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Abstract

An optimal power allocation (OPA) policy for orthogonal frequency division multiplexing (OFDM)-based cognitive
radio networks (CRNs) using underlay spectrum access model is presented under multiple secondary users (SUs) with
energy harvesting (EH). The proposed algorithm can allocate transmission power to each SU on each subcarrier with
the objective of maximizing the average throughput of secondary network over a finite time interval. We consider
both the interference power constraint limited by primary user (PU) and the minimum throughput constraint of each
SU to improve the throughput of SUs while guaranteeing the communication quality of PU. To balance current
throughput and expected future throughput, a dynamic programming (DP) problem is defined and solved by the
backward induction method. Moreover, for each time slot, a convex immediate optimization is presented to obtain an
optimal solution, which can be solved by the Lagrange dual method. Simulation results show that our policy can
achieve better performance than some traditional policies and ensure good quality of service (QoS) of PU when SUs
access the spectrum.

Keywords: Optimal power allocation, Energy harvesting, Cognitive radio network, Dynamic programming, Lagrange
dual method

1 Introduction
Cognitive radio (CR) [1] is an optional solution to solve
the spectrum shortage problem, which can both improve
efficiency of spectrum utilization and ensure quality of
service (QoS). In recent years, energy harvesting (EH) has
obtained the widespread research attention on wireless
communications, which has the ability to realize uninter-
rupted and self-sustainable operation [2]. In combination
of EH technology and cognitive radio network (CRN), the
secondary users (SUs) can collect energy from radio fre-
quency (RF) signals such as primary channel and ambient
sources such as solar by EH device [3]. Therefore, with
energy harvesting device, SUs obtain renewable energy to
improve energy efficiency and device flexibility.
Many researches have been conducted on optimal

power allocation (OPA) policies with EH device under
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wireless communication scenarios based on different con-
siderations addressed in [4–7]. An OPA policy for EH
wireless communications with limited channel feedback
from receiver is investigated in [4] where the receiver
periodically sends only 1-b feedback by comparing chan-
nel power gain with a predetermined threshold. In [5],
a power allocation policy for an access-controlled trans-
mitter with EH capability based on causal observations of
channel fading state is considered. In [6], the authors study
the OPA for an outage probability minimization prob-
lem in point-to-point fading channels with the constraints
of the EH and the channel distribution at transmitter.
In [7], a Markov decision process (MDP) model is pro-
posed for the energy allocation problem over a finite
horizon tomaximize the throughput under point-to-point
wireless communications, and both channel conditions
and time varying energy sources are taken into account.
According to the above research results, EH technology
can obviously improve the energy efficiency; however, it
also brings some new challenges to the power allocation
strategy, such as the problem of uncertainty in EH process.
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In fact, the former papers [4–7] have only considered
point-to-point wireless communications without using
CR technology. Recently, some researches have focused
on the combination of EH technology and CRN, and dif-
ferent OPAs are discussed in [8–14]. The OPA for EH
CRN is studied in [8], the authors consider the problem
of system throughput maximization over a finite hori-
zon rather than at a certain time slot, and they adopt
a rate loss constraint to protect the transmission of pri-
mary user (PU). The access strategy for hybrid underlay-
overlay CR networks with EH is analyzed in [9]. The
partially observable Markov decision process (POMDP)
framework is proposed to determine the action of SU;
meanwhile, energy threshold is used to determine the
transmission mode of SU. In [10], considering an EH-
CR system, a power allocation policy with peak power
constraints is proposed, and the target throughput max-
imization problem is solved by recursion machinery and
geometric water-filling algorithm. A novel saving-sensing
transmitting (SST) frame structure for EH CRNs is pro-
posed in [11], where the authors aim to maximize the
energy utilization efficiency of SU by jointly optimizing
the save ratio and transmission power under both the
energy causality constraint and the minimum throughput
constraint. And the SST can make full use of residual bat-
tery energy as well as ensure enough time for spectrum
sensing and data transmission. A generalized multislot
spectrum sensing paradigm and two types of fusion rules
(data fusion and decision fusion) are proposed in [12].
The authors focus on the trade-off of “harvesting-sensing-
throughput” and joint optimization for save ratio, sensing
duration, and sensing threshold as well as fusion rule to
maximize the expected achievable throughput of SUwhile
keeping the protection to PU. A POMDP is proposed
in [13] to trade off energy consumption and throughput
gain in hybrid CRN, where SU dynamically determines
its operation mode for each time slot ( e.g., to be idle or
to transmit), sensing time, and access mode. In [14], for
an overlay EH CRN, the authors aim to find an optimal
sensing time to maximize throughput of SU and harvested
RF energy. Most of the existing works only investigate
OPA problem in CR system with single user, which is not
pratical for real communication systems.
Based on the above discussions, we propose an OPA

policy for the EH CRN considering multiusers with the
underlay spectrum accessmodel. And this paper only con-
siders that SUs harvest energy from ambient environment
such as solar [8, 9]. The major contributions of this paper
are as follows:

• We consider the system model with multiple SUs
where each SU transmitter is equipped with an EH
device. In our study, we focus on the maximization of
the average throughput of the secondary system

within K time slots under the maximum
transmission power constraint, the minimum
throughput constraint of SUs, and the interference
power constraint defined by PU. The proposed
algorithm can maximize average throughput and
satisfy all constrains simultaneously to achieve better
performance for SUs and the QoS of PU.

• Orthogonal frequency division multiplexing access
(OFDMA) scheme is used in the process of spectrum
sharing, where the available spectrum is divided into
a set of subcarriers. The optimal transmission power
of each SU can be obtain by using dynamic
programming (DP) algorithm and immediate
optimization solved by the backward induction
method and the Lagrange dual method, respectively.

The rest of the paper is organized as follows. In
Section 2, a system model of EH CRNs, a subcarrier allo-
cation model of SUs, and a subcarrier occupation state
are described. We introduce EH process in Section 3 and
present the throughput optimization problem and the
immediate OPA algorithm. Then, the system state and
the DP-based scheme are formulated, and the backward
induction method is given in Section 4. In Section 5, we
present our simulation results and performance analysis
through the comparison between our proposed policy and
other policies. Finally, the conclusion of the whole paper
is provided in Section 6.

2 Systemmodel
We consider an EH-CR network with a PU and M SUs as
shown in Fig. 1a. Each SU transmitter is equipped with
an EH device. We let the set M = {1, 2, . . . ,m, . . . ,M}
denote the number of SU, and ∀m ∈ M. The PU bands
are divided into N subcarriers, and each of the subcar-
riers with the same bandwidth. We let the set N =
{1, 2, . . . , n, . . . ,N} denote the number of subcarrier, and
∀n ∈ N . The number of the subcarriers occupied by PU is l.
The SU can obtain the channel state information (CSI)
and the working state of PU by spectrum sensing algo-
rithm [15], such as matched filter detection, energy detec-
tion, and multiple identification spectrum detection. We
let PU-Tx and PU-Rx denote the primary transmitter and
receiver, respectively. Similarly, SU-Tx and SU-Rx denote
the secondary transmitter and receiver, respectively.
We consider Rayleigh fading channels modeled as a two-

state Markov chain [16, 17] as shown in Fig. 1b. The
channel gains from PU-Tx to PU-Rx, the mth SU-Tx to
the mth SU-Rx, the mth SU-Tx to PU-Rx, and PU-Tx to
the mth SU-Rx over the nth subcarrier are denoted by
wn, hnm, anm, and bnm, respectively. Moreover, we select the
underlay spectrum access model in which SU has the
opportunity to coexist with PU, while SU must control
the interference to PU under a certain threshold.
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(a)

(b)

Fig. 1 System model and Markov chain model. a Time-slotted EH multiuser CR communication (SU-TX with finite battery capacity). bMarkov chain
model

2.1 Subcarrier allocation model
According to the above system model, we determine a
policy to allocate N subcarriers to M SUs. Both PU and
SU systems use the OFDMA sheme, and we assume that
one subcarrier can only be used by one SU at each time
slot, which means the interference between SUs is not
considered. We consider that each SU can use multiple
subcarriers at each time slot, the subcarriers occupied by
the mth SU can be denoted as the set Km, Km ∈ N .
We define the minimum rate requirement [18] of each SU
denoted as Rm

min,∀m ∈ M. The allocation policy can be
described as follows.
First, we determine the priorities of each SU according

to Rm
min, where the larger value of R

m
min reaches the higher

priority of SU has. Then, the subcarriers that have a good
channel condition and are not occupied by PU can be allo-
cated to SUwith high priority. According to this allocation
policy, we can allocate the subcarriers to SUs.

2.2 Subcarrier occupation state
Since the subcarrier occupation state is constantly chang-
ing over time slot, SU should perform spectrum sensing
to determine the behavior of PU at the beginning of each
time slot. From Fig. 1b, the channel may be in one of the
two states: busy (B) or free (F). The state B denotes that
PU is active; conversely, the state F denotes the inactive-
ness of PU.We considerK time slots in our study; the time
slot set can be defined as K = {0, 1, . . . , k, . . . ,K − 1} and
∀k ∈ K.
We define xnk to indicate the state of nth channel at the

time slot k, which has two possible values

xnk =
{
0, the nthchannel is in state F
1, the nthchannel is in state B (1)

In addition, we define Ok to indicate the state set of all
channels at the time slot k. Let N denotes the total sub-
carriers and l denotes the number of subcarriers occupied
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by PU, then the number of random subcarrier occupa-

tion state can be defined as L =
(
N
L

)
. Therefore, the

elements of Ok can be given by

yi = [
x1k , ......, x

N
k

]T , i ∈ {1, 2, ..., L} (2)

The transition matrix of PU occupation state is defined
as Po. At first, the state transition probability of the nth
channel can be given by

PnBF = Pr
{
xnk+1 = 0|xnk = 1

}
(3)

PnFB = Pr
{
xnk+1 = 1|xnk = 0

}
(4)

The transition probability of Po is defined as

poij = Pr
{
Ok+1 = yj|Ok = yi

}
(5)

and it further can be expressed as

poij =
N∏

n=1
Pr

{
xnk+1|xnk

}
(6)

According to PnBF and PnFB, we can get the value of poij.

3 Optimal power allocation policy
3.1 Energy-harvesting process
Here, we assume that the finite capacity of energy harvest
battery (i.e., energy queue) is attached to each SU trans-
mitter and can be used for signal transmission. We also
consider that the energy harvesters only harvest energy
from ambient environment such as solar. The energy har-
vested packets can be denoted as Emk ∈ e = {e1, e2, ......, eH}
following a Poisson process [9] with mean eλ, ∀k ∈
K, ∀m ∈ M. Thus, its probability distribution can be
described as follows

Pr
(
Emk = ej

) = e−eλ (eλ)j

j!
, j = 1, 2, . . . ,H (7)

Besides, we use Bm
k to represent the remaining battery

energy of the mth SU at the time slot k; therefore, the bat-
tery energy update value at the next time slot k + 1 can be
given by

Bm
k+1 = min

{
Bm
k − pmk T + Emk ,Bmax

}
, ∀k ∈ K (8)

where pm,n
k denotes the transmission power allocated to

themth SU in the nth channel at the time slot k, T denotes
the duration of one time slot, and Bmax is the maximum
battery capacity.

3.2 Problem formulation
In our study, the optimization objective is to maximize
the average throughput of the secondary system within K
time slots. We define SINRm,n

k as signal-interference-noise

radio (SINR) of the mth SU in the nth channel at the time
slot k, and

SINRm,n
k = hm,n

k pm,n
k

am,n
k pp,nk + σ 2

, ∀m,∀n (9)

then defined

gm,n
k = hm,n

k
am,n
k pp,nk + σ 2

, ∀m,∀n (10)

where pp,nk denotes the transmission power of PU in the
nth channel at the time slot k , and σ 2 is the noise power.
Therefore, the throughput of themth SU at the time slot k
can be defined as

Rm
k =

N∑
n=1

log2
(
1 + gm,n

k pm,n
k

)
, ∀m (11)

And the optimization problem can be formulated as
OP1

max
pm,n
k

E
{

1
K

K−1∑
k=0

N∑
n=1

M∑
m=1

log2
(
1 + gm,n

k pm,n
k

)}

s.t. C1 :
N∑

n=1
pm,n
k ≤ Bmk

T , ∀m,∀k

C2 :
N∑

n=1

M∑
m=1

bm,n
k pm,n

k ≤ Ith, ∀k
C3 : Rm

k ≥ Rm
min, ∀k

C4 : pm,n
k ≥ 0, ∀m,∀n,∀k

(12)

where E {·} denotes the expectation of the channel gain
distribution and the subcarrier-occupied state at each
time slot. C1 denotes the maximum transmission power
constraint, and Bm

k /T is the total transmission power bud-
get for the mth SU at the time slot k. This constraint can
ensure the transmission power of each SU at each time slot
not to exceed the energy budget. C2 denotes the interfer-
ence power constraint to guarantee the interference to PU
remains under Ith, where Ith is the interference threshold
prescribed by the PU receiver. C3 represents the mini-
mum throughput constraint which can keep the through-
put above the minimum throughput requirement in the
network. The constrain C4 can make the transmission
power of SU conform to the actual situation.

3.3 Immediate optimization problem solution
To solve the optimal problem OP1, we consider both
the throughput at the current time slot and the future
throughput. In order to simplify the problem, we setK = 1,
that means we only consider the optimal problem at one
time slot. Therefore, we can formulate the immediate
optimization problem asOP2
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max
pm,n
k

N∑
n=1

M∑
m=1

log2
(
1 + gm,n

k pm,n
k

)
s.t. C1 ∼ C4

(13)

OP2 is a convex problem which can be solved by the
Lagrange dual method [19]. First, we define the Lagrange
function

L
({
pm,n
k

}
, {λm} ,μ, {ξm})

=
N∑

n=1

M∑
m=1

log2
(
1 + gm,n

k pm,n
k

) −
M∑

m=1
λm

( N∑
n=1

pm,n
k − Bm

k /T
)

−μ

( N∑
n=1

M∑
m=1

bm,n
k pm,n

k −Ith
)

−
M∑

m=1
ξm

(
Rm
min−

N∑
n=1

log2
(
1+gm,n

k pm,n
k

))

(14)

where λm, μ, ξm ≥ 0 are the Lagrange multipliers. The
dual variable λm relates to the maximum transmission
power constraint, the dual variable μ connects with the
interference power constraint, and the dual variable ξm
contacts with the minimum throughput constraint.
Moreover, the dual problem of the Lagrange function is

D ({λm} ,μ, {ξm})
= max{

pm,n
k

} L
({
pm,n
k

}
, {λm} ,μ, {ξm})

=
M∑

m=1
max{
pm,n
k

} Lm
({
pm,n
k

}
, λm,μ, ξm

)+ M∑
m=1

λm
(
Bm
k /T

)

+μIth −
M∑

m=1
ξmRm

min

(15)

where
Lm

(
pm,n
k , λm,μ, ξm

)
=

N∑
n=1

log2
(
1 + gm,n

k pm,n
k

) − λm

( N∑
n=1

pm,n
k

)

−μ

( N∑
n=1

bm,n
k pm,n

k

)
+ ξm

( N∑
n=1

log2
(
1 + gm,n

k pm,n
k

))

(16)

The dual optimization problem d∗ of (13) can be formu-
lated as

min
λm,μ,ξm≥0

D (λm,μ, ξm) ,∀m (17)

Since Lm is a convex function, according to the Karush-
Kuhn-Tucker (KKT) conditions [20], the optimal trans-
mission power pm,n

k at the mth SU transmitter can
be calculated by ∂Lm/∂pm,n

k = 0. Thus, the optimal
solution is

pm,n∗
k =

[
(1 + ξm)

ln 2
(
λm + μbm,n

k
) − 1

gm,n
k

]+
(18)

where [·]+ = max (0, ·).
The Lagrange multipliers λm, μ, and ξm should ensure

a fast convergence rate. We can use the sub-gradient
methods to update these multipliers, and their recursive
forms are

λm (i + 1) =
[
λm (i) + α1

( N∑
n=1

pm,n
k − Bm

k /T
)]+

(19)

μ (i + 1) =
[
μ (i) + α2

( N∑
n=1

M∑
m=1

bm,n
k pm,n

k − Ith
)]+

(20)

ξm (i+1)=
[
ξm (i)+α3

(
Rm
min−

N∑
n=1

log2
(
1+gm,n

k pm,n
k

))]+

(21)

where i denotes the iteration number. α1, α2, and α3 ≥
0 are small step sizes. The proper selection of the step
size can ensure the stability and convergence of this dual
algorithm [21]. Finally, we can get the optimal solution
pm,n∗
k . Then, by taking this solution into (11), the optimal

throughput of each SU can be calculated.
Thus, our proposed immediate OPA algorithm can be

summarized as Table 1.
However, this solution does not directly apply to the

multiple time slots, namely, K > 1, in which we should
balance the current throughput and the expected future
throughput. According to our system model, the subcar-
rier occupation state, the harvested energy state, and the
total energy budget are all time-varying state. In order
to further develop this problem for K > 1, we use DP
algorithm, which will be introduced in the next section.

4 Dynamic programming formulation and
backward inductionmethod

4.1 System state
Considering the future expected throughput, the transi-
tion probability of the system state should be determined.

Table 1 Immediate OPA algorithm introduction

Algorithm 1 Immediate OPA algorithm

1: Initialization: set i = 0, λm (0) > 0,μ (0) > 0, ξm (0) > 0;

α1 (0) > 0,α2 (0) > 0,α3 (0) > 0; Ith > 0, Rmmin > 0;

2: Solve the optimization problem (13) to obtain pm,n
k , ∀k,

thus we can get the throughput of the secondary system;

3: Update the Lagrange multiplier by (19) ∼ (21);

4: Update the transmission power pm,n
k by (18);

5: Go to 2 until
∣∣p̂m,n

k (i + 1) − p̂m,n
k (i)

∣∣ ≤ ε, where ε represents

iteration precision usually a very small positive constant;

6: End: The optimal transmission power pm,n∗
k can be calculated

by (18), and take pm,n∗
k into (11), the optimal throughput can

be obtained.
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Through the introduction of the previous section, we
know that the system states include the subcarrier occu-
pation and the harvested energy which are independent of
each other. Since the process of EH for each SU is inde-
pendent, the states of harvested energy for each SU are
also independent.
We define the system state as Sk ,∀k ∈ K, and the num-

ber of system state is J = L × HM. The elements of Sk can
be described as follows

si = (
yg , eh1 , eh2 , . . . , ehM

)
,

∀i ∈ {
1, 2, ......, L × HM}

∀g ∈ {1, 2, ......, L}
eh1 , eh2 , . . . , ehM ∈ e = {e1, e2, ......, eH}

(22)

We use Ps to denote the transition matrix of the sys-
tem state, and its dimension is D = J2 = (

L × HM)2. We
assume Sk+1 = sj at the time slot k + 1, where

sj = (
yf , eH1 , eH2 , . . . , eHM

)
,

∀j ∈ {
1, 2, ......, L × HM}

∀f ∈ {1, 2, ......, L}
eH1 , eH2 , . . . , eHM ∈ e = {e1, e2, ......, eH}

(23)

Therefore, the transition probability of Ps can be
given as

psij = Pr
{
Sk+1 = sj|Sk = si

}
= Pr

{
Ok+1 = yf |Ok = yg

} M∏
m=1

Pr
(
Emk+1 = eHm

)

(24)

According to (5), (6), and (7), the transition probability
can be calculated.

4.2 Dynamic programming formulation
In this section, we define a DP formulation [22] to solve
the optimization problem OP1. We define a reward func-
tion which can be understood as a maximum of the sum of
the throughput at the current time slot and the expected
cumulative throughput at the future time slot from the
current system state. We set Vk

(
B1
k ,B

2
k , ......,B

M
k , Sk

)
to

denote the reward function at the time slot k , which is a
function of the current energy budget Bm

k of each SU and
the current system state Sk , and it can be expressed as

Vk
(
B1
k ,B

2
k , ......,B

M
k , Sk

)
= max

pm,n
k

E
{
K−1∑
t=k

N∑
n=1

M∑
m=1

log2
(
1 + gm,n

k pm,n
k

)}
, ∀k ∈ K

(25)

4.3 Backward induction method
The backward induction method [23] can be used to solve
(25). The immediate reward function at the current time
slot can be defined as Rk

(
B1
k ,B

2
k , ......,B

M
k , Sk

)
, while we

setVk+1
(
B1
k+1,B

2
k+1, ......,B

M
k+1, Sk+1

)
to denote the future

reward function at the next time slot k + 1.

Since we consider the time slot set as K =
{0, 1, . . . ,K − 1}, the reward function at time slot K is

VK
(
B1
K ,B

2
K , ......,B

M
K , SK

) = 0 (26)

For k = K −1,K −2, . . . , 0, the reward functions can be
expressed as

VK−1
(
B1
K−1,B

2
K−1, ......,B

M
K−1, SK−1

)
= max

pm,n
k

{
RK−1

(
B1
K−1,B

2
K−1, ......,B

M
K−1, SK−1

)} (27)

Vk
(
B1
k ,B

2
k , ......,B

M
k , Sk

)
= max

pm,n
k

{
Rk

(
B1
k ,B

2
k , ......,B

M
k , Sk

) +

E
[
Vk+1

(
B1
k+1,B

2
k+1, ......,B

M
k+1, Sk+1

)]} (28)

V0
(
B1
0,B

2
0, ......,B

M
0 , S0

) =
max
pm,n
k

{
E

[
V1

(
B1
1,B2

1, ......,B
M
1 , S1

)]} (29)

Thus, the reward function can be further calculated in
the time-reversal order.
1) Time slot k = K − 1

VK−1
(
B1
K−1,B

2
K−1, ......,B

M
K−1, SK−1

)
= max

0≤pmK−1≤BmK−1

{
RK−1

(
B1
K−1,B

2
K−1, ......,B

M
K−1, SK−1

)}
(30)

where pmK−1 =
N∑

n=1
pm,n
K−1, ∀m ∈ M. In this case, we only

need to consider the immediate reward function, which
can be achieved when the transmission power of each SU
on each subcarrier satisfies the optimal solution (18).
2) Time slots from k = K − 2 to k = 1

Vk
(
B1
k ,B

2
k , ......,B

M
k , Sk = i

)
= max

0≤pmk ≤Bmk

{
Rk

(
B1
k ,B

2
k , ......,B

M
k , Sk = i

) +
E

[
Vk+1

(
B1
k+1,B

2
k+1, ......,B

M
k+1, Sk+1 = j

)]}
= max

0≤pmk ≤Bmk

{
Rk

(
B1
k ,B

2
k , ......,B

M
k , Sk = i

) +
J∑

j=1
psijVk+1

(
B1
k+1,B

2
k+1, ......,B

M
k+1, Sk+1 = j

)}

(31)

where Bm
k+1 can be updated by (8), ∀m ∈ M. Through

the state transition probability psij, we can get the expected
reward function. By considering the trade-off between the
current reward and the potential reward at next time slot,
we can get the optimal transmission power.
3) Time slot k = 0

V0
(
B1
0,B2

0, ......,BM
0 , S0 = i

)
= max

0≤pm0 ≤Bm0

{
E

[
V1

(
B1
1,B2

1, ......,B
M
1 , S1 = j

)]}

= max
0≤pm0 ≤Bm0

{
J∑

j=1
psijV1

(
B1
1,B2

1, ......,B
M
1 , S1 = j

)} (32)
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where Bm
0 denote the energy budget for SUs at the begin-

ning of transmission, ∀m ∈ M, and S0 is the system initial
state. At the initial time slot, we only need to satisfy the
maximum of the expected reward at time slot k = 1.
Therefore, our DP power allocation algorithm can be

summarized as Table 2.
As we can see, the results can be stored by a table

with the time slot index; according to this table, SUs can
determine the optimal transmission power.

4.4 Performance analysis
We first analyze the performance of immediate power
allocation algorithm. This algorithm can guarantee the
interference of PU below a certain threshold and the
throughput of each SU above a proper threshold at each
time slot.
From (19) to (21), we can see that the Lagrange mul-

tipliers can be updated only by local information, which
can effectively improve the calculate speed and reduce
the algorithm complexity. If the transmission power pm,n

k

is relatively high, it will result in
N∑

n=1
pm,n
k > Bm

k /T and

N∑
n=1

M∑
m=1

bm,n
k pm,n

k > Ith, which violates the constraint

conditions, so that λm and μ will increase and ξm will
decrease. Following (18), we can find pm,n

k will reduce. As
a result, the transmission power can be adjusted to sat-
isfy the constraint conditions. However, this power does
not infinitely decrease, if pm,n

k becomes relatively small, λm
and μ will decrease and ξm will increase. Therefore, pm,n

k
will increase and goes back to the appropriate range. This
adaptive iterative process can ensure good QoS for both
PU and SU.
Based on the Lipschitz continuity [24] of the dual

function and the proper step parameters of the Lag-
range multipliers, this algorithm can converge quickly.
According to the Lipschitz continuity, there exist
a Lipschitz constant δ which can make the func-
tion d∗(λm,μ, ξm) satisfy the following condition:

Table 2 DP power allocation algorithm

Algorithm 2 DP power allocation algorithm

1: Input all statistics of the channel gain information,
subcarriers occupation state and EH process;

2: For k = 0, 1, . . . , K − 1:

Calculate and store Rk for all system states according
to Algorithm 1;

3: For k = K − 1, K − 2, . . . , 0:

Calculate and store Vk for all system states based on
(30), (31) and (32);

Then, calculate and store pm,n∗
k = argmax

pm,n
k

Vk .

‖d∗(λ1, μ1, ξ1) − d∗ (λ2,μ2, ξ2) ‖2 ≤ δ
∥∥[λ1, μ1, ξ1]T −

[λ2,μ2, ξ2]T
∥∥
2, where λ1, λ2 ∈ λm,μ1, μ2 ∈ μ, ξ1, ξ2 ∈

ξm, and ‖·‖2 denotes the norm of vector. Thus, we can
determine the dual function d∗ of (13) is uniformly con-
tinuous. When pm,n

k satisfies all constraints C1 to C4 with
λm, μ and ξm ≥ 0,

(
pm,n
k

∗, λ∗
m,μ∗, ξ∗

m
)
can converge to a

feasible region. Owing to the duality property between
the dual problem and the original problem, the immediate
power allocation algorithm can converge to the optimal
solution.
Using the immediate power allocation algorithm, we

can realize DP power allocation algorithm with consid-
eration of the throughput optimization problem for the
whole K time slots. We store the system state Sk , the
energy budget level Bm

k , the immediate reward function
Rk , and the reward function Vk in a look-up table index-
ing with the time slot, which contains all the possible
situations. Therefore, each SU can determine his optimal
power policy from this table which greatly reduces the
computational complexity.

5 Simulation results
In this section, we present some simulation results to eval-
uate our proposed algorithm by comparing with two poli-
cies. The first policy is the conservative power policy. We
use this scheme to allocate half of available energy to each
time slot for power allocation, i.e., pmk = Bm

k /(2T), ∀k ∈ K.
The second policy is the greedy power policy which uses
whole available energy for power allocation at each time
slot, i.e., pmk = Bm

k /T , ∀k ∈ K.
In our simulations, we assume that there are four SUs,

i.e., M = 4, one PU, and eight subcarriers, i.e., N =
8. In addition, this PU occupies two subcarriers in each
time slot. As the result, the number of subcarrier occu-
pation state is twenty-eight, i.e., L = 28. We assume
that the total transmission power of the primary user is
constant, and average allocation in each occupied subcar-
riers. The throughput performance is compared over the
total bandwidth of B = 1 MHz. The channel suffers with
the frequency-selective fading by a six-ray Rayleigh model
with exponential profile and maximal 5μsmultipath delay
[8]. Moreover, we define the maximum battery capacity of
each SU is 5 J, i.e., Bmax = 5J. Thus, the total energy bud-
get of the secondary system is 20 J. We set T = 1 s, and
the energy budget and the transmission power with res-
olutions of 0.5 J and 0.5 W, respectively. The minimum
throughput of each SU, i.e., Rm

min, is a positive constant
depending on the energy budget at current time slot. We
set R1

min > R2
min > R3

min > R4
min, which means the

priority of SUs is SU1, SU2, SU3, and SU4. The interfer-
ence temperature (IT) at the PU receiver is Ith = 0.1W.
The simulation results are presented in Figs. 2, 3, 4, 5, 6,
and 7.
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Fig. 2 Convergence of average throughput of each SU under one
time slot

Figure 2 shows the convergence of the average through-
put of four SUs with the proposed algorithm, respectively.
In this simulation, we set the energy budget of each SU
as 5 J. From Fig. 2, we can clearly see that this scheme
can quickly converge to the equilibrium point. Obviously,
Fig. 2 show that the average throughput of SU1 is the
best of all SUs, and the average throughput of SU4 is less
than all SUs. The reason is that according to the prior-
ity of SUs and the subcarriers allocation model, the SU
with higher priority can transmit data under good channel
condition. However, SU4 must deal with the interference
power constraint to ensure the QoS of PU.
In Fig. 3, we consider the average throughput compar-

isons among our proposed power allocation policy, the
conservative power policy, and the greedy power policy.
We compare the average throughput of the secondary
system on the variation of total energy budget. From this
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Fig. 3 Performance comparison among the policies with different
total energy budget under K = 5
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Fig. 4 Performance comparison among the policies with different
number of time slot

figure, we know that the average throughput of our pro-
pose policy is much higher than those of the other two
policies over the examined range of total energy budget,
since our policy considers not only the immediate OPA
but also the whole time slot transmit performance. In
addition, the average throughput increases for all three
policies with the increase of the total energy budget,
since the increase of the energy budget means we have
more energy for power allocation for the increase of the
throughput. But this throughput increases much more
rapidly through our policy.
Figure 4 shows the comparisons of total throughput

among three policies on the variation of time slot. In this
case, we also set the energy budget of each SU is 5 J. Obvi-
ously, the throughput of our policy increases significantly
with the increase number of time slot. Moveover, we can
find that our policy has the best performance among the
three policies over the whole range of number of time
slot. From the simulation result, we can conclude that our
policy can guarantee optimal performance for long-run
operations.
Figure 5 illustrates the comparison of interference

power at PU receiver for three policies. We set the IT level
as Ith = 0.1 W. Figure 5a provides the convergence of
the interference power under arbitrary time slot. It is clear
that the interferences from three algorithms can quickly
converge to their stable points, and these three policies
can guarantee the interference power at the PU receiver
below the IT level. Figure 5b presents the average interfer-
ence comparisons among three policies on the variation
of total energy budget under K = 5. We can find that
with the increase of the total energy budget, three average
interferences increase gradually and are always less than
the IT level even if the energy budget reaches the battery
capacity. From Fig. 5a, b, we can see that the interference
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(a)

(b)
Fig. 5 Interference power comparison among three policies.
a Convergence of interference under one time slot. b Average
interference with different total energy budget under K = 5

from our policy is slightly higher than those of other two
policies under the premise of the interference power con-
straint, i.e., 0.01 W ∼ 0.02 W. Moreover, from Figs. 3, 4,
and 5, we conclude that the proposed policy can provide
better throughput performance of the secondary system
at the cost of little more interference at the PU receiver
within the tolerance of PU.
To show the impact of different IT level on the system

performance, Fig. 6 presents the average throughput on
the variation of the IT level with different energy budget.
From Fig. 6, we find that the average throughput increases
first then tends to a constant value with the increasing
of the IT level. The reason for this phenomenon is that
the higher IT level attains, the higher interference power
can be tolerated by PU. Thus, SU can get more trans-
mission power for more throughput. Meanwhile, due to
the constraint of the energy budget in our policy, the

Fig. 6 Average throughput with different IT level and energy budget
under one time slot

transmission power will eventually tend to a constant
value. In addition, the interference power constraint rep-
resents the distance, with the increasing distance between
SU and PU; more transmit power is allocated to achieve
higher throughput.
Finally, in Fig. 7, we present the average throughput on

the variation of the number of time slot of our proposed
algorithm for different IT levels. In this simulation, we set
the energy budget of each SU is 0.5 J. From Fig. 7, we
can find that the higher IT level can obtain higher total
throughput. Since that if PU can tolerate higher interfer-
ence power, SUs can be allocated with higher transmission
power. From other perspective, with the increase number
of time slot, the overall trend of throughput goes up. How-
ever, the throughputs at K = 6, 9 slightly decrease, since
the channel gain, the subcarrier occupation state, and
the harvested energy state are random at each time slot.
According to Figs. 6 and 7, we can get the conclusion that
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Fig. 7 Total throughput with different number of time slot and IT level
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it is necessary to choose an appropriate IT level to balance
the PU protection and the secondary system performance.

6 Conclusions
In this paper, we study the OPA problem in the EH CRN
and propose an OPA policy to maximize the average
throughput of the secondary system within K time slots,
where the maximum transmission power constraint, the
interference power constraint, and theminimum through-
put constraint are considered. The optimal transmission
power in each time slot can be obtained by joint uti-
lization of the immediate OPA algorithm and the DP
method. The simulation results show that, compared with
the conservative power policy and the greedy power pol-
icy without DP approach, our policy can achieve better
throughput performance on the variation of total energy
budget and the number of time slot. Meanwhile, our
algorithm can provide well protection for the basic com-
munication of PU through introduction of interference
power constraint. However, this policy improves the per-
formance of the secondary system at the expense of little
more interference compared with the other two policies.
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