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Abstract

The channel capacity of multi-channel cognitive radio systems is studied with the assumption of limited sensing
capability. The randomness of sub-channel selection is utilized to convey information. Two types of sub-channels,
memoryless and finite state, are considered. For both cases, the separation of sub-channel input distribution
optimization and sub-channel selection policy optimization is proved. For the memoryless case, explicit expressions
for optimal sensing policy are obtained. For the finite state case, the optimization of channel capacity is considered as
a Markov decision problem that maximizes average award. By using Markov decision theory, it is shown that, for the
finite state case, the channel capacity is determined by the static distribution of state.
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1 Introduction
Cognitive radio [16, 20], in which secondary (unlicensed)
users sense licensed channels and use them for data
transmission if there are no primary (licensed) users, is
becoming a flourishing technology for wireless communi-
cations due to its efficient utilization of frequency spec-
trum. Moreover, the recent adoption of cognitive radio
devices over digital TV (DTV) channels by US FCC (Nov.
2008) substantially stimulated the development of cogni-
tive radio in both industry and academia. An excellent
survey can be found in [2].
As is in most communication systems, a fundamen-

tal question for cognitive radio system is the channel
capacity, i.e., the maximal transmission rate for reliable
communications, when there are multiple usable channels
(e.g., there are multiple frequency bands in DTV systems).
This looks like a solved problem since we can optimize
the input distribution for every channel and optimize the
spectrum sensing probability (the probability to select a
subset of channels to sense) independently. This is true
when the transmitter is able to sense all channels simulta-
neously, i.e., the transmitter need only optimize the input
distribution. However, when there are many channels cov-
ering a wide frequency band, the transmitter may not be

*Correspondence: hli31@utk.edu
1Department of Electrical Engineering and Computer Science, the University
of Tennessee, Knoxville 37996, TN, USA
Full list of author information is available at the end of the article

able to sense all channels (typically because of limited
sampling rate) and can only choose a subset of channels to
sense. Note that the problem of channel selection inmulti-
channel cognitive radio systems has received considerable
studies [8, 15, 17, 21].
Therefore, for wideband multi-channel cognitive radio

systems and transmitters with limited sensing capability,
signals are transmitted only over a subset of usable chan-
nels. Then, we can utilize the randomness of the channel
selection to convey information, in addition to the infor-
mation directly transmitted over the channels. Such a
“using-all-available-randomness” principle has been used
in many other situations, e.g., the random packet trans-
mission time can also be used to convey information in
a single-server queue [1]. The corresponding scheduling
scheme is also studied in [4, 14].
In this paper, we study the channel capacity of multi-

channel cognitive radio systems having limited sensing
capability for two types of channels, namely, memory-
less channels and finite state Markovian channels. In both
cases, we have shown that the optimization of input dis-
tribution can be separated from that of channel selection.
Applying this separation principle, we focus on the study
of channel selection policy. For the memoryless case,
the optimal channel selection probability is obtained in
explicit expressions. For the finite state channel case, we
convert the partial observation (some channels are not
sensed due to limited sensing capability) into a complete
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information one and consider the optimization of channel
capacity asmaximizing the average reward of aMarkovian
decision process. Particularly, the uncountable state space
is simplified to a countable one, thus substantially simpli-
fying the analysis. Finally, the channel capacity is shown to
be determined by the static distribution of state. We will
also propose a myopic strategy-based scheme, which is
more suitable for practical systems. Note that the channel
capacity problem is also studied in [7]. However, it does
not incorporate the channel selection into the channel
definition. The channel selection problem has been widely
studied in cognitive radio networks [3, 5, 12, 13, 19];
however, they are not taken into the consideration of
channel capacity.
In summary, this paper proposed a channel model for

cognitive radio different from traditional ones. In this
new model, the selection of channel is also a carrier to
convey information, while it is only a MAC layer action
in traditional ones. We expect the novel channel model
can benefit the throughput of cognitive radio networks,
particularly when the SNR is moderate or low.
The remainder of this paper is organized as follows: the

systemmodel of cognitive radio is introduced in Section 2;
the channel capacities of memoryless and finite state
channels are discussed in Sections 3 and 4, respectively;
the numerical results are provided in Section 5; finally, the
conclusions are drawn in Section 6.

2 Systemmodel
In this section, we introduce the model of the multi-
channel cognitive radio systems.

2.1 Secondary transmission pair
We consider a cognitive secondary transmission pair
using N licensed communication channels, indexed from
1 to N. For clarity, in the remainder of this paper, we
call them sub-channels to distinguish from the overall
channel. Each sub-channel is either occupied by primary
users (busy) or not (idle). The secondary transmitter can
use a sub-channel for communication only when it is
idle. For simplicity, we assume that each sub-channel is
discrete and memoryless in time when being idle (note
that this does not mean the state of busy and idle is
memoryless) [9].
Note that we do not specify the detailed communication

protocols, since the research is focused on the channel
capacity analysis, which provides the performance limit of
the communications. Despite this, the receiver needs to
monitor all the channels, which is feasible since it does
not need to receive over all the channels. This can be real-
ized using a handshaking protocol, which is necessary in
cognitive radio networks.
Suppose that time is divided into time slots, each hav-

ing sensing and transmission stages, as illustrated in Fig. 1.

Fig. 1 Illustration of multi-channel cognitive radio

We assume that, in each time slot, the secondary trans-
mitter senses a subset of sub-channels before the trans-
mission stage. If it finds that a sub-channel is idle, then
it transmits over this sub-channel for M channel uses.
Otherwise, it does not use this sub-channel. For simplic-
ity, we do not consider sensing errors although it can be
incorporated into the analysis framework.We assume that
the secondary transmitter senses the sub-channels with
one of the following two constraints of limited sensing
capabilities:

• Soft constraint: the secondary transmitter senses
sub-channel n with probability ρn(t) at time slot t
(note that ρn(t) may be time-varying) and the
decisions of selection are mutually independent
across different sub-channels. Then, we have

lim
T→∞

1
T

T∑

t=1

N∑

n=1
ρn(t) = N ′

N
, (1)

where N ′ is the average number of sensed
sub-channels in one time slot.

• Hard constraint: the secondary transmitter can sense
only exactly N ′ sub-channels; therefore, the decisions
on different sub-channels are mutually correlated.
We denote by ρt

O the probability that the subset of
sub-channels O = {i1, ..., iN ′ } are sensed at time slot t.

On the receiver side, we assume that the secondary
receiver can receive over all sub-channels simultaneously,
for simplicity. It is interesting to extend the discussion to
the situation where the receiver also has only limited capa-
bility of sensing (thus, the transmitter and receiver need to
play a coordination game). However, this game theoretic
situation is beyond the scope of this paper.

2.2 Input and output alphabets
Suppose that all sub-channels share the same discrete
input and output alphabets, denoted by X and Y , respec-
tively. It is easy to extend the analysis to the case where
different sub-channels have different input and output
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alphabets. However, when sub-channel n is idle, the tran-
sition probability Pn(ynm|xnm), where xnm ∈ X is them-th
input symbol over sub-channel n within a time slot and
ynm ∈ Y is the m-th output symbol could be different
for different sub-channels. We call xnm and ynm explicit
symbols to distinguish the implicit symbols that will be
discussed below.
Besides the explicit input symbols, the input symbol set

over sub-channel n also contains � (sub-channel n is not
sensed) and � (sub-channel n is sensed but found to be
busy). We call � and � implicit symbols. Therefore, the
input alphabet over a sub-channel is given by

{
�,� ,XM}

.
Similarly, the overall output alphabet is given by

{
�,YM}

,
where � means that the receiver receives nothing over
the corresponding sub-channel. Then, we denote by Xn(t)
and Yn(t) the overall input and output symbols at sub-
channel n during time slot t, respectively. Obviously, the
sub-channel maps � and � to � and maps from X to Y
(illustrated in Fig. 2a).

2.3 Input policy
The input policy of the transmitter includes two parts:
the probability of sensing a sub-channel and the distri-
bution of explicit input symbols in X if the sub-channel
is found to be idle. We denote by θn(t) the input sym-
bol distribution over XM when the transmitter decides
to transmit over sub-channel n. Then, for soft constraint,
the joint input probability over sub-channel n at time slot
t is given by an(t) = (ρn(t), θn(t)) and the overall input
probability is denoted by a(t) = (a1(t), ..., aN (t)). For
hard constraint, the input probability is given by aO(t) =
(ρO(t), (θn(t)|n ∈ O)) and the overall input probability is
a(t) = {

aOi

}

i=1,...,
(
N
N ′

).

2.4 Models of sub-channel occupancy
First, we assume that the occupancies by primary users
are independent across different sub-channels. In this
paper, the following two possible models are used for the
occupancy process on each sub-channel:

a b

Fig. 2 a Input-output mapping. b State transition of sub-channel
occupancy

• Memoryless model: the occupancy of primary user
over a sub-channel is an i.i.d. random process; we
denote by qIn the probability that sub-channel n is
idle in each time slot.

• Two-state model: the occupancy of primary user over
a sub-channel is a two-state (B for busy and I for
idle) Markov process, which is illustrated in Fig. 2b;
the state of sub-channel n at time slot t is denoted by
Sn(t); we denote by qBIn (qIBn ) the transition probability
that the sub-channel n transits from state busy (idle)
to state idle (busy); obviously, the memoryless model
is a special case of the two-state model when
qBIn +qIBn = 1 and qIn = qBIn . We can put the transition
probabilities into one matrix, which is given by

Qn =
(
1 − qIBn qBIn
qIBn 1 − qBIn

)
. (2)

3 Memoryless sub-channels
When sub-channels are memoryless, it is well known that
the sub-channel capacity is given by (note that we ignore
all time indices in this section) [6]

C = max
a

I(X,Y ), (3)

where a is the set of input distributions which includes
the sub-channel selection policy and the distribution of
explicit symbols in X if the corresponding sub-channel
is idle. We discuss the optimal input policy with soft
constraint and hard constraint separately.

3.1 Soft constraint
Intuitively, the two parts of input policy, namely, sens-
ing probability and sub-channel symbol distribution (in
X ), can be optimized independently. This can be eas-
ily verified by the following decomposition of mutual
information (the derivation is in Appendix A):

I(X,Y ) =
N∑

n=1
ρnqIn

M∑

m=1
I(xmn; ymn) +

N∑

n=1
ρnqIn log2

1
ρnqIn

+
N∑

n=1
ρn

(
1 − qIn

)
log2

1
1 − ρnqIn

+
N∑

n=1
(1 − ρn) log2

1
1 − ρnqIn

=
N∑

n=1
ρnqIn

M∑

m=1
I(xmn; ymn) +

N∑

n=1
H

(
ρnqIn

)
, (4)

whereH
(
ρnqIn

)
is the entropy of a random variable of coin

flipping with head probability ρnqIn.
Obviously, the sub-channel explicit symbol distribution

should be optimized in the same way as in traditional
memoryless sub-channels, independently of the optimiza-
tion of sensing probabilities. Therefore, we can focus
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on the sensing probability by assuming that maximum
mutual information of sub-channel symbols, denoted by
In,max for sub-channel n, has been attained. Throughout
this paper, we assume that In,max > 0, ∀n.
It is easy to show the following proposition which states

the optimal sensing probability of each sub-channel (the
proof is given in Appendix B).

Proposition 1 Denote by
{
ρ∗
n
}
the capacity-achieving

sensing probability. There are two possibilities for
{
ρ∗
n
}
:

• When
∑N

n=1 ρ∗
n = N ′, there exists a λ ≤ 0 such that

ρ∗
n =

{ 1
gn , if gn > 1
1, if gn < 1

, (5)

where

gn = qIn
(
2
− λ

qIn
−In,max + 1

)
. (6)

• When
∑N

n=1 ρ∗
n < N ′, ρ∗

n is given by

ρ∗
n =

⎧
⎨

⎩

1
qIn(2−In,max+1)

, if In,max ≤ − log2
(

1
qIn

− 1
)

1, if In,max > − log2
(

1
qIn

− 1
) ,

(7)

Remark 1 An interesting observation is that all sensing
probabilities should be positive even if the correspond-
ing qIn and In,max are very small. Meanwhile, when qIn
and In,max are sufficiently large, the sensing probability ρn
can equal 1. Essentially, this is because dH(x)

dx → ∞, as
x → 0; therefore, it is beneficial to keep a positive sensing
probability.
Another interesting observation is that it is possible that

the constraint
∑N

n=1 ρn ≤ N ′ may not be equity, i.e., we
would like to give up some sensing opportunity. This seem-
ingly weird conclusion arises from our assumption that
the transmitter always transmits something when it finds
that the channel is idle. Consider an extreme example:
suppose N ′ = N and q∗

n = 1, i.e., the transmitter has
full sensing capability and the channel is always idle. If{
In,max

}
are all sufficiently small and we sense all sub-

channels (thus transmitting signal over all sub-channels),
little information can be conveyed since

{
In,max

}
are all

small. Therefore, it may increase the channel capacity to
design a rule to determine whether to transmit over an idle
and sensed sub-channel. However, this is beyond the scope
of this paper.

3.2 Hard constraint
When hard constraint is applied, exactly N ′ sub-channels
are sensed in each time slot. Then, the mutual informa-
tion of input and output is given by (recall that ρO is the
probability that sub-channels in subset O are sensed)

I(X,Y ) =
∑

O={i1,...,iN ′ }
ρO

∑

K={i′1,...,i′k}⊂O
(
∏

i∈K
qIi

)
×

⎛

⎝
∏

j/∈K ,j∈O

(
1 − qIj

)
⎞

⎠

×E
[
log2

P(EXY (O,K))

P(EX(O,K))P(EY (K))

]
, (8)

where O means the set of sub-channels being sensed and
K means the set of sub-channels being sensed and found
to be idle. The expectation outside the logarithm is over
the randomness of explicit input and output symbols over
the idle and sensed sub-channels. The event EX(O,K) is
defined as

EX(O,K) = {{Xi = �|i /∈ O} , {Xi = �|i /∈ K , i ∈ O}
{{xmi}m=1,...,M ,Xi ∈ XM|i ∈ K

}}
. (9)

Similarly, the event EY (K) is defined as

EY (K)=
{
{Yi = �|i /∈ K},

{{
ymi

}
m=1,...,M,Yi∈YM|i ∈ K

}}
.

(10)

And the joint event EXY (O,K) is defined as

EXY (O,K) = EX(O,K) ∩ EY (K). (11)

We can further simplify the probability ratio in the
logarithm in (8) to

P(EXY (O,K))

P(EX(O,K))P(EY (K))
= P(EY (K)|EX(O,K))

P(EY (K))

=
∏

n∈K
∏M

m=1 P(ymn|xmn)∏
n∈K

∏M
m=1 P(ymn)

× 1
P(K)

, (12)

where P(K) means the probability that the receiver
receives signal on sub-channels belonging to set K.
Then, the expectation in (8) can be decomposed into

three parts:

E
[
log2

P(EXY (O,K))

P(EX(O))P(EY (K))

]
= log2

1
P(K)

+
∑

i∈K
I(Xi,Yi).

(13)

There, the mutual information (8) is simplified to

I(X,Y ) = EK

[
∑

i∈K
I(Xi,Yi)

]
+ H(K), (14)

where EK means the expectation over the randomness of
set K and H(K) is the entropy of random set K. Again,
we see that the sub-channel symbol distribution should be
optimized independently of the sensing probability. Simi-
larly to the soft constraint case, the mutual information is
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the sum of that of explicit symbols and the entropy of the
randomness of the signal existence over sub-channels.
We obtain the following proposition which provides

the optimal sensing probability. The proof is provided in
Appendix C.

Proposition 2 Denote by
{
ρ∗
O
}
the optimal sensing prob-

ability. Then, when
∑

�

2Ī�+H�(K) ≥ 1, (15)

we have

ρ∗
O = 2ĪO+HO(K)

∑
� 2Ī�+H�(K)

, (16)

where

ĪO =
∑

K⊂O
P(K |O)

∑

i∈K
Ii,max, (17)

HO(K) =
∑

K⊂O
P(K |O) log2

1
P(K |O)

, (18)

and

P(K |O) � P (sub − channels in K are idle
|sub − channels in O are sensed)

=
(
∏

i∈K
qIi

)
×

⎛

⎝
∏

j/∈K ,j∈O

(
1 − qIj

)
⎞

⎠ . (19)

When
∑

�

2Ī�+H�(K) < 1, (20)

we have

ρ∗
O = 2ĪO+HO(K). (21)

Remark 2 The difference between the soft constraint and
hard constraint cases is in the latter case, no sensing proba-
bility can be 1; in contrast, a sensing probability could be 1.
The common point is that the sensing probability for every
sub-channel should be non-zero. Moreover, the constraint
for the sum of sensing probabilities could be an inequality
for both cases.

4 Finite-state Markov sub-channels
Due to limited space, we discuss only soft constraint for
finite-state Markov sub-channels. The case of hard con-
straint can be derived in a similar manner. Recall that
the state of sub-channel n at time slot t is denoted by
Sn(t). Then, the overall state of the system can be given
by S(t) � (S1(t), ..., SN (t)). We assume that, for each sub-
channel n, the transition probabilities qBIn and qIBn are both
positive and less than 1. Then, both states of idle and
busy are recurrent since they are not affected by the input.

Therefore, it is easy to verify that the overall sub-channel
is indecomposable and the sub-channel capacity is given
by [6]

C = lim
T→∞

1
T

max
aT1

I
(
XT
1 ,YT

1

)
, (22)

where (recall that a(t) is the input policy for time slot t)

aT1 = (a(1), ..., a(T)) , (23)

XT
1 = {Xn(t)}n=1,...,N ;t=1,...,T , (24)

and

YT
1 = {Yn(t)}n=1,...,N ;t=1,...,T . (25)

Since the secondary user cannot sense all sub-channels
simultaneously, it has only partial information about
the overall channel state. Therefore, we can apply the
framework of partial observable Markov decision process
(POMDP) to study the optimal policy achieving channel
capacity. We first define the belief about channel states,
converting the partial observable state into a completely
observable state. Then, we consider the channel capac-
ity as an average-reward Markov decision problem. The
uncountable state space is simplified to a countable one
using the special structure of spectrum sensing prob-
lem. Finally, the channel capacity is given in stable state
probability.

4.1 Belief states
We denote by πn(t) the a posteriori probability (in our
paper, we call it belief about sub-channel n) that sub-
channel n is idle in the t-th time slot, conditioned on
all previous inputs1. It is easy to verify that πn(t) can be
computed recursively:

πn(t) = I(Xn(t) = �)qBIn
+I(Xn(t) ∈ XM)

(
1 − qIBn

)

+I(Xn(t) = �)πn(t − 1)
(
1 − qIBn

)

+I(Xn(t) = �) (1 − πn(t − 1)) qBIn , (26)

where I is the characteristic function. Obviously, the first
term is for the case that sub-channel n is sensed and found
to be busy while sub-channel n is sensed but turns out
to be idle in the second term. In the last two terms, sub-
channel n is not sensed at time slot t and can only be
inferred from the a posteriori probability at time slot t−1.
Meanwhile, we denote by μn(t) the a posteriori prob-

ability that sub-channel n is idle in the t-th time slot,
conditioned on all previous outputs. It is easy to verify that
μn(t) can be computed recursively:
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μn(t) = I
(
Yn(t) ∈ YM) (

1 − qIBn
)

+I(Yn(t) = �)μn(t − 1)
(
1 − qIBn

)

+I(Yn(t) = �)(1 − μn(t − 1))qBIn , (27)

where the first term is for the case that the receiver
receives explicit symbols over sub-channel nwhile the fol-
lowing two terms mean that the receiver receives nothing
from sub-channel n (the transmitter may have sensed the
sub-channel but found that it is busy, or did not sense sub-
channel n at all). We assume that the initial probability is
given by πn(0) = μn(0).
Using the philosophy in [11], we can consider the beliefs

{πn(t),μn(t)}n=1,...,N as system state at time slot t (note
that the system state is different from the state of sub-
channels). Then, the POMDP problem is converted to a
full information MDP problem since all belief states are
known to the transmitter.

4.2 Average award
Using the same argument as in [10], we can obtain

C = lim
n→∞max

an1

1
T

T∑

t=1

N∑

n=1
(H(Yn(t)|μn(t)) − H(Yn(t)|Xn(t),πn(t))) . (28)

The following lemma simplifies the difference of the two
conditional entropies:

Lemma 1 The following equation holds:

H(Yn(t)|μn(t)) − H(Yn(t)|Xn(t),πn(t))

= P
(
Xn(t) ∈ XM) M∑

m=1
I(xmn, ymn)

+H(Ỹn(t)|μn(t)), (29)

where Ỹn(t) is a binary random variable equaling 1 when
Yn(t) ∈ YM and equaling 0 when Yn(t) = �.

Remark 3 Similarly to the memoryless case, the opti-
mization of explicit input distribution is independent of
that of sensing probability. Again, we assume that the
explicit input distribution has been optimized using tradi-
tional approaches and denote by In,max the corresponding
optimal mutual information over sub-channel n. Then, we
focus on only the sensing probabilities.

We assume that the input policy is determined by the
belief states, i.e., the sensing probability is determined by
{πn(t)} and {μn(t)}. Therefore, the input policy, denoted
by a(π(t),μ(t)), is a vector function, and the n-th element,
ρn(t) = (a(π(t),μ(t)))n, is the probability of sensing sub-
channel n. We assume that the input policy is stationary,
i.e., it does not change with time.

Note that the input policy maps from [0, 1]2N (the belief
states) to the simplex

∑N
n ρn = N ′ in [ε, 1]N (the sensing

probabilities), where ε is a positive number. The ε prevent-
ing the sensing probability from being zero is justified by
the following lemma (the proof is straightforward by using
the fact that the derivative of function log x is infinite at
x = 0.)

Lemma 2 For an optimal input policy, the sensing prob-
abilities should be non-zero.

We define the following reward for time slot t:

r(a, S(t))

=
N∑

n=1
(H(Yn(t)|μn(t)) − H(Yn(t)|Xn(t),πn(t))) , (30)

(note that the conditional entropies are completely deter-
mined by a(t) and π(t)).
The channel capacity under the constraint of stationary

input policy2 can be written as

Ĉ = lim
T→∞

max
ρT
1

1
T

T∑

t=1
r(a, S(t)), (31)

which is the average award of a controlled Markov pro-
cess. This motivates us to apply the theory of controlled
Markov process to find the optimal input policy.

4.3 Countable state space
The difficulty for analyzing the optimal input policy for
the controlled Markov process in (31) is that the state
space {πn(t),μn(t)} is uncountable and discretization is
needed for optimizing the input policy. However, we can
show that the uncountable state space is equivalent to a
countable space, thus substantially reducing the complexity.
First, we notice that the belief πn(t) at time slot t is

determined by (suppose that the last time slot (before t) in
which the transmitter sensed sub-channel n is t − τ )

πn(t) =

⎧
⎪⎨

⎪⎩

(
Qτ

n
)
11 , if Xn(t − τ) ∈ XM

(
Qτ

n
)
12 , if Xt−τ = �

(
Qt

n
)
11 πn(0) + (

Qt
n
)
12 (1 − πn(0)), if τ ≤ 0

, (32)

with the convention that τ ≤ 0 means sub-channel n has
never been sensed (recall that Qn is the transition matrix
of sub-channel n defined in (2)).
Since ρIB

n + ρBI
n �= 1 (otherwise, it degenerates to the

memoryless case),
(
Qt1

n
)

11
�=

(
Qt2

n
)

12
, for t1, t2 > 0

almost surely. Also,
(
Qt

n
)
11 πn(0) + (

Qt
n
)
12 (1 − πn(0))

is equal to
(
Qt1

n
)

11
or

(
Qt1

n
)

12
for only countable cases,

which is of measure zero. Therefore, we can determine the
last time slot in which sub-channel n is sensed before time
slot t from πn(t) almost surely.
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Similarly, the belief μn(t) at time slot t is determined
by (suppose that the last time slot, denoted by t − δ, in
which sub-channel n is sensed and found to be idle (i.e.,
Yn(t) ∈ YM))

μn(t) =
{ (

Qδ
n
)
11 , if Xn(t − δ) ∈ XM

(
Qt

n
)
11 πn(0) + (

Qt
n
)
12 (1 − πn(0)), if δ ≤ 0 ,

(33)

with the convention that δ ≤ 0 means the receiver has
never received signal over sub-channel n before time t.
Similarly, μn(t) is equivalent to δ almost surely.
When the initial state for sub-channel n is πn(0) = 1

and μn(0) = 1, πn(t) is either
(
Qt1

n
)

11
or

(
Qt2

n
)

12
, where

t1 and t2 are integers, due to (32), and μn(t) can only be(
Qt3

n
)

11
, where t3 is an integer, due to (33). This means

that the possible values of πn(t) and μn(t) are count-
able. Then, each sub-state (πn(t),μn(t)) is equivalent to
a 3-tuple (Sn(τ ), τ , δ) where t − τ is the last time slot in
which sub-channel n is sensed and t − δ is the last time
slot in which sub-channel n is sensed and found to be
idle (obviously, δ ≤ τ ). Therefore, the state space [0, 1]N
degenerates to a discrete state space


 = {{B, I} × {(τ , δ)|τ ∈ N, δ ∈ N, τ ≤ δ}}N . (34)

And we denote by ξ(t) and ξn(t), the state and the sub-
state for sub-channel n at time slot t.
However, it loses generality to assume πn(0) = 1 or 0,

∀n. Fortunately, we can show that the longer-term average
reward is a constant dependent on only the control strat-
egy, regardless the initial state. Toward this, we can apply
Theorem 1 in Appendix E [11]. The following lemma ver-
ifies the assumptions in Theorem 1, whose proof is given
in Appendix F.

Lemma 3 Assumptions 1 and 2 hold for the controlled
Markov process of spectrum sensing.

Applying the conclusion in Theorem 1 and Lemma 3, we
obtain the following proposition, which converts the finite
state sub-channel into a memoryless one:

Proposition 3 The sub-channel capacity is independent
of the initial state and is given by

C = max
�

∑

ξ∈


N∑

n=1
(H(Yn|ξ) − H(Yn|Xn, ξ)) �(ξ), (35)

where � is the stable probability of belief state ξ .

The stable probability � is determined by the following
equation:

�(ξ) =
∑

ξ ′→ξ

�(ξ ′)
N∏

n=1
P(ξn|ξ ′), (36)

where ξ ′ and ξ are both overall state, ξn is the state of sub-
channel n, ξ ′ → ξ means that ξ ′ is a legal state in the
previous time slot when the current state is ξ and P(ξn|ξ ′)
is the transition probability, which is given by

P(ξn|ξ ′) = 1 − (
a(ξ ′)

)
n , (37)

if ξn = (x, τ , δ) and ξ ′
n = (x, τ − 1, δ − 1) (i.e., sub-channel

n is not sensed), and

P(ξn|ξ ′) = (
a(ξ ′)

)
n , (38)

otherwise. Then, the sensing probability can be optimized
numerically, which is out of the scope of this paper.

4.4 Myopic strategy
The above approaches based on POMDP can achieve the-
oretically optimal performance. However, they can hardly
be implemented when the number of channels becomes
large, even if we keep only finitely many states in (33).
For example, if we keep only two states for each channel,
there will be 2N overall states. When N = 20, which is
used in the numerical simulation section of this paper, the
computational and memory costs will be prohibitive.
Hence, we propose a practical approach based on

the myopic strategy, namely, to maximize the expected
throughput in the next time slot. We consider the belief
πn(t) as the true idle probability of channel n. Then,
we apply the scheduling strategy in Prop. 1 (for the soft
constraint case) or in Prop. 2 (for the hard constraint case).

5 Numerical results
In this section, we provide numerical simulation results to
demonstrate the mathematical analysis conclusions.

5.1 Simulation setup
We assume that there are totally 20 channels (Table 1). We
further assume that each channel is a symmetric binary
channel with identical channel capacity. We will test the
performance for different values of individual channel
capacity. Note that In,max is the maximum mutual infor-
mation of sub-channel symbols for sub-channel n. We
assume that In,max is identical for all channels, whose
quantity is called the capacity index, whose unit is
bits/second.

5.2 Memoryless channels
We first consider the memoryless channels.
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Table 1 Simulation setup

Channel number 20

Capacity index In,max From 1 to 20

Sensing channel number N′ 2

State transition probability Setups 1 to 3

5.2.1 Soft constraint
We assume that the secondary user can averagely sense
two channels at a time, namely,N ′ = 2. We consider three
setups of idle probabilities: (1) uniformly ranging from 0.1
to 0.9, (2) uniformly ranging from 0.1 to 0.3, and (3) uni-
formly ranging from 0.8 to 0.9. We tested the capacity
for 20 values of In,max, the first ten range from 0.1 to 1
while the last ten range from 5 to 50. The final capacity is
illustrated in Fig. 3.
A simple approach is to always sense the most idle chan-

nel. We use the performance of this simple scheme as the
baseline. The relative performance gain, defined as

relative gain = Iopt(X;Y ) − baseline
baseline

. (39)

The relative gain corresponding to the setups in Fig. 3
is shown in Fig. 4. We observe that, when the individual
capacity In,max is low, the performance gain is very high;
however, when In,max is large, the performance gain is neg-
ligible. Hence, this implies that the proposed scheme be
suitable for low signal-to-noise-ratio (SNR) case. For high-
quality channels, the traditional spectrum access scheme
is sufficiently good.

5.2.2 Hard constraint
Figure 5 shows the performance loss of the hard constraint
(relative to the soft constrained case) in the same setups
as those in Fig. 3. We observe that the performance loss is

Fig. 3 Capacity versus the index of In,max

Fig. 4 Relative performance gain versus the index of In,max

significant due to the hard constraint.When In,max is large,
the performance loss becomes much smaller.

5.3 Markov channels
We tested the Markov channel case. We use the same
setup of In,max as that in Fig. 3. We further assume that all
the channels have the same state transition probability.We
have the following three setups for the transition proba-
bilities:

(
qIBn , qBIn

) = (0.1, 0.9) or (0.5, 0.5) or (0.5, 0.9).
Then, we applied the myopic strategy and obtained the

average capacity in 10,000 time slots. We also tested the
performance of the traditional coding scheme, together
with the strategy of selecting the most probable channels,
and use it as the baseline. Then, the relative performance
gain of the myopic approach over the baseline is given
in Fig. 6. We can also observe a positive performance

Fig. 5 Relative performance loss of hard constraint versus the index of
In,max
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Fig. 6 Relative performance loss of hard constraint versus the index of
In,max in Markov channel

gain when the channel selection is also used to convey
information. Again, the gain drops when In,max becomes
large.

6 Conclusions and open problems
In this paper, we have analyzed the channel capacity in
multi-channel cognitive radio systems. Both memoryless
and finite state sub-channels have been studied. The sepa-
ration principle for the optimizations of input distribution
over individual sub-channels and sub-channel selection
has been proved. For the case of finite state sub-channels,
the capacity optimization problem is considered as an
average reward maximizing one and it has been shown
that under the constraint of stationary input policy, the
channel capacity is determined by the static distribution
of state occupancy probabilities. The performance gain
due to the proposed scheme has been demonstrated using
numerical simulations.
Our work in this paper can be extended in the following

lines:

• Extension from single-user to multi-user situation, in
which the capacity region needs to be studied.

• Considering the sensor error, or modeling the
sub-channels as hidden Markov models (HMMs).

• Considering the case of limited receiving capability,
i.e., the receiver can receive over a subset of
sub-channels, for which game theory needs to be
applied since the decision concerns two players.

Endnotes
1 In [10], πn(t) is also dependent on the output; however,

the input dominates the information of output for sub-
channel state in our situation.

2We have not shown that the optimal input policy
should be stationary. Therefore, the corresponding chan-
nel capacity Ĉmay be less thanC. However, we conjecture
that the optimal input policy is stationary.

Appendix A: Decomposition of mutual information
For the soft constraint with memoryless sub-channels, we
have

I(X,Y ) =
N∑

n=1

M∑
m=1

∑
xmn∈X ,ymn∈Y

P
(
xmn, ymn,Xn ∈ XM,Yn ∈ YM)

× log2
P(xmn ,ymn ,Xn∈XM ,Yn∈YM)

P(xmn ,Xn∈XM)P(ymn ,Yn∈YM)

+
N∑

n=1
P(Xn = � ,Yn = �) log2

(
P(Xn=� ,Yn=�)

P(Xn=�)P(Yn=�)

)

+
N∑

n=1
P(Xn = �,Yn = �) log2

(
P(Xn=�,Yn=�)

P(Xn=�)P(Yn=�)

)
.

(40)

The first term in (40) can be simplified as below:

M∑

m=1

∑

xmn∈X ,ymn∈Y
P
(
xmn, ymn,Xn ∈ XM ,Yn ∈ YM)

× log2
P
(
xmn, ymn,Xn ∈ XM ,Yn ∈ YM)

P
(
xmn,Xn ∈ XM)

P
(
ymn,Yn ∈ YM)

= P
(
Xn ∈ XM ,Yn ∈ YM)

×
M∑

m=1

∑

xmn∈X ,ymn∈Y
P
(
xmn, ymn|Xn ∈ XM ,Yn ∈ YM)

× log2

(
P
(
xmn, ymn|Xn ∈ XM ,Yn ∈ YM)

P
(
xmn|Xn ∈ XM)

P
(
ymn|Yn ∈ YM)

× P
(
Xn ∈ XM ,Yn ∈ YM)

P
(
Xn ∈ XM)

P
(
Yn ∈ YM)

)

= P
(
Xn ∈ XM ,Yn ∈ YM) M∑

m=1
I (xmn, ymn)

+P
(
Xn ∈ XM ,Yn ∈ YM)

log2
P
(
Xn ∈ XM ,Yn ∈ YM)

P
(
Xn ∈ XM)

P
(
Yn ∈ YM)

= ρnqIn
M∑

m=1
I(xmn; ymn) + ρnqIn log2

1
ρnqIn

,

(41)

where we applied the following facts:

P
(
Xn ∈ XM,Yn ∈ YM) = ρnqIn, (42)

and (notice that P
(
Yn ∈ YM|Xn ∈ XM) = 1 and P (Yn ∈

YM) = ρnqIn.)
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P
(
Xn ∈ XM,Yn ∈ YM)

P
(
Xn ∈ XM)

P
(
Yn ∈ YM) = P

(
Yn ∈ YM|Xn ∈ XM)

P
(
Yn ∈ YM)

= 1
ρnqIn

. (43)

The second term is given by

P(Xn = � ,Yn = �) log2
(

P(Xn = � ,Yn = �)

P(Xn = �)P(Yn = �)

)

= P(Yn = �|Xn = �)P(Xn = �)

× log2
(
P(Yn = �|Xn = �)

P(Yn = �)

)

= ρn
(
1 − qIn

)
log2

1
1 − ρnqIn

, (44)

wherewe used the following facts: P(Yn = �|Xn = �) = 1,
P(Yn = �) = 1 − ρnqIn and P(Xn = �) = ρn

(
1 − qIn

)
.

The third term is given by

P(Xn = �,Yn = �) log2
(

P(Xn = �,Yn = �)

P(Xn = �)P(Yn = �)

)

= P(Yn = �|Xn = �)P(Xn = �)

× log2
(
P(Yn = �|Xn = �)

P(Yn = �)

)

= (1 − ρn) log2
1

1 − ρnqIn
, (45)

where we have used the facts P(Yn = �|Xn = �) = 1 and
P(Xn = �) = 1 − ρn. This concludes the decomposition
in (4).

Appendix B: Proof of Prop. 1
Proof The proof is straightforward by taking derivative

of I(X,Y ) with respect to ρn as well as considering the
constraint, which is given by

∂I(X,Y )

∂ρn
+ λ + ωn − μn = qInIn,max − qIn log2

(
qInρn

)

− qIn
loge 2

+ qIn log2
(
1 − qInρn

)

+ qIn
loge 2

+ λ + ωn − μn, (46)

where λ < 0 is the Lagrange multiplier for the constraint∑N
n ρn = N , ωn ≤ 0 is the Lagrange factor for the con-

straint ρn ≤ 1 and μn ≤ 0 is the Lagrange factor for the
constraint ρn ≥ 0.

ρn cannot be zero since log2 ρn becomes negatively infi-
nite and the equation ∂I(X,Y )

∂ρn
= 0 cannot be satisfied.

Therefore, μn must be zero. The conclusion follows from
Karush-Kuhn-Tucker condition.

Appendix C: Proof of Prop. 2
Proof We can take the derivative of I(X,Y ) with respect

to ρO as well as the constraint, which is given by

∂I(X,Y )

∂ρO
+ λ +ωO − μO

=
∑

K⊂O
P(K |O)

∑

k∈K
Ik,max

+
∑

K⊂O
P(K |O) log2

1
P(K |O)ρO

−
∑

K⊂O
P(K |O) log2 e + λ + ωO − μO

= ĪO + HO(K) − log2 e − log2 ρO

+λ + ωO − μO, (47)

where λ ≤ 0 is the Lagrange factor for the constraint∑
O ρ∗

O ≤ 1, ωO ≤ 0 is the Lagrange factor for the con-
straint ρO ≤ 1, and μO ≤ 0 is the Lagrange factor for the
constraint ρO ≥ 1. Note that P(K |O) is defined as

P(K |O) = P(sub-channels in K are idle while
all other sub-channels in O are busy). (48)

And we define

ĪO =
∑

K⊂O
P(K |O)

∑

i∈K
Ii,max, (49)

HO(K) =
∑

K⊂O
P(K |O) log2

1
P(K |O)

. (50)

Obviously, ρO cannot be zero since log2 ρO becomes
negatively infinite and the equation ∂I(X,Y )

∂ρO
= 0 can-

not be satisfied. Consequently, ρO cannot be 1 since this
makes other sensing probabilities zero, which contradicts
the previous conclusion of non-zero sensing probability.
Therefore, both ωO and μO must be zero and the equation
∂I(X,Y )

∂ρO
= 0 becomes

ĪO + HO(K) − log2 e − log2 ρO + λ = 0. (51)

Then, when
∑

O ρO = 1 is satisfied, we have

ρO = 2λ+ĪO+HO(K)−log2 e. (52)

It is easy to obtain
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2−λ =
∑

O
2ĪO+HO(K)−log2 e. (53)

Recall that the constraintλ≤ 0requires
∑

� 2Ī�+H�(K) ≥ 1.
Otherwise,

∑
O ρO = 1 is not satisfied and λ = 0. This

concludes the proof.

Appendix D: Proof of Lemma 1
Proof For the entropy conditioned on μn(t), we have

H(Yn(t)|μn(t)) = E[− log2 (P(Yn(t)|μn(t))) ]

=
∫ 1

0

∑

Yn(t)∈YM

P(Yn(t),μn(t))

× (− log2 (P(Yn(t)|μn(t)))
)
dP(μn(t))

+
∫ 1

0
P(Yn(t) = �,μn(t))

× (−log2 (P(Yn(t)=�|μn(t)))
)
dP(μn(t)),

(54)

where we used the facts p(Yn(t)|Sn(t) = B) = 0 when
Yn(t) ∈ YM and p(Yn(t) = �|Sn(t) = B) = 1.
The first term in (54) can be decomposed to

∫ 1

0

∑

Yn(t)∈YM

P(Yn(t),μn(t))

× (− log2 (P(Yn(t)|μn(t)))
)
dP(μn(t))

=
∫ 1

0
P(Yn(t) ∈ YM,μn(t))

×
∑

ymn

M∏

m=1
p
(
ymn|Yn(t) ∈ YM)

(
−

M∑

m=1
log2

(
P(ymn|Yn(t)∈YM)

)
)
dP(μn(t))

+
∫ 1

0
P(Yn(t) ∈ YM,μn(t))

× (− log2
(
P(Yn(t) ∈ YM|μn(t))

))
dP(μn(t))

=P
(
Yn(t) ∈ YM)

×
∑

ymn

M∏

m=1
p
(
ymn|Yn(t) ∈ YM)

(
−

M∑

m=1
log2

(
P
(
ymn|Yn(t) ∈ YM))

)

+
∫ 1

0
P(Yn(t) ∈ YM,μn(t))

× (− log2
(
P(Yn(t) ∈ YM|μn(t))

))
dP(μn(t)).

(55)

We also have

H(Yn (t)|Xn(t),πn(t))
=E

[− log2 (p(Yn(t)|Xn(t),πn(t)))
]

=
∫ 1

0

∑

Yn(t)∈YM ,Xn(t)∈XM

P(Yn(t),Xn(t),πn(t))

×(− log2 (P(Yn(t)|Xn(t),πn(t))
)
d(p(πn(t)))

+
∫ 1

0
P(Yn(t) = �,Xn(t) = � ,πn(t))

×(−log2(P(Yn(t)=�|Xn(t)=�,πn(t)))
)
d(p(πn(t)))

+
∫ 1

0
P(Yn(t) = �,Xn(t) = �,πn(t))

×(−log2(P(Yn(t) = �|Xn(t) = �,πn(t)))
)
d(p(πn(t)))

=P(Xn(t) ∈ XM)

M∑

m=1

∑

xnm,ynm
log2 (p(ynm|xnm)) . (56)

Note that, in the second equation, the last two terms are
both zero since p(Yn(t) = �|Xn(t) = � ,πn(t)) = 1 and
P(Yn(t) = �|Xn(t) = �,πn(t)) = 1.
Then, we have

H(Yn(t)|μn(t)) − H(Yn(t)|Xn(t),πn(t))

= P
(
Xn(t) ∈ XM) M∑

m=1
I(xmn, ymn)

+
∫ 1

0
P(Yn(t) = �,μn(t))

× (− log2 (P(Yn(t) = �|μn(t)))
)
dP(μn(t))

+
∫ 1

0
P
(
Yn(t) ∈ YM,μn(t)

)

× (− log2
(
P(Yn(t) ∈ YM|μn(t))

))
dP(μn(t)).

(57)

This concludes the proof.

Appendix E: Markov control uncountable state
space
Consider a discrete-time Markov control model charac-
terized by a four-tuple (S,A,T, r):

• State space S is a Borel space (defined as a Borel
subset of a complete separable metric space);

• Action space A is also a Borel space; each state s in
the state space S is associated with a non-empty
measurable subset A(s), whose elements are legal
actions for state s; we assume that state-action pair
set K � {(s, a)|s ∈ S, a ∈ A} is measurable;

• T is the transition law, whose elements are denoted
by T(B|k), where B ∈ B(A) and k ∈ K;

• r is the reward function mapping from K to R.
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Our task is to maximize the average reward, which is
given by

J(δ, s) � lim inf
T→∞

E
[ T∑

t=1
r(st , at)

]
, (58)

where δ is a policy and s is the initial state.
We need the following assumptions (Assumptions 2.1 in

[11]):

Assumption 1 (Regularity)

• For each state s ∈ S, A(s) is a non-empty compact
subset of A;

• The reward function r(x, a) is bounded and
continuous for a ∈ A(s);

• ∫
g(y)T(dy|s, a) is a continuous function in a ∈ A(s)

for each s ∈ S and for each function g ∈ B(S).

We also need the following ergodicity assumption
(Assumption 3.1 (1) in [11]):

Assumption 2 (Ergodicity)
There exists a state s∗ ∈ S and a positive number c such
that

T(s∗|k) > c, ∀k ∈ K. (59)

Combining Theorem 2.2, Lemma 3.3 and Corollary 3.6
in [11], we have the following theorem:

Theorem 1 The following statement hold:

• If the Ergodicity Assumption holds, then, for any
arbitrary policy a, there exists an invariant measure
pa, i.e. the unique invariant probability measure
satisfying

pa(B) =
∫

S
Tf (B|s)pf (dx), (60)

for all B ∈ B(S), and the average reward function
J(f , a) is a constant J(f ) (thus being independent of
initial state s), which is given by

J(f ) =
∫

r(y, a(y))pa(dy), (61)

• If both the Regularity Assumption and Ergodicity
Assumption hold, then there exists a constant J∗ and
a function h∗ in B(S) satisfying the following
Optimality Equation, ∀s ∈ S,

J∗ + h∗(s) = max
a∈A(s)

{
r(s, a) +

∫

S
h∗(y)T(dy|s, a)

}
. (62)

• Consider a Markov policy {at} such that it maximizes
the right hand side of the following equation:

h∗
t (s) = max

a∈A(s)

{
r(s, a) +

∫
ht−1(y)T(dy|s, a)

}
,(63)

where h0 ∈ B(S) is arbitrary, i.e.

ht(s) = r(s, at(s)) +
∫

ht−1(y)T(dy|s, ft(s)), (64)

then, the policy using at at time slot t is optimal.

Appendix F: Proof of Lemma 3
Proof We first verify the items in Assumption 1 (regu-

larity):

• For each state π , the corresponding set of action a(π)

is a point in [ε, 1]N , which is compact;
• From (30), the reward function r(s, a) is bounded by

|r(a(t),π(t))|

≤
N∑

n=1
H(Yn(t)|μn(t))

≤
N∑

n=1
In,max + n. (65)

The continuity can be obtained directly from (54)
and (56);

• Note that the action space A(s) for state s ∈ S is the
hyper-rectangle [ε, 1]N . Consider two policies a and
a′ corresponding to state s = π and ‖a − a′‖ = δf . If
πn = (

Qr
n
)
11 (sub-channel n is sensed r time slots

ago and is found idle), we have

P
(
πn(t + 1) = (

Qr+1
n

)
11

) = 1 − an(π), (66)

and

P
(
πn(t + 1) = (

Q1
n
)
11

) = an(π)πn(t), (67)

and

P
(
πn(t + 1) = (

Q1
n
)
12

) = an(π)(1 − πn(t)). (68)

The change of the probability is of order O(δf ). It is
easy to verify the same conclusion for the cases
πn(t) = (

Qr
n
)
12 and πn(t) = (

Qt
n
)
11 πn(0)

+ (
Qt

n
)
12 (1 − πn(0)). Therefore,

|T(dy|a, s) − T(dy|a′, s)| = O(δf ). (69)

Then, we obtain the continuity of
∫
g(y)T(dy|s, a)

using the assumption that g is a bounded function.
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Next, we verify Assumption 2 (ergodicity). We set

s∗ = {
πn(t) = (

Q1
n
)
11

}
n=1,...,N , (70)

i.e., all sub-channels are sensed. Since an ≥ ε, the prob-
ability of sensing sub-channel n is always positive, which
implies

T(s∗|k) ≥ εn, ∀k ∈ K. (71)

This concludes the proof.
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