it is an incentive for each
host. To decide the best price strategy, each host uses
a reinforcement learning algorithm in a distributed
manner. By taking into account temporal and spatial
UPN system status, an individual host makes intelli-
gent decisions. Based on the PCS game and
reinforcement learning, our proposed UPN control
scheme mainly considers three design and operational
issues: (i) which position is better for each user in
the current UPN topology, (ii) what is an appropriate
incentive to each host, and (iii) how users select their
strategies with imperfect information. To effectively
address these issues, we focus on design principles
such as feasibility, self-adaptability, and effectiveness
in providing a desirable solution. Although several
UPN control schemes have been proposed, no sys-
tematic study based on the realistic UPN scenario has
been conducted. To the best of our knowledge, there
has been very little research on UPN control prob-
lems by integrating game theory and reinforcement
learning algorithms.

1.1 Contribution

This study generalizes the UPN control algorithm in the
following aspects. First, users in the UPN can dynamic-
ally decide their positions. To model the interaction
among position changeable users, we employ the PCS
game. Second, the host’s pricing policy for UPN services
is developed as an incentive mechanism. Third, a novel
price decision process is designed with practical assump-
tions. Depending on a new reinforcement learning
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approach, the hosts select their price strategies through
individual and social learnings. Finally, a fair-balanced
solution can be obtained under diversified UPN
situations. In summary, the main contributions are as
follows:

e Dosition changeable Stackelberg game model:
motivated by diversified UPN situations, we
introduce a new game model while capturing a
variety of system characteristics. This approach is
generic and applicable to various UPN scenarios.

e Well-balanced network performance: we model
the interaction of users by considering the
responsive tradeoff between hosts and clients.
According to a feedback-based interactive
process, we understand thoroughly the impact of
host’s price strategy and provide an effective
incentive mechanism for an attractive UPN
performance.

e Implementation practicality: as game players, users
learn how to modify their prior knowledge and
select their strategies with bounded rationality.
Therefore, the decision mechanism is implemented
with low complexity. It is practical and suitable for
real-world UPN operations.

e Solution concept: the main idea of our PCS game
lies in its responsiveness to the reciprocal
combination of optimality and practicality. Players
act with self-adaptability and real-time effectiveness.
The concept of our solution is to approximate an
efficient UPN status using individual and social
learning approaches.

e Conclusions: Numerical study shows that our
game-based approach can increase the bandwidth
utilization, service QoE, and users’ profit by 5 to
10% under different service request rates,
comparing to the existing IDME [10] and MGDT
[11] schemes.

1.2 Organization

The remainder of this article is organized as follows.
In the next section, we review some related UPN
schemes and their problems. In Section 3, we pro-
vide a detailed description of the proposed PCS
game model and UPN control algorithms. In particu-
lar, this section provides fresh insights into the bene-
fits and design of PCS game-based UPN control
approach. For convenience, the main steps of the
proposed scheme are then listed. In Section 4, we
validate the performance of the proposed scheme by
means of a comparison with some existing methods.
Finally, we present our conclusion and discuss the
remaining open challenges in this area along with
possible solutions.
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2 Related work

There has been considerable research into the design of
UPN control schemes. Sofia et al. [6] first defined the
concept of UPN, where the end users can be consumers
and providers of Internet access at the same time.
Authors provided a characterization of UPN, and a com-
parison of connectivity features for the UPN against ad
hoc and multi-hop networks. To clarify the main differ-
ences from other autonomic networks, this article inves-
tigated a paradigm shift in Internet services and
wholesale models [6].

The article [4] surveyed recent technical develop-
ments in the fields of QoE and UPN. After that, a
new UPN-based framework in mobile networks was
proposed. In particular, the importance of end users
in the QOE provisioning chain was highlighted. In
order to aid descriptions of the proposed UPN-based
networks, a case study was conducted with the pro-
posed adaptive resource scheduling method for QoE
improvement. Some possible challenges and future
research were also discussed [4].

losifidis et al. [12] analyzed the design challenges of
incentive mechanisms for encouraging user engage-
ment in UPNs. Motivated by recently launched busi-
ness models, they discussed the technical issues
pertaining to resource allocation for UPN services
and explained the importance of incorporating incen-
tive schemes. And then, they analyzed mobile UPN
models that were inspired by Open Garden and
Karma. Finally, the challenges in designing incentive
mechanisms for these services and two appropriate
solutions were discussed [12].

Gao et al. [13] designed an optimal pricing and re-
imbursing strategy for a mobile virtual network oper-
ator that maximized its total revenue while
considering the necessary incentives to the operator.
They employed a game-theoretic analysis and mod-
eled the interaction between the operator and the
hosts as a two-stage leader-follower Stackelberg game.
In the first stage, the operator decided the price and
free data quota reimbursing plan. In the second stage,
every host decides how much data would be con-
sumed for its own needs and how much data would
be forwarded for clients. Finally, they systematically
analyzed the game equilibrium, which can capture a
variety of system characteristics, including the service
types of hosts or clients, the capacities of hosts’ Inter-
net connections, and the energy consumption patterns
of hosts [13].

The Matching Game based Data Trading (MGDT)
scheme [11] considered a new operator-supervised
UPN scheme based on the matching game model. In
this scheme, users shared connectivity and acted as
an access point for other users. To incentivize user
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participation in the UPN, the MGDT scheme allowed
the users to trade their data plan and obtained a
profit by selling and buying leftover data capacities
from each other. To formulate the buyer-seller data
trading process, a many-to-one matching game was
designed and a distributed algorithm was developed
that enabled users to self-organize into a stable
matching. By combining the matching theory and
market equilibrium, the AMGDT scheme ensured
dynamic adaptation of price to data demand and
supply and calculated operator gains and the bench-
mark price that would encourage users to join the
UPN [11].

The Incentive Design and Market Evolution (IDME)
scheme [10] studied the user membership evolution in
an operator-assisted UPN and the operator’s best strat-
egy to maximize his profit. Simply, two key questions in
the IDME scheme were (i) what was the best member-
ship choice for each mobile user and (ii) what was the
operator’s best pricing strategy. To effectively answer
these two questions, the IDME scheme formulated the
interaction between the operator and mobile devices as
a two-stage game. In the stage I, the operator deter-
mined the usage-based pricing and quota-based incen-
tive mechanism for the data usage. In the stage II, the
mobile devices made their decisions about whether to be
a host, or a client [10]. Some earlier studies [4, 6, 10—13]
have attracted considerable attention while introducing
unique challenges in handling the UPN control prob-
lems. In this paper, we demonstrate that our proposed
scheme significantly outperforms these existing IDME
[10] and MGDT [11] schemes.

3 The proposed PCS game-based UPN algorithms
In this section, we provide a brief introduction to our
PCS game model, which forms the theoretical basis of
the proposed UPN control scheme. By adopting a
new PCS game-based approach, we design effective
control protocols to adapt the dynamically changing
UPN environments.

3.1 PCS game model and players’ utility functions

Currently, there are several UPN models that differ in
the architectures and services they offer to users.
However, one common aspect of these models is that
UPNs consists of several network agents that are
organized in a mesh topology where all agents
cooperate with each other to improve network per-
formance. Generally, there are two types of agents
which are base stations, i.e., eNBs and UEs. The func-
tion of eNBs is to support Internet connectivity by
acting as gateways to connect backbone networks.
UEs participate in UPN services to advance traffic
management and reduce energy consumption. The
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main concern of UPN idea is to exploit the diversity
of UEs’ needs, resources, and Internet connectivity by
building an autonomous intervention mechanism.

We consider the operation of a multicellular net-
work that consists of a set B = {B;...B,} of eNBs, and
a set G = {G;...G,} of UEs. Some UEs may be in
range with a B €B, while some others may not. Each
eNB has a set of bandwidth resource blocks that can
be allocated to UEs in each time period. We assume
that UEs may change their locations and hence have
different neighbors in different time periods. Such a
mobility assumption allows us to get closed form
expressions and gain valuable insights into the
design of UPN.

Different UEs are in different situations. In our model,
there are two types of UEs, i.e., hosts and clients in the
UPN. A host can connect to the eNB directly and share
his Internet connection with clients. Therefore, hosts
serve as temporal gateways to other clients. A client can
connect to the eNB directly only for his service, or
connects to the eNB via a nearby host. The host’s goal is
to maximize his profit, which depends on the revenue
collected from his clients, and the objective of the client
is also to maximize his profits, which depend on the
outcome from UPN services. According to their current
status, they dynamically select their positions and their
decisions are adaptively changeable over time. In this
study, the UPN control scheme is formulated as a new
PCS game model. As game players, UEs select their
positions and strategies based on the interactions of
other UEs. At each time period of gameplay, we formally
define the PCS game model G = {B, G, {S§,S¢},

{ug, ugy, Lg, T} as follows:

e B={B,...B,} represents a set of eNBs, and each B
has orthogonal bandwidth blocks.

e G={G;...G,} is the finite set of PCS game
players, i.e., UEs. The G can be divided into
three subsets G”, G¢, and G"; G" is the subset of
hosts G!eG"cG, G is the subset of clients G‘e
G°cG and G” is the subset of UEs, which
temporarily give up service requests G/eG"cG.

o Inthe {8}, 8%}, 8 = i’sf’nm...sf‘...sf’mx} is the set of
host’s strategies where s/eS% means the i price
level for client’s communications. S is the set of
client’s available strategies; each client has three
strategy options: (i) selects one host among his
neighboring hosts for relay communications, (ii)
directly connects to his corresponding eNB, or (iii)
to be a member of G".

e UY is the payoff received by the host, and U? is the
payoff received by the client during the UPN
operation.
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Table 1 Parameters used in the proposed algorithm
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Table 1 Parameters used in the proposed algorithm (Continued)

Notations Explanation

Notations Explanation

B The set of eNBs where B=1{B;...B,,}

G The set of UEs where E = {£;...E}

G The subset of hosts G" c G

G} The K™ host where GleG"

G* The subset of clients G°c G

G The /™ client where G-€G*

G" The subset of UEs, which temporarily give up service
requests where G" c G

G The " UE where G/<G"

¢ The set of host's strategies

Sh

! The /" price level for client's communications where s/'eSy

s¢ The set of client’s available strategies

ue The payoff received by the host

UCG The payoff received by the client

L The learning value for the host's strategy s

NG: The set of GQ’S neighboring hosts

Pﬁf() The price function to clients

Cﬁf(‘) The cost function of G},

Df:( ) The expense function of G}

rf‘[ The bandwidth amount of G's UPN service

F() The G's UPN price strategy per bit where F*(-)eSg
a The connected eNB's minimum charge

e8() The current bandwidth utilization

mfz The Gf’s the expense factor per bit of UPN services

UCG() The utility function of the client G¢

Q7 (+) The outcome function of Gf

I(-) The charge function of G¢

Kf’r(-) The expense function of G/

wf’( G{'s satisfaction factor per bit of UPN service
(? Gf's expense factor per bit of UPN service

PSg(-)  The B's price strategy
wik (B))  The allocated RU amount for the Gy at time H; in the B,

ﬁﬁk The amount of RU requested by the Gy at time H,

Rfj( The available RU amount of B

A@B) The set of UEs, which request new RUs from the B
ygr The G/s bargaining power at time H,

Sﬁ’ The entropy for the G, at the time H,

Fg, The set of the neighboring UEs of G,

O(G, Gy  The relative mobility among two G, and Gy

X The learning rate that models how the [-values are updated
N(By) The set of hosts, which are connected to the B,

v The individual value

w The social learning value

B The control factor for the weighted average between

different learning approaches

P The strategy selection distribution for each host

p;:(/—([) The sﬁ strategy selection probability by the GI! at time H,
K The service success ratio in the UPN system

T The delay rate in the UPN system

i The UPN system throughput

e LY. is the learning value for the host’s strategy s; L,
is used to estimate the probability distribution (P€)
for the next strategy selection.

o T={H,,...,H; H;,1,...} denotes time, which is
represented by a sequence of time steps with
imperfect information for the PCS game process.

Table 1 lists the notations used in this paper.

In the UPN system, eNBs charge their subscribers, i.e.,
hosts and clients, based on the usage-based price mech-
anism. If unexpected growth of traffic may develop in a
specific eNB, it may create a local traffic congestion. To
alleviate this kind of traffic overload, the current price
(Pg) should increase. If few subscribers access in a eNB,
the current price should decrease to attract subscribers
to participate in UPN services. As in the same manner,
hosts charge their clients based on the current traffic
load. According to the current price, individual clients
act independently and selfishly; all game players select
their strategies to maximize their payoffs.

Each host can connect to the eNB anytime via his
device. At the same time, this device can provide
Internet connections for nearby clients as a gateway.
Therefore, the assigned communication resource for a
host can be shared with clients, and clients need to
pay the price for their UPN services. Depending on
the payment, cost, and expense functions of UPN
services, the utility function of the host GZ at time H,

(Ufz (Ht)) can be defined as follows:

) = Y (Pif (5 () ) -Ci (@, (1), (1))
Gl‘ENGZ
_lei (,f; ( HJ))

(1)

h C C
PR (rE (L) ) = P (Gl He) x Y (H)
G ¢ c
st G (O8 (H0),r (HL)) = [a+ O (H,)] x rE (H))
h c h c
D (rE (He) ) = mt x r (Hy)

Gl . . . . .
whererhk (-) is thlhe price function to clients at time H,,
and C,*(-) and D,*(-) are the cost and expense functions
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of GJ', respectively, for the UPN services. N is the set of
GJ’s neighboring hosts, and e is the bandwidth amount
of G¢’s UPN service. F*(G},H;) is the G}’s UPN price
strategy per bit at time H, where F* (Gk,Ht)eSh Let a
and ©5(H,) denote the connected eNB’s minimum chas?rge
and bandwidth utilization at time H,, respectively. mh is
the G’s the expense factor per bit of UPN services.

Each client can connect to the backbone Internet dir-
ectly via the eNB or indirectly via a nearby host. If there
are multiple hosts in his coverage area, the client
selects one of them to maximize his payoff. If Gﬁ is
selected as a host, the utility function of the client G{ at

time Ht(UCG5 (GZ,Ht)) can be defined as follows:

¢ G ¢ G¢ G¢ G G
U (Gl ) = QFF (17 (H0) ) =18 (Gl (H) ) K€ (1 (1))

(2)

Q7 (18 (Ho)) = w x ()

17 (Gt (1)
= min{ min{GQeN6=|FS(Gz,Ht)},PSB(Ht)} X rCGf(H[)

K (rCG’ (Ht)> = (% %1% (H,)

where QCG’C'(-), ICGf(-), and Kff(-) are the outcome,
charge, and expense functions of Gf, respectively. Let

t//CG "and ¢ G denote the Gs satisfaction and expense fac-
tors per bit of UPN service, respectively. PSz(H,) repre-
sents the corresponding eNB’s price strategy at time H,,
eg., [a+ O%(H,).

As discussed previously, there are three positions of
UEs: host (G"), client (G°), or a member of G”. At each
time, UEs try to decide their best positions. Hence, each
UE selects his position X to maximize his payoff (U)
where X € G" UG“UG".

X = max

, { UZ(GG", Uz(er’ ui(eG” } (3)
XeG"uGuG"”
st, U = UuS (H,), ¢

=U¢(G" H;) and UX¥" =0

3.2 Strategy selection mechanisms in the PCS game

During the UPN operation, eNBs have to manage
radio resource to optimize all UE’s communications.
Therefore, the UPN performance depends on its
radio resource management algorithm and its imple-
mentation. Resource allocation process in each eNB
is performed by the radio resource management
(RRM) entity that dynamically distributes the radio
resource to each active UEs in its covering area. The
amount of radio resource allocation is specified in
terms of resource units (RUs), where one RU is the
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minimum allocation amount, e.g., 128 Mbps. The
RRM must be able to meet UEs’ requirements while
maximizing the resource usage in a flat radio net-
work structure [14].

In this study, we use the main concept of Nash
bargaining solution (NBS) to allocate RUs. The NBS
is an effective tool to achieve a mutually desirable
solution with a good balance between efficiency and
fairness [8]. However, in many cases, the assump-
tions of traditional NBS are unrealistic in real-life
environments. In particular, if we consider a scenario
of dynamic UPNs, the classical NBS cannot be dir-
ectly applied to the RU allocation problem in UPNSs.
To avoid the inevitable burden of uncertainty, it is
necessary to admit a new NBS approach in order to
adapt current network changes.

In consideration of UEs’ mobility, we develop an itera-
tive resource allocation algorithm, which is formulated as
a sequential Nash bargaining manner. The main concept
of sequential Nash bargaining is to observe the current
system environment and dynamically update the NBS to
adapt to the network dynamics. This approach can relax
the traditional NBS assumption that all information are
completely known. Therefore, during the step-by-step
iteration, the eNB adaptively assigns RUs to all resource-
requested UEs. In the B;, the allocated RU amount for the

Gy, at time Ht(gbgi (Bj)> is defined as follows:

O RL= > o
GieA(By)

arg max{ SZILEA(B/) } Z (yH’ x log (.92‘[)) ,

GieA(B;)
¢th (B) = otherwise

GieA(By) G y,,t

= arg max |...9y, .| ¢ log H (191.,!> s.t.,

GieA(B;)
Z 9Gz _ B/
GeA(By)

(4)

where 91% is the amount of RU requested by the G at

time H, and Rﬁ{t is the available RU amount of B;. A(B))
is the set of UEs, which now request new RUs from the
B,. yf,’z is the G/s bargaining power at time H,, which is
the relative ability to exert influence over other UEs.
Usually, the bargaining solution is strongly dependent
on the bargaining powers. If different bargaining powers
are used, the G with a higher bargaining power obtains a
higher RUs. In the proposed algorithm, determining the
bargaining powers depends on the G’s mobility. Let 5,3’1
be the entropy for the G; at the time H,. Usually, the
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basic concept of entropy is the uncertainty and a meas-
ure of the disorder in a system [15-17]. To evaluate G;’s
stability in the UPN, EIG{’t represents the topological
change, which is a natural quantification of the effect of
G; mobility in the UPN; it is calculated as follows:

8]?11 - (_ZG;(EFGI(PG]((H[”AH) X lOgPGk(Hta ;AH)))

/(log C(Fg,))
(5)

s't'aPGk(Htv 7AH) = O(Gl7 ) Gk)/ZGfGFG O(Gl7 ) Gf)
1

where Ay is a time interval, and Fg, denotes the set of
the neighboring UEs of G;, and C(Fg,) is the cardinality
(degree) of set Fg,. O(Gy, Gy) represents a measure of the
relative mobility among two G; and G Recently, a new
sensor technology has been developed rapidly. Now-
adays, on-board units (OBUs) are embedded in most
sensors of UEs [18]. OBUs are entities capable of event
data recorder, global positioning system, forward and
backward radar, sensing facility, and short-range wireless
interface. Using OBUs, each UE can easily estimate the
relative mobility of other UEs.

The entropy Sg’t is normalized as Osé’fl’[ <1. If the

value of Eg’t is close to 1 (or close to 0), the G; is stable
(or unstable) [16]. Finally, the G/s bargaining power at
time H, (yg’t ) is calculated as follows:

G
G __ gHt

Hy — Gy’ (6)
ZG;(GA(B,)E:H];

As a host, the G"s strategy (S”) represents the price

level of client’s communications. Therefore, the payoff of

G" (L[fh) can be defined as a function of S” and re-

G¢

p; ) Interactions between G”

quested client services (r
and G° continue repeatedly during the UPN process over
time. Therefore, the G” should consider the reactions
from G to determine his strategy S”. Under incomplete
and asymmetric information situation, G" should learn
from the current environment, build knowledge, and
ultimately make strategy decisions to maximize his pay-
off. Until now, several learning algorithms have been
developed to learn from the dynamic environments.
However, traditional learning algorithms are not suffi-
cient to follow rapid UPN changes. In particular, slow
reaction to system fluctuations is a main drawback.

In this study, we develop a new learning algorithm to
decide effectively the host’s price policy for UPN ser-
vices. Usually, learning is divided into two categories:
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individual learning and social learning. Individual learn-
ing refers to trial and error, or insight temporal learning,
and social learning refers to spatial leaning through
interactions with other individuals. The main novelty of
our learning method is a joint-design manner concern-
ing individual and social learning approaches. If the
strategy S;’ is selected at time H, _; by the G,IZ in the B,’s

coverage area, the Gz updates the strategy S}‘ s learning
h
S
]

value for the next time step (L o (H. t)) according to the
k

following method:

v

LZ,;(Ht) = ((l—x) x Liﬁ(Ht_1)> +axv+w]) (7)

st, v=(1-8) x U%(H,,) and

st
()

. ﬁ - Glhg(:Bg) HA(Bg) ||

where x is a learning rate that models how the L values
are updated and A(B,) is the set of hosts, which are con-
nected to the B,. 1Bl is the cardinality of the set A(By).
In Eq. (7), v and w represent individual and social learn-
ing values, respectively. Therefore, S is a control factor
for the weighted average between different learning ap-
proaches. When a UE’s mobility in the GJ'’s coverage
area is high, we place more emphasis on the social learn-
ing, i.e., on w. In this case, a higher value of 8 is more
suitable. When a UE’s mobility in the G/’s coverage area
is low, the L(-) value should be strongly dependent on
other UEs’ responses in the GJ’s area. In this case, a
lower value of S is preferable to emphasize the individ-
ual learning, i.e., on v. In the proposed scheme, the value
of B is dynamically adjusted based on the current en-
tropy average of UEs, which are covered by the G/'. That
is to say, 8 is the arithmetic mean of each UE’s entropy,
ie, Egt_l, according to Eq. (5). Therefore, we can learn
the finest strategy both the individual and the social level
with the incomplete information of UPN conditions.
Based on the L(-) values, a strategy selection
distribution (P) for each host can be defined. During

the UPN process, we determine PGZ(Ht):

Gh Gh Gh
py' (He).py'(He)...py' (Hy) as the probability
min i max

distribution of Gz 's strategy selection at time Hj it is
sequentially modified over time. In this study, p&(:) is
defined based on the concept of Boltzmann distribution
method, which has been used expensively in various
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machine learning algorithms. Finally, the S}“

strategy
h

selection probability by the G at time H, (’PSth (H :)) is
j

given by:

EXP (sz (HH)> % ((min{ max(L[hGE (Hirs).0).1})

Gh
Pg/hk (H:) =

S (EXP (Lsé'f (Hi)) x (min{ max(u,f'k' <Ht,1,s,h).,0), 1}))
(8)

Gl . , .
where U, " H;, slh) is the G}’s payoff with the strategy
sf’ at time H; _;. Therefore, the min{max(-)} term is used
to exclude non-profitable strategies from selection at
time H,.

3.3 Main steps of proposed UPN control algorithm

In this paper, we proposed a novel UPN control scheme
based on the PCS game, which is implemented as a dis-
tributed and dynamic repeated game for opportunistic
UPN operations. In the proposed scheme, individual
UEs are game players and attempt to maximize their
payoffs through a step-by-step interactive game process.
Therefore, UEs can learn the current UPN situation and
determine their best position and strategies. Generally,
well-known solution concepts of game theory are pre-
sented in closed-form expressions under the complete
information. However, they cannot capture the adapta-
tion issue of UPN operations over time.

Usually, control algorithms have exponential time
complexity in order to solve classical optimal problems.
Furthermore, they have mostly been developed in a
static setting. These methods are impractical to be
implemented for realistic system operations. In this
study, we do not focus on trying to get an optimal solu-
tion based on the traditional optimal approach. But
instead, an interactive game model is proposed. Using
feedback-based self-monitoring and distributed learning
techniques, control decisions are made dynamically
while adapting to the current UPN situation. This deci-
sion mechanism is implemented with polynomial com-
plexity. In addition, we can transfer the computational
burden from a central system to UEs in a distributed
online fashion. Therefore, it is a suitable approach for
the real-world UPN system in the point view of practical
operations. The main steps of the proposed scheme are
described as follows (see Fig. 1).

Step 1: Control parameters are determined by the
simulation scenario (see Table 2).

Step 2: At the initial time, the L learning values in each
host UE are equally distributed. This starting guess
guarantees that each host’s price strategy enjoys the
same benefit at the beginning of PCS game.
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Step 3: During the PCS game, UEs are freely moving
around among eNBs’ coverage areas, and each UE
constantly checks a connection availability to his
corresponding eNB.

Step 4: At every time step (H), each individual UE
estimates his available payoffs depending on different
positions and decides independently his position among
{G" U G° U G"} to maximize his payoff according to
Egs. (1)-(3).

Step 5: If a UE can directly connect to his
corresponding eNB, it monitors UPN service requests
from his neighboring client UEs. Otherwise, the UE
asks his UPN services to his neighboring host UEs.
Step 6: When the total bandwidth amount requested by
UEs is larger than the eNB’s capacity, the eNB
distributes his available bandwidth through the
sequential NBS according to (4). By considering each
UE'’s stability, bargaining powers (y) of UEs are
adaptively adjusted using (5)—(6).

Step 7: During each time period (H), a host UE (G")
dynamically calculates current learning values L(-) for
each strategy " according to (7). Based on the
individual and social learning viewpoints, L(-) values
effectively reflect the UPN’s temporal and spatial
situations.

Step 8: The probability distribution (PGh) for each G"s
strategy selection is dynamically adjusted based on the
obtained learning values (L(-)) using the Eq. (8).

Step 9: Based on the interactive feedback process, the
dynamics of our PCS game can cause a cascade of
interactions among the UEs. As game players, UEs
dynamically choose their best position and strategies in
an online distributed fashion.

Step 10: Under the dynamic UPN environment,
individual UEs are constantly self-monitoring for the
next game process; go to Step 3.

4 Performance evaluation

In this section, we evaluate the performance of our pro-
posed protocol and compare it with that of the IDME
[10] and MGDT [11] schemes. Based on the simulation
results, we confirm the superiority of the proposed
approach. There are other performance analysis
methods: theoretical or numerical analysis. However,
these methods have to be limited in scope—limited
modeling possibility for dynamic behavior. Therefore,
for complex and complicated algorithms, such as our
proposed scheme, no capability makes tractable the
theoretical and numerical model without many
simplifications, which cannot provide precise perform-
ance evaluation. In contrast to these methods, a
simulation analysis allows more complex realistic
modeling for one real-world system. Therefore, in this
paper, we propose a simulation model for the
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Control parameters are determined by the
simulation scenario using Table II.

v

the L learning values in each host UE are equally
distributed at the beginning of PCS game.

v

UEs are freely moving around among eNBs’
coverage areas while constantly checking a
connection availability to his corresponding eNB.

v

At every time step, each individual UE estimates his
available payoffs depending on different positions,
and decides independently his position to
maximize his payoff according to the equations

1)-3)
(1)-(3).

an UE can directly
connect to his
corresponding eNB?

2

v

The UE asks his UPN services to his
neighboring host UEs.

The UE monitors UPN service requests from
his neighbering client UEs.

v

the eNB distributes his available bandwidth
according to (4); bargaining powers (y) of UEs are
adaptively adjusted using (5)-(6).

7

During each time pericd a host UE dynamically
calculates current learning values L(-) for each
strategy s" according to (7).

v

The probability distribution (P<") for each 6"'s
strategy selections is dynamically adjusted based
on the obtained learning values (()) using the

equation (8).

Fig. 1 The flowchart of proposed UPN control algorithm

Table 2 System parameters used in the simulation experiments

Application type
I

I

Il

\Y

\Y

W

VI

Vil

Parameter

n

[SEERN

~ € 3

>

Applications Minimum bandwidth requirement for QoE Bandwidth requirement Connection duration average
Voice telephony 128 Mbps 256 Mbps 1800 s (30 min)
Video-phone 256 Mbps 512 Mbps 1800 s (30 min)
Paging 384 Mbps 768 Mbps 300 s (5 min)
E-mail 512 Mbps 1.28 Gbps 300 s (5 min)
Remote-login 640 Mbps 1.28 Gbps 1800 s (30 min)
Data on demand 768 Mbps 1.54 Gbps 1800 s (30 min)
Tele-conference 896 Mbps 1.82 Gbps 3000 s (50 min)
Digital audio 1.28 Gbps 2.56 Gbps 1200 s (20 min)
Value Description

50 The number of eNBs in the UPN system

1000 The number of UEs in the UPN system

03 The B's minimum charge for connected host UE

[0.2~0.3] The expense strategy factor of host UE; it is randomly selected from range

[2.0~3.0] The client UE's satisfaction factor; it is randomly selected from range
[0.1~0.2] The client UE's expense factor; it is randomly selected from range

0.7 A learning rate that models to update the L values
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performance evaluation of our UPN scheme. To ensure
a fair comparison, the following assumptions and
system scenario were used:

e The simulated system consists of 50 eNBs, and the
number of UEs is 1000. The bandwidth capacity of
each eNB is 100 Gbps, and the bandwidth resource
blocks of each eNB are orthogonal with each other.

e UEs can travel in one of six directions with an equal
probability. Simply, we consider four cases of user
velocity—fast speed (120 km/h), medium speed
(60 km/h), slow speed (20 km/h), and O speed
(stationary; 0 km/h); it is randomly selected.

e Based on the speed, a UE’s residence time in a eNB
area is estimated that (i) it is 30 s for a fast speed
UE, (ii) it is 60 s for a medium speed UE, (iii) it is
180 s for a slow speed UE, and (iv) it is the same as
the service duration time for a stationary UE.

e According to the UE’s characteristics, new service
requests are generated based on the Poisson process,
which is with rate A (services/s), and the range is
varied from O to 3.

e There are eight different service requests; UEs
randomly generate different service requests.

e In order to represent various application services, eight
different traffic types are assumed based on connection
duration, bandwidth requirement, and required QoE.
They are generated with equal probability.

e The durations of service applications are
exponentially distributed.

o The price strategies in S} are defined as s" . _ =1,
sh=12,sh= 14, s!= 1.6, s!= 1.8, and s" | _.=2; the
communication resource unit is 1 bps.

e System performance measures obtained on the basis
of 100 simulation runs are plotted as functions of
the service request generation rate.

e For simplicity, we assume the absence of physical
obstacles and interferences in the experiments.

To demonstrate the validity of our proposed
method, we measured the bandwidth utilization, QoE
of service success ratio, delay rate and system
throughput, and normalized UEs’ profit. Table 2
shows the system parameters used in the simulation.
Major system control parameters of the simulation,
presented in Table 2, facilitate the development and
implementation of our simulator.

Figure 2 compares the bandwidth utilization of each
scheme. In this study, the bandwidth utilization is
measured as the percentage of actually used band-
width, and it is a key factor to estimate the resource
usability in UPN systems. All schemes exhibit a simi-
lar trend; however, the proposed scheme outperforms
the existing methods from low to high service load
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distributions. By using a dynamic PCS game model,
UEs in our scheme adaptively select their positions
and strategies; it can improve the bandwidth
utilization compared to other schemes.

Figure 3 compares the QoE in the UPN system. In this
study, we develop a QoE model using the popular sig-
moid function with respect to service provision, delay,
and system throughput [19, 20], that is,

QE—— > (9)
(1 + e—(K+T+i))

where « is the service success ratio, 7 is the delay rate,
and I is the UPN system throughput; «, 7,and I are the
parameters constraining the quantization of QoE and
normalized values. The QoE gain in the UPN system
achieved by the proposed scheme is a result of our
scheme’s self-adaptability and real-time effectiveness.
Therefore, all UEs in the proposed scheme make control
decisions strategically to ensure services. Due to this rea-
son, the proposed scheme attains superior QoE to other
existing schemes.

The curves in Fig. 4 indicate the normalized UEs’
profit in the UPN system. As game players, all UEs
adaptively select their positions in a distribution online
manner. From the viewpoint of a host, the main goal is
to adaptively decide the price strategy to maximize his
total revenue. From a client perspective, the main con-
cern is to choose the best connection way to maximize
his payoff. According to an interactive feedback mechan-
ism, hosts and clients learn the current UPN environ-
ments and attempt to improve their profits. At every
game period, our learning-based approach can provide
synergistic and complementary features to adapt dy-
namic UPN situations.

The simulation results shown in Figs. 2, 3, and 4 dem-
onstrate that the proposed scheme, which uses a
learning-based PCS game model, can monitor the
current UPN conditions and adapt to highly dynamic
system situations. In particular, all UEs in our approach
gain real-time information from the UPN environment
and make intelligent decisions in a self-adapting manner.
The simulation results indicate that the proposed
scheme attains an attractive UPN performance, some-
thing that the IDME [10] and MGDT [11] schemes can-
not offer.

5 Conclusions

Today, technology can enable widespread communica-
tions without depending upon traditional network
structures. From a global perspective, UPN has a tre-
mendous potential and is introducing a paradigm shift
in network services while allowing the end user to be
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Fig. 2 Bandwidth utilization of the UPN system

- ¥
09} e T i
08t .J*./;./.'.._.. |
_ 07t o 1
S ../ak/
:—E 06 g _
S £
£ 05} 2 .
z ¥
T 04r i .
©
m sy
03F ;'/' .
S —— The Proposed Scheme
02F /f# ~+++ The MGDT scheme 1
j/ — % — The IDME scheme
01} /7 i
7
0 1 1 1 1 1
0 05 1 15 2 25 3

Offered Service Request Load (Application Request Rate)

a host or a client. In this article, we have proposed a
new UPN control scheme based on the PCS game
model. As game players, UEs decide their positions
considering the mutual-interaction relationship and
learn better their strategies under dynamic UPN envi-
ronments. Using feedback-based self-monitoring and
distributed learning techniques, game players dynam-
ically adapt to the current UPN situation and effect-
ively maximizes their expected benefits. Based on the
unique features of UPNs, our proposed scheme can

provide satisfactory services under incomplete infor-
mation conditions. To demonstrate the validity of our
approach, we compared our scheme with existing
schemes. Our simulation analysis indicates that our
approach can outperform the existing schemes in a
simulation environment.

There are many fascinating directions for future
work. Our next step is to develop a new mechanism
design to provide adaptive incentives to hosts. It will
differ from classical mechanism design by adopting
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Fig. 3 Service QoE in the UPN system
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Fig. 4 Normalized UEs' profit in the UPN system
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distributional assumptions about the agents. To be a
viable solution, we also consider computational con-
straints. Another interesting direction is to study the
impact of users’ social relationship in a multi-client
multi-host UPC model. In addition, our studies will
address the optimality issues in the UPN system from
the operator’s perspective.
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