Wu et al. EURASIP Journal on Wireless Communications and
Networking (2018) 2018:13
DOI 10.1186/s13638-017-1018-9

EURASIP Journal on Wireless
Communications and Networking

RESEARCH Open Access

Energy-efficiency opportunistic spectrum

@ CrossMark

allocation in cognitive wireless sensor network

Cheng Wu ®, Yiming Wang" and Zhijie Yin

Abstract

spectrum allocation

The developments in wireless sensor network (WSN) that enriches with the unique capabilities of cognitive radio
technique are giving impetus to the evolution of Cognitive Wireless Sensor Network (CWSN). In a CWSN, wireless
sensor nodes can opportunistically transmit on vacant licensed frequencies and operate under a strict interference
avoidance policy with the other licensed users. However, typical constraints of energy conservation from battery-
driven design, local spectrum availability, reachability with other sensor nodes, and large-scale network architecture
with complex topology are factors that maintain an acceptable network performance in the design of CWSN. In
addition, the distributed nature of sensor networks also forces each sensor node to act cooperatively for a goal of
maximizing the performance of overall network. The desirable features of CWSN make Multi-agent Reinforcement
Learning (RL) technique an attractive choice. In this paper, we propose a reinforcement learning-based transmission
power and spectrum selection scheme that allows individual sensors to adapt and learn from their past choices and
those of their neighbors. Our proposed scheme is multi-agent distributed and is adaptive to both the end-to-end
source to sink data requirements and the level of residual energy contained within the sensors in the network. Results
show significant improvement in network lifetime when compared with greedy-based resource allocation schemes.
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1 Introduction

Wireless sensor network (WSN) is one of the most com-
pelling technologies for performing various tasks such
as disaster recovery [1], environmental monitoring [2],
remote surveillance [3], non-destructive testing of struc-
tures [4], military communication [5], and industrial
automation [6]. It is composed of small and resource-
constrained wireless sensor nodes that are generally
deployed on a large scale and suited for particular appli-
cations. Traditional sensor nodes in a WSN use a fixed
spectrum assignment policy for data transmission, and
the performance is limited due to restricted processing
and communication power. In recent years, more and
more applications such as multimedia wireless sensor net-
works [7] are posed to change the classical data-only,
delay tolerant assumptions in the design of such networks.
In addition, with the increasing number of commercial
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applications, sensors are being deployed in densely pop-
ulated areas and may experience more significant levels
of interference in the unlicensed frequency bands. Thus,
the need to propose a frequency-agile design leads to
rapid development of Cognitive Radio (CR) in WSN,
which can flexibly choose their spectrum of transmission,
regulate their transmit power, and thereby support high-
bandwidth applications with enhanced network lifetime.
Cognitive Radio Networks (CRN) allow for opportunis-
tic use of the licensed spectrum bands, under the con-
straint that the operation of the licensed users of the bands
are not affected [8]. Specifically for CR-based WSN, the
nodes in a sensor network operate independently of each
other, owing to their correlated measurements. They may
sense the same spectrum to be vacant [9]. Thus, how to
share the available spectrum fairly with minimum mes-
saging between the sensor nodes is a critical component
of the CR-based framework of WSN. In addition, CWSN
still impose great challenges due to the distributed multi-
hop architecture, the dynamic network topology, and
diverse quality-of-service (QoS) requirements [10]. The
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major challenges necessitate novel design techniques that
simultaneously integrate theoretical research of learning
theory. Considering that interacting with network envi-
ronment, learning from past experience and adapting its
functioning in a CWSN, Reinforcement Learning with the
ability of interaction with environment, as well as multi-
agent system in the level of network architecture, are
adjacent to improve spectrum utilization.

Machine learning, a field of artificial intelligence, can
be used to solve search problems using prior knowl-
edge, known experience, and data. Many powerful
computational and statistical paradigms have been devel-
oped, including supervised learning, unsupervised learn-
ing, trial- and-error learning, and reinforcement learning.
These paradigm can struggle to solve large-scale problems
with distributed state and action space. Various solu-
tions to this problem under have been studied, such as
dimensionality reduction, principle component analysis,
support vector machines, and function approximation.
Reinforcement Learning is a biologically inspired model
using Machine Learning technique (ML), in which an
intelligent agent can learn useful knowledge through con-
tinuous trial-and-error interactions with external envi-
ronment [11]. Within a given environment of particular
application domain, an agent does always attempt to take
best (sometimes optimal) actions to maximize long-term
rewards achieved from the environment. The long-term
reward is actually the desired value of accumulated reward
that the agent expects to receive in the future using the
policy, which can be formulated by a value function. The
value function is often represented by a look-up table
that stores values of pairs of states and actions [12].
The dynamic interaction with the environment and the
adaptivity of the learning process are two of the great
causes that motivate RL technique to be used for CWSNss,
mainly for routing and spectrum decision tasks [13, 14]. In
some cases, various solutions based on RL techniques are
proved to work better than traditional approaches [15].
However, the large-scale random deployment and dis-
tributed operation of the sensors makes the task of sharing
the spectrum a non-trivial task.

Multi-agent systems [16] allow to build complex sys-
tems composed of multiple interacting intelligent agents.
Each agent in the system can sense the environment
and achieve its own local knowledge and experience.
The agent can then select behaviors based on local
information and attempt to maximize the global per-
formance of the system [17]. A typical multi-agent sys-
tem is decentralized, without a designated controlling
agent [18]. The distributed network of wireless sensors
and the multi-hop manner to satisfy the application-
specific requirements are two of the key features which
make the multi-agent framework appealing for CWSNs
applications.
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Developing a multi-agent learning-based CWSN has a
benefit of opportunistic access of spectrum holes, there
exists a number of technical issues that need to be
addressed for industry practice. In our previous work
[19], we have proposed some new spectrum management
approaches based on multi-agent reinforcement learn-
ing and some function approximation techniques for CR
ad hoc networks with decentralized control. However,
the CWSN environment has its uniqueness. For exam-
ple, energy consumption is inevitably limited by volume of
batteries in a wireless sensor. Large-scale network topol-
ogy is another important consideration as the nodes can
not rapidly sense global spectrum utilization for oppor-
tunistic access. There exists a need to propose novel
techniques to improve both computational efficiency and
spectrum reuse.

In this work, we describe a reinforcement learning-
based solution that allows each sensor sender-receiver
pair to locally adjust its choice of spectrum, and trans-
mit power, subject to connectivity and interference con-
straints. We model this as a multi-agent system, where
each action, i.e., choice of power and spectrum, earns a
reward based on the utility that is maximized, as shown
in Fig. 1. We propose first, a throughput-only approach,
where the reward is computed primarily based on suc-
cessful transmissions, subject to a pre-decided threshold
on the interference offered to the licensed or primary
users (PUs). As an intuitive example, higher transmis-
sion power results in improved SNR at the receiver, but
also increases the intra-network sensor-sensor and inter-
network sensor-PU interference in the CWSN. Thus, our
scheme demonstrates how power and spectrum can be
jointly chosen in a distributed manner to reach an opti-
mal assignment. Our second contribution incorporates
energy costs in the reward assignment, where a higher
rate of energy consumption is penalized. Thus, a sen-
sor that depletes its energy beyond a permissible rate is
forced to lower its spectrum switching instants and trans-
mit at lower powers. Each spectrum change involves an
added messaging overhead of coordinating the new fre-
quency and transmission parameters on the link and, thus,
must also be limited along with the transmit power. Our
reward function appropriately weights the gain obtained
by successful transmissions and the energy costs to
ensure that the CWSN stays connected for long periods
of time.

The rest of this paper is organized as follows. Section 2
describes the related work in the use of learning theo-
ries for sensor networks. Section 3 presents the network
architecture and problem formulation. Section 4 describes
the application of our multi-agent reinforcement learning
scheme, and Section 5 presents our proposed approaches.
We undertake a thorough performance evaluation in
Section 6, and finally, Section 7 concludes our work.



Wu et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:13

Page 3 of 14

Fig. 1 Multi-agent learning framework for typical CWSNs
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2 Related work

In recent years, a lot of researchers used cognitive radio
to improve the performance of wireless communication.
Letaief presented a cognitive space-time-frequency cod-
ing technique that can opportunistically adjust its coding
structure by adapting itself to the dynamic spectrum envi-
ronment [20]. Soyeon Kim proposed a CR operational
algorithm for mobile cellular systems, which was appli-
cable to the multiple secondary user environment [21].
These results proved CR technology can significantly
reduce interference to licensed users, while maintaining a
high probability of successful transmissions in a cognitive
radio (CR) ad hoc network.

There have been several proposed solutions for spec-
trum sensing and sharing for distributed ad hoc net-
works, and these implementations are mainly developed
for the link layer [22, 23]. For spectrum allocation, a
graph-coloring scheme based on network structure is
proposed in [24], where a topology-optimized allocation
algorithm is used for the fixed topology which involves
advance knowledge of the PU interference regions at a
central network entity. Cao and Zheng [25] proposed a
distributed scheme of local bargaining-based spectrum
re-utilization, in which CR users continuously negotiate
spectrum assignment with “local self-organized groups”.
The scheme uses a poverty threshold to ensure min-
imum usage of channel allocation to each user and
further guarantees the fairness of each user. However,
most of these spectrum management frameworks have
been shown to be awkward to solve non-cooperative
spectrum sharing.

The computer engineering machine learning commu-
nity has begun to develop algorithms that allow collec-
tions of agents to learn to cooperate and compete with
one another [26, 27]. There are performance guaran-
tees on the quality of the resulting learned algorithms
[28, 29] and these algorithms have been applied to a lim-
ited set of problems [30, 31]. In recently, [32] propose an
energy-efficient game-based spectrum decision (EGSD)
scheme for cognitive radio sensor networks to extend the
network lifetime.

The artificial intelligence community has worked to
develop game playing algorithms that allow agents to
search for optimal moves and learn the biases and weak-
nesses of a human (or computer) opponent [33-35]. Envi-
ronments where agents may behave randomly, or using
some other suboptimal strategy such as a human strategy,
are being developed using opponent modeling [36—-38]. In
[39], the principle from the game theory is employed to
analyze the behavior of the CR user for adaptively assign
frequency channels by keeping transmission power con-
stant. For those of resource-constrained networks, such
as WSNs and ad hoc networks, a natty rule-based device-
centric spectrum assignment mechanism is proposed in
[25]. It shows that most of cooperative cases can be mod-
eled using a strategical rule, which can converge to a pure
value of Nash-equilibrium.

Very little work has been published in the issue about
comprehensive consideration of both spectrum and trans-
mission power. Parekh et al. tried to assign a channel in
a fixed power level to only one transmission every time
in order to avoid intra-channel interference with other
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neighbors in [40]. It shows that using such an orthogo-
nal scheme in spectrum and power allocation is optimal
for achieve the maximum capacity of the entire network.
In [41], not only single channel but also multiple channels
using “asynchronous distributed pricing scheme” are fur-
ther proposed, in which every CR user transfers its inter-
ference price, including the information about channel
and power level, to other nodes. Although the approach
considers both channel and power allocation at the same
time, it does not address heterogeneous spectrum avail-
ability over time and space, or interference to the PUs
which distinguishes CR networks from the classical wire-
less counterparts. Lunden et al. [10] gives a high-level
survey of machine learning approaches to cognitive radio,
but does not describe any experimental results. Yau [6]
and Wang [42] evaluate the effectiveness of reinforcement
learning in achieving context awareness in CR sensor
networks, but do not consider energy effects.

In addition, Xiong et al. studied the group coopera-
tion algorithm for optimal resource allocation in wire-
less powered communication network (WPCN) [43, 44].
These studies describe the optimization of energy coop-
eration and time allocation between different groups of
sensor nodes, enabling the two groups to achieve the
desired information transfer. By optimizing the time allo-
cation, power allocation, and SWIPT beamforming vec-
tors under the available power constraints and two sets
of QoS requirement constraints, the system WSR is max-
imized and its overall power consumption is minimized.
At the same time, he also studied the energy efficiency
(EE) in multiple relay-assisted OFDM systems, which
uses decoding-forward (DF) relay beamforming to aid in
the transmission of information [45]. These studies give
another feasible idea of the improvement of energy effi-
ciency in WPCN, which has a positive inspiration for
our research.

3 Network architecture and problem formulation
3.1 Network architecture
Now, we give a brief description about our network archi-
tecture. More detailed can be found in [19, 38, 46]. There
are a few PUs that are distributing in a spatially overlapped
region with the sensor nodes of WSN. These individual
sensor nodes are working as CR users, all of which can
communicate each other. Each sensor makes decisions
on selecting its own channel frequency and transmission
power independently of the others in the neighborhood.
In the wireless environment, we assume perfect sens-
ing, that is, all sensors that are within the PU’s trans-
mission range can exactly infer whether the interference
of the PUs is present or not. For the case of imperfect
sensing, the wireless sensor network environment can
be formulated as a partially observable Markov Decision
Process (POMDP) problem. A typical solution is to use
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cooperative scheme to compensate for incomplete sensing
information. Further, in the case of collision, the sensor
can also detect whether the colliding node is a PU trans-
mitter, or another sensor. In order to realize the scenario,
we keep the power level of this PU transmitter an order
of magnitude higher than the sensor, and this is readily
verified in context of physical transmitters. Once energy
detection is performed, the receiving sensor observes the
received signal energy. If several multiples greater than
the sensor-only case, it means that the collision occurs
exactly with a PU transmitter. The information is returned
back to the sender via a predefined control channel. The
kind of simple energy-based PU detection is often called
the fast sensing [6]. Another detection method is the fine
sensing, which applies feature-based detection to catego-
rize the PU signal according to its signature in order to
understand the characteristics of the PU traffic. The fine
sensing is more advanced and takes longer duration. Once
the location of a PU receiver is unavailable or unknown,
such the case is also considered as the occurrence of PU
interference. It is because that there exists a potential col-
lision in the range of the PU receiver due to concurrent
transmission of any sensor. Thus, our network architec-
ture is conservative, which does overestimate the effect of
PU interference and guarantee strictly the performance of
entire network.

Within the architecture, all of CR users have to correctly
monitor spectrum utilization and continuously detect the
presence of the PUs. According to the collected infor-
mation and the changing demands of the higher layers,
the system still need a more flexible capability to reorga-
nize the front-end of radio environment. This capability
can be realized by the cognitive cycle [47] including four
functions about spectrum management:

e Spectrum sensing: perceiving the portions of the
spectrum currently available

e Spectrum decision: selecting the best available
spectrum

® Spectrum sharing: coordinating the priority to access
this channel with other sensors

e Spectrum mobility: exactly vacating the channel
when the access of a licensed agent is detected

Our design of network architecture attempts to use
two critical techniques to enrich with these unique cog-
nitive capabilities. Firstly, the tasks of spectrum sensing
and sharing can be performed effectively by leveraging
RL technique, wherein the patterns of transmit rules from
particular interferers can be learned and recognized. Sec-
ondly, by constructing a multi-agent system of CR users
and exploiting its unique mechanism of agent interaction,
the network can converge to the solution to safeguard
the fairness of spectrum sharing and fast recovery if the
spectrum is reclaimed by a PU.
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3.2 Problem formulation

We have formulated our application domain of CWSN
in the preliminary work [19]. Now, we summarize and
further supplement as follows.

3.2.1 Choice of power level and spectrum

We denote the transmission power of the ith sensor node
as P! . The transmission range and interference range of
the ith sensor node are given by Ry, and Rifi, respectively.

The attenuated power incident as P}, at the jth receiver
can be calculated by the free-space path-loss equation,
that is,

where

D' — the actual distance between the jth receiver and the
ith sensor node

B — the exponent parameter of path-loss

o — the function of frequency f* chosen by the transmis-
sion sensor i

2

- ()
¢ — the speed of light

The values of power levels are discrete, and a jump from
one given value to another is feasible in any consecutive
time slot. A choice of spectrum by the sensor node, or
CR user i is actually the choice of the frequency given
by f© € F, where F represents the collection of licensed
frequency bands.

3.2.2 Typical network scenarios
Typical network scenarios for different conditions are as
follows, described in Fig. 2:

e Link disconnection: In wireless sensor network,
power shortage at sensor nodes often leads to link
disconnection. If the power P of the ith receiver is
less than the preset threshold Py, then all the packets
would be lost [48]. In such the scenario, the sender
should fast jump its higher level of transmission
power in order to reestablish a new link. We punish
the scenario by applying a negative reward, which is
exacly —15 in our frameworks.

® PU-sensor interference: It occurs when a PU and any
sensor node concurrently select the same spectrum
for transmission. Note that we can allow the
occurrence of packet collision among the CR users,
though it reduces the throughput of the entire
network. But, we must strictly avoid the concurrent
use of the spectrum shared with a PU. It violates the
principle of protection of the licensed devices.
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e CWSN intra-network collision: If a packet collision
occurs due to the concurrent transmission of another
sensor, then we say that the collision is
intra-network. Collision among the sensors reduces
network throughput, which should be avoided as
much as possible by fair sharing of another available
spectrum. By giving the CR users a reward to choose
the unoccupied channel frequencies, if available, each
pair of sensors can communicate without affecting its
neighbors.

e Channel induced errors: Some frequency bands are
certainly more robust due to lease channel errors
obtained from lower attenuation rates. By selecting
these frequency bands with the lowest packet-error-
rate (PER) from the bit-error-rate (BER), the sensor
nodes reduce the occurrence of retransmissions and
eliminate the possible delays of network.

¢ Bounded energy use: The rate at which a sensor uses
up its energy is a reflection on its approximate
lifetime. Especially in the exploratory stage at the start
of the network, the sensor may aggressively explore
the search space, thereby consuming large amounts
of energy is short durations. This rate of consumption
must level out as the network progresses in its
operation. The reward may be decided also by how
much the current series of actions is depleting the
energy of the sensor. Further details on calculating
this metric are given in Section 6.3.

e Successful transmission: If none of the above
scenarios are observed to be true in a given
transmission slot, then a packet is considered to be
successfully transmitted from a sender to a receiver.

4 Learning framework

A cognitive wireless sensor network can be formalized as
a multi-agent system, in which the sensor agents can sense
their environment, learn network scenarios, and further
optimize their transmission parameters to maximize the
performance of network communication. The formula-
tion does fit quite well within the context of multi-agent
reinforcement learning.

Actually, the overview of applying reinforcement learn-
ing to a cognitive wireless sensor network is illustrated in
Fig. 1 in Section 1. Here, each cognitive sensor works as
a reinforcement agent. All of the agents can sense current
spectrum utilization and perceive their own states, i.e.,
spectrum bands and power levels for transmission. They
then execute spectrum decisions and spectrum mobil-
ity to pick up optimal actions, i.e., channel switching or
power level jumping. Finally, the agents perform spec-
trum sharing to signal transmission. After interacting with
wireless environment, the agents further get their rewards
which are used as the inputs for the coming sensing and
cognitive cycle in next step.
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In a classical RL system, a state includes some infor-
mation that an agent is perceiving from external envi-
ronment. In RL-based CWSN, a sensor agent’s state is its
current spectrum and power value for signal transmission.
In our multi-agent CWSN system, the state is defined as
the set of every agent’s state. We hence denote the system
state at time t as sy, that is,

St = (S-p’p%)t’
where

sp — a vector of spectrum bands across all agents
[5P1,8D2; - SDis -]

pw— a vector of power levels across all agents
[pw1, pwa, ..., pWi, ...]

Here, sp; and pw; are its spectrum band and power level
of the ith agent, and sp; € SP and pw; € PW. Specially,
assume M spectrum bands and N power levels in the sys-
tem, we can index them in the way, SP = {1, 2, ..., M} and
PW ={1,2,..,N}.

An action in reinforcement learning is defined as the
behavior of an agent’s choice from one special state to

another. In RL-based CWSN, the action a of a sensor
allows to either switch from current spectrum to another
new available one in the set SP, or jump from current
power level to another new available one in the set PW.
Here, we denote the system action at time ¢ as dy, that is,

ar = (@),
where
a — a vector of actions over all agents [ ay, ay, ..., a;, ...].

Here, a; is the action of the ith agent, and a; €
{swi tChspectmm: j UmMppower }.

A reward in reinforcement learning shows the desirabil-
ity of an agent’s action chosen under a specific state over
the environment. In our multi-agent CWSN system, the
system reward, denoted as r, is achieved according to net-
work performance and/or network energy consumption.

4.1 Sarsa: online control for CWSN

Reinforcement learning enables learning from feedback
achieved through interactions with an external environ-
ment. The typical algorithm of reinforcement learning is
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implemented as follows. At every time slot ¢, an agent
senses its current state s; and the set of possible actions
Ag,. The agent then chooses its optimal action a € A,
receives a reward 741 from the environment, and moves
to the next state s;11. After a series of continuous interac-
tions, the reinforcement learner would develop gradually
an optimal policy # : § — A which maximizes the
long-term reward

R= ZVF,:,
t

where y is a factor of discounting for subsequent rewards,
which satisfies 0 < y < 1.

In reinforcement learning, one of the most successful
algorithm is Sarsa-learning [11, 49]. The Sarsa-learning
algorithm is an on-policy temporal difference learn-
ing method. The temporal difference learning method
combines the advantages of Monte Carlo methods and
dynamic programming, can be applied to model-free,
ongoing tasks, and has excellent performance. Compared
to Q-learning, Sarsa-learning can select the action to fol-
low the strategy and update the action value function
to follow the same strategy. Q-learning way can sim-
plify the execution of algorithm analysis and convergence
difficulty, but Sarsa-learning has a higher learning effi-
ciency and faster convergence rate [50]. The algorithm
employs a simple update process for value iteration. At
the given time ¢, for current state s; and current action ay,
the algorithm observes the immediate reward r; and the
Q-value Q(sy, az). The value of Q(sz, a;) shows the desir-
ability of the agent under current state s; and action ay,
which can be used to distinguish which action is opti-
mal. § is defined as an increment of the Q-value from
Q(sz, az) to Q(sg+1, ar+1), which is calculated from current
reward 7; and the maximal Q-value under the next state
maxQ(se1, ag1), that is, re + Y Q(se11, ar1) — Q(st, ar).
The update of Q-value is calculated by o x §, where « is
the learning rate such that 0 < o;(s,4) < 1. In this way,
the Sarsa-learning can calculate an update to its expected
discounted reward, Q(s, a;) as follows:

Qs ar) < Q(sy, ap)+al re+y Q(ser1, arr1) —Q(sy, ap)]

where y is the discounting factor and 0 < y < 1.
The Sarsa-learning often stores the state-action values
in a value table with an exploration rate ¢. Figure 3
describes our algorithm for implementing Sarsa-based
CWSN scheme.

5 Application of reinforcement learning in CWSNs
We consider two applications in computing the rewards
received by an agent given as (i) successful transmission-
only and (ii) joint energy and successful transmission
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depending on the role of energy considerations in the
reward assigning process.

5.1 Successful transmission-only

In the first application, we do not consider the energy cost
and decide on the suitability of the current choice of spec-
trum and power based on the successful transmissions
only. Such a model is suited for short-lived or replaceable
sensors, where the delivery of data is most important for
the user.

As shown in Fig. 2, successful transmissions are given a
moderately positive reward. For the remaining cases, the
rewards are negative. We assume a slow fading environ-
ment, where occasional bit-flips may be introduced by the
channel. Thus, depending upon the currently observed
BER, one or more bits of the packet may be in error. As
this error may be present in only a few packets, if at all, and
possibly recovered through error correction mechanisms,
it is assigned a low negative reward. Collisions between
nodes in a CWSN result in complete re-transmission of
the packets, and this is a significant additional energy cost,
which results in a comparatively higher penalty. When the
collision occurs with a PU, the CWSN violates the critical
premise of protecting the licensed user operation. In this
case, the reward is comparatively greater on the negative
scale, forcing the sensor to take a corrective action imme-
diately. As the transmitting sensor is unaware of the power
needed to reach the receiver on the other end of the link,
it may try choices that result in an incoming signal power
lower than the receiver threshold. As the link gets discon-
nected and the sensor loses energy without achieving any
communication, this constitutes the most severe case of
failure and earns the highest possible negative reward.

The reward assignment algorithm is shown in Fig. 4,
where progressively, in the order of descending penalty,
each node evaluates the reward that must be assigned
to the state that it is in. The scoring mechanism is from
the frequency of events and the impact of events on net-
work performance. The detailed description can be found
in [19]. For successful transmission-only, the Bounded
Energy Use state is absent and, therefore, shown by a gray
box. As long as the packet is received correctly by the des-
tination without any CR-PU interference, a reward of +5
is assigned.

5.2 Joint energy and successful transmission

In the second application, each sensor node must decide
if its current rate of energy consumption is within a pre-
decided bound and, accordingly, adapt its exploration (i.e.,
curtail the use of higher power values and limit switching
of channels) that is inherently a costly activity from the
viewpoint of energy conservation. While the relationship
between higher power values and energy cost is triv-
ial, every time a channel switch occurs, the transmitting
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Algorithm 1 Pseudo code of Sarsa-based CWSN Scheme

Main()

so = (8p, p)o,

repeat
Sarsa-learning-CWSN(s¢, a¢, Q)

until all episodes are traversed

Sarsa-learning-CWSN(s¢, at, Q)

repeat

Get Q(s¢,at) from the Q-table;

for all actions a* under new state s;y1 do

Get Q(S¢+1,a1+1) from the Q-table;
end for

=1+ v*marQ(si+1,at+1) — Q(st,at)

AQ:@*5
G=ad+aqd
St = St4+1

if random probability < e then
at = argmazqQ(s¢+1, at+1)
end for

else
at = random action

end if

until s; is terminal

Initialize CWSN parameters, including sp and pw;

for all actions a* under current state s; do

Initialize learning framework, including state sp and action ag and their Q value;

Take action s¢, observe reward r¢, get next state s¢41

Generate the state-action pair s;4+1a:41 from state s;11 and action a*

Fig. 3 Algorithm for our proposed learning

sensor must coordinate the new channel with the receiver,
and exchange control packets to set up the environmen-
tal variables. Thus, by engaging in fewer channel switches,
the control overhead is also reduced.

A general sensor node consists of four subsystems:
sensing unit, microprocessor, communication unit, and
power supply. Normally, the sensing unit is coupled to the
microprocessor. The operation of the communication unit
depends on whether the microprocessor is in active state.
In a distributed architecture, wireless sensor nodes have
three operation modes: the first is active mode, in which
all of its devices are energized. The second is silent mode,
in which its communication unit is closed and effectively

temporarily isolate itself from the rest of the network. The
third is sleep mode, in which all units shut down.

Once the topology of the sensor nodes is fixed, the only
way to reduce the average power consumption of nodes is
to periodically turn off some of these units. In most dis-
tributed sensor networks, nodes can communicate with
the rest of the network only when necessary, in order to
achieve significant energy-saving effects. Although cen-
soring sensors is a direct way to save energy, the less
intuitive way is to close the sensor nodes completely when
the probability of the information content of the next
observation is likely to be very small. Conceptually, the
sensor node uses a priori knowledge about the process it
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is monitoring together with its current and past observa-
tions to reduce energy consumption; a large number of
research results show that the distributed detection sys-
tem, and a slight decline in performance can save a lot of
energy. For example, a minimal increase in expected con-
trol detection delay can more than double the expected
lifetime of the sensor node, the results for the wireless sen-
sor node for a long sleep interval support, whenever the
information content of the value of the next few observa-
tions can be hours. When the event of interest becomes
unlikely, the sensor node can sleep for a long time, thus
saving energy. On the other hand, in critical situations,
sensor nodes must be awake.

In our work, we assign a reward to the sensor based on
the rate of energy consumption, Rg computed as:

Eena — Estart

e e
13 end tstart

R (tznd) = ’ (1)

where E,;,; and Eg,;+ are the residual energy levels within
the sensors measured at the start and end of an epoch
given by £/ , and tg,,,, respectively. Each epoch consists
of 50 time slots. We compare this observed rate Rg with
the threshold value represented by the energy curve

Rij(£) = e + ¢,

at time £ = L‘Zn 4 Here, 7 is a design constant chosen prior
to the operation of the network, and ¢ is the correction

factor that is used to bring down the exponentially falling
rate down to zero when a sensor node can no longer
reach its neighbor. The rewards based on the energy con-
sumption rate try to guide the energy consumption of the
sensor (hence, the power levels or propensity for switch-
ing) along the curve Ry;,,. Thus, if the rate is much lower
than Ry, at a particular instant, the higher reward encour-
ages aggressive exploration and, conversely, with a higher
rate (i.e., greater than Ry;,,) of energy consumption, the
reward are increasingly negative. The implication of scal-
ing the exponential parameter T with time is to force
the network to get more conservative towards explor-
ing channel and power choices towards the end of the
network lifetime.

The reward assignment algorithm (Fig. 4) in this case
introduces an additional decision for checking the energy.
We check the energy used only if the packet is received
correctly, without interference to the PU. Moreover, in
this approach, the state may still earn a negative reward
of —3 if the rate of energy consumption Rf is exceeds the
limit imposed by Ry, at that instant of time. Otherwise,
as before, a reward of +5 is assigned to the state. The
intuition here is that energy conservation is important
to a CWSN, but still secondary to the aim of delivering
an uncorrupted packet without causing interference to
the PU.

Thus, on the basis of rewards, the nodes in the CWSN
apply multi-agent reinforcement learning to choose the
best combination of spectrum and power, while keeping
the energy usage bounded.
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6 Performance evaluation

In the section, we evaluate the performance of our suc-
cessful transmission-only (Section 6.2) and the joint energy
and successful transmission (Section 6.3) applications.

6.1 Simulation platform and benchmarks

6.1.1 Simulation platform

Our novel CR network simulator is described in Fig. 5.
We develop the framework using NS-2 network simula-
tion tool. Some specific modifications to the physical, link,
and network layers is done in the form of stand-alone C++
modules. The Multi-agent System Module provides the
architecture of multi-agent system, which is composed of
an agent object declaimer, agent cooperation mechanism,
and agent communication protocol. The Learning Mod-
ule describes several typical learning algorithms and some
common functions. The PU Activity Block defines the
activities of PUs using the on-off model, such as transmis-
sion and interference range, rule of spectrum occupancy,
and location. The Channel Block Module is a channel
table which contains the information about background
noise and channel capacity. The Spectrum Sensing Block
describes some functionalities about energy-aware spec-
trum sensing. One important function is to notify the
Spectrum Management Block if a PU is detected. The
Spectrum Management Block would trigger the sensor
to switch to another available channel. The Spectrum
Sharing Block coordinates the access of channels and
calculates the interference of sensor nodes brought by
any ongoing transmission. The Wireless Sensor Network
Environment Repository facilitates the information about

Page 10 of 14

transmission power levels, spectrum bands, locations of
sensors, and different network protocols.

We mainly investigate the topology with 100 sensor
nodes placed over a square grid of side 1000 m. There are
totally 25 PUs in our CWSN system. For each PU, it is ran-
domly assigned its default channel, and the default chan-
nel can be kept with a probability of 0.4. Each PU can also
switch, with the decreasing probabilities {0.3,0.2,0.1}, to
three other pre-assigned successively placed channels,
respectively. In the way, these PUs follow an underlying
rule, with which they are active on their own given chan-
nels. But the information is unknown to the CR sensors.

There are a total of 100 licensed channels. The transmis-
sion in the CWSN occurs via these channels connecting
multiple pairs of sensor nodes. We denote such a pair with
a data link as {7, j}, which means a directional transmission
from the ith sender to the jth receiver. The transmitting
spectrum is chosen by the sender node and is notified
to the receiver node via a common control channel, also
called CCC. The information of possible collisions may
also be returned back to the sender sensor using this CCC,
which may be experienced by the receiver sensor. Here, all
data are transmitted only using the chosen spectrum over
the link between the pair of sensor nodes.

The permissible value of transmission power for cogni-
tive sensors are uniformly distributed on the interval of
{0.5 mW, 4 mW}, while the PUs always transmit at the level
of 10 mW. We consider the time to be slotted, and the
link layer at each sender node attempts to transmit with a
probability of 0.2 in every slot. The time scale of the x axis
on the following figures is represented by epochs, each of

s N e D
Multi-agent System Module
]
:<’/ ‘“_-E
j Wireless Sensor
i Network
Real-time Cognitive i1 Environment
Radio Module ; Repository
Spectrum ® TX Power
Sensing - | ® Spectrum
A /| ® Sensor Location
\ 2 14 :
Spectrum N
Management
. J A
s N ?\ v
. Spectrum
PU-Activity Module |i_. / Sharing
S J N J - J
Fig. 5 Block diagram of the implemented simulator tool for RL-based cognitive radio
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which is composed of 50 time slots, and we show results
for over 600 epochs.

6.1.2 Simulation benchmarks

In our experiment evaluation, the proposed reinforcement-
learning-based scheme, abbreviated as RL Scheme, is com-
pared with the other three schemes, that is, (i) random
assignment, (ii) greedy assignment with 1 memory slot,
and (iii) greedy assignment with 20 memory slots.

Random assignment scheme, abbreviated as RA Scheme,
uses a random combination of spectrum band and power
level in each time slot.

Greedy assignment scheme with 1 memory slot, abbre-
viated as GD-1 Scheme, only stores the reward received
the last time for every state, that is, for every combination
of spectrum band and power level. In order to avoid local
optimum, the scheme selects with a probability n the com-
bination having the highest previous reward and explores
with a probability (1 — 1) a random-chosen combination.

Greedy assignment scheme with 20 memory slots,
abbreviated as GD-20 Scheme, performs a repository of
rewards received in the 20 past time slots for every com-
bination of spectrum band and power level and picks up
the best one. In a similar way, it selects the best with the
probability n and explores a random combination with the
probability (1 — n).

In RL Scheme, the probability of exploration € is set to
0.2. The initial learning rate « is 0.8, which decreases grad-
ually using a scaling factor of 0.995 in every time slot. Note
that GD-1 Scheme occupies the same amount of mem-
ory as RL Scheme, but the GD-20 Scheme uses twenty
times more.

6.2 Successful transmission-only

We now evaluate these four schemes, i.e., RA Scheme,
GD-1 Scheme, GD-20 Scheme, and RL Scheme, in the
small topology with 100 nodes and the large one with
500 nodes. We then observe the (i) average percentage
of successful transmissions, (ii) average reward obtained
of CR sensors, and (iii) average channel switches of
CR sensors.

We apply the above schemes to the small network
and give the average percentage of successful transmis-
sions over all transmissions in Fig. 6a. The results show
that, after 600 epoches, RL Scheme transmits successful
packets up to approximately 94.8%, while GD-20 Scheme,
GD-1 Scheme, and RA Scheme transmit successful pack-
ets with an average percentage of approximately 93.6,
45.7, and 46.1%, respectively. The results indicate that
RL Scheme can clearly increase the portion of successful
packages over all packages transmitted, and its learn-
ing performance is much better than the other schemes,
even if GD-20 Scheme spends the order of magnitude of
memory.
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We also evaluate the average rewards obtained by cog-
nitive sensors with the four schemes. Figure 6b gives the
results in the small network. The results show that RL
Scheme gets the greatest reward about +3.5, and GD-20
Scheme has its reward of approximately +1.3, whereas
GD-1 Scheme and RA Scheme have the negative rewards
of approximately —8.9 and —8.8, respectively.

The results indicate that RL Scheme pushes CR sensors
to gradually obtain the higher positive rewards and choose
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more suitable spectrum band and power level for pack-
age transmission. The results also indicate that the reward
obtained tends to be proportional to the probability of
successful transmission.

Figure 6¢ shows the average occurrences of channel
switching by CR users, again for the small topology. We
observe that after learning, RL Scheme tends to reduce
the number of channel switches to 19.0, wherein GD-
20 Scheme keeps the channel switches to approximately
29.0, GD-1 Scheme keeps the channel switches to approxi-
mately 67.4, and RA Scheme keeps the channel switches to
approximately 66.8. The results indicate that our proposed
approach can keep the occurrences of channel switching
lower and converge to an optimal solution.

6.3 Joint energy and successful transmission

In the application, each sensor has a fixed amount of
energy 1500 mW at the start of the network, which gets
depleted with time. Unless specified, the parameter 7 is
assumed as 1. We also demonstrate the effect of varying t
on the lifetime in this section. Owing to space constraints,
we show the measurements for the case of small topology
of 100 nodes only, and a similar scenario is observed for
the case of 500 nodes.

In Fig. 7, we observe that our energy-aware RL approach
displays significant improvement over the basic RL
scheme, which does not exploit rewards based on the rate
of energy consumption. In the RL-aware approach, each
node is allowed to consume energy during exploration
phase, while it is forced to get more conservative towards
exploring channel and power choices towards the end of
the network lifetime. As a result, both the RL schemes
show the same performance during the initial exploration
phase, but the energy-aware scheme is still operational
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after the competing scheme show a completely dead
network.

We investigate further the performance of our energy-
aware approach in Fig. 8 by varying v that decides the
rate at which we allow the network to consume energy.
For each of these experiments, the effect of the competing
schemes remains the same (being independent of energy
considerations) and, therefore, not displayed. We observe
in Fig. 8, that at epoch 600, lower values of 7 are able to
sustain the network longer with a greater residual energy.
As T increases, we observe that the difference in residual
energy is much greater in the range 1 — 100, than in the
subsequent range 100—200. This is attributed to the expo-
nentially increasing value of the Ry, function. In Fig. 8,
we observe that the CWSN is still partially operational at
60 — 70% nodes in the range t €[1,10]. For higher 7,
while the optimal solution may be reached quicker, the
network pays a strong penalty in terms of nodes that are
alive towards the end of the simulation. Finally, Fig. 8
reveals that for moderate lengths of experiments, in which
extreme lifetime of the sensors is not a factor, the value of
7 can be freely chosen in the range [1, 20]. This also allows
the network to converge faster, and the resulting loss of
energy does not cripple the network entirely for moderate
time scales.

7 Conclusions

We have proposed two approaches for realizing low-
memory, low-power sensor networks that are capable of
switching multiple spectrum and regulate their transmis-
sion power, leading to a novel CWSN paradigm. Our
results reveal that RL-based techniques provide good
convergence to the best choice of spectrum and power,
while ensuring PU protection and energy conservation
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Fig. 7 Energy left in sensor network, for the RL scheme, and the RL energy-aware scheme
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Fig. 8 The network energy after 600 epochs
in CWSNs. Each sensor arrives at its choice indepen- 9. MHusain, R Guest, M Shadaram, S Zeadally, P Bellavista, Recent

dently, by picking a state, jointly defined by spectrum and
power based on its local observations. Our method is scal-
able and takes the first steps towards making a case for
reinforcement learning techniques in sensor networks.
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