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Abstract

To solve minimum exposure path (MEP) problem in wireless sensor networks more efficiently, this work proposes an
algorithm called target guiding self-avoiding random walk with intersection (TGSARWI), which mimics the behavior of
a group of random walkers that seek path to their destinations in a strange area. Target guiding leads random walkers
move toward their end points, while self-avoiding prevents them from taking roundabout routes. Route intersections
further accelerate the speed of seeking connected paths. Dijkstra algorithm (DA) is applied to solve MEP problem in a
sub-network formed by multiple connected paths that walkers generate (called TGSARWI DA). Simulations show that
the path exposure found by TGSARWI DA is very close to that by DA in the global network (Global DA), whereas the
time complexity of computation is much lower. Compared with existing heuristic algorithms such as physarum optimization
algorithm (POA), our algorithm shows higher generality and efficiency. This algorithm also exhibits good robustness to the
fluctuations of parameters. Our algorithm could be very useful for the solution to MEP problem in fields with large- or high-
density sensors.

Keywords: Minimum exposure path, Target guiding, Self-avoiding random walk, Intersection, Time complexity of
computation, Robustness

1 Introduction
Wireless sensor network (WSN) is a kind of distributed
sensing networks, whose nodes can detect the surround-
ing environment [1–3]. Given the characteristics of
large-scale deployment, easy extensibility, and low price,
WSN has been widely applied to such fields as military,
target tracking, intelligent transportation, environmental
monitoring, and health care [4–11]. The research and
application of wireless sensor networks have attracted
massive attention.
Coverage is a vital index to evaluate the quality of service

(QoS) of WSN’s sensing function [12–16]. According to
various characteristics of monitored objects, coverage can

be classified into three types, i.e., area coverage, point
coverage, and barrier coverage [17]. The present studies on
the measurement of coverage mostly focus on barrier
coverage [18–20] and therefore this study on barrier cover-
age is aimed to find one or various paths connecting source
point and target point, and quantitatively describe the sens-
ing quality of mobile objects along the path [21, 22]. The
concept of path exposure is used to evaluate coverage qual-
ity in the sensor-deployed field with the consideration of
path length and exposure simultaneously.
With respect to path exposure, there are two widely diver-

gent viewpoints. One is best-case coverage, which is to find
a path with the highest observability. The Maximal Expos-
ure Path and the Maximal Support Path are two solutions
to the best-case coverage [23–25]. The other is the worst-
case coverage, which is to design a path through the sensor
field and make the minimum probability of detecting the
mobile object. There exist two well-known approaches with
respect to the worst-case coverage, i.e., minimal exposure
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path (MEP) and the maximal breach path [26]. The max-
imal exposure path and minimal exposure path are essen-
tially the same problem. Hence, we focus on the MEP
problem of worst-case coverage in this paper. The MEP
problem is the variation of functional extremum in mathem-
atics [27]. Theoretically, it is possible to find the optimum
path by solving the corresponding Euler-Lagrange Equation
[28]. When there is only one sensor in the detecting region,
ref. [29] obtains the exact analytical solution to MEP prob-
lem. However, in the multiple-sensor region, higher-order
non-linearity makes it difficult to express and solve the
Euler-Lagrange equation [29–31]. Some approaches have
been proposed to address this problem, such as Voronoi
diagram-based approach and grid-based approach. However,
the time complexity of computation of those approaches
will increase with the rise of the grid scale or sensor density.
Therefore, it is essential to propose an algorithm to reduce
the time complexity of computation and guarantee the qual-
ity of solutions simultaneously.
This paper is aimed to decrease the time complexity of

computation of grid-based approach in order to solve MEP
problem with large-scale field or high-density sensors. An
algorithm is proposed and named as target guiding self-
avoiding random walk with intersection (TGSARWI), which
mimics the behavior that an individual seeks a path from
the source point to the target point in a strange area. In this
algorithm, multiple random walkers start from the source
point and the target point respectively and head to the op-
posite sides along edges of the grid network. At each step,
each random walker moves to a neighbor chosen according
to the edge exposure and the direction to its end point.
When routes of walkers from different start points intersect,
one or multiple paths will be created between the source
and the target, so that a connected sub-network can be
formed. Finally, the shortest path algorithm is employed to
seek the minimum exposure path in this sub-network.
The main contributions of this paper are summarized

as follows:

� Compared with the previous algorithm, TGSARWI
DA can solve MEP problem in large-scale field with
acceptable complexity.

� The complexity of TGSARWI DA is insensitive to
the number of sensors, enabling to solve MEP
problem with much higher density sensors.

� Unlike the POA, parameters in TGSARWI DA need
no adjustment as the background of MEP problem
changes. Hence, the newly proposed algorithm has
better adaptability to environment.

The rest of this paper is organized as follows: Section 2
summarizes related approaches about the minimal exposure
path problem. Section 3 introduces the model of MEP prob-
lem. Section 4 proposes TGSARWI DA algorithm. Section

5 evaluates the proposed TGSARWI DA by extensive
simulations.

2 Related work
The goal of MEP problem is to find a path through the
detecting region with sensor deployment and to ensure the
object that moves along the path has the least possibility
detected by sensors. When the detecting region is deployed
by multiple sensors, the finding of the minimum exposure
path, due to the highly ordered nonlinearity of MEP prob-
lem, will become rather complex using the Euler-Lagrange
equation. Considering the difficulty in obtaining exact solu-
tion to the MEP problem, the most popular strategy is to
convert the continuous MEP problem to discrete problem.
The discrete method includes two principle approximate ap-
proaches. One is Voronoi diagram-based approach and the
other is grid-based approach.
Voronoi diagram-based approach is proposed in ref.

[26]. In this approach, the detecting region is divided
into n (n is the sensor number) polygons according to
the geometric positions of sensors, and each polygon is
called a Voronoi cell. The distance of any point in a Vor-
onoi cell to its sensor is closer than that to the other
sensors. All the edges of the polygons form a graph
called Voronoi graph. The weight of the edge is defined
as the exposure along the Voronoi edge. The object can
move only along the Voronoi edge. Then, the MEP
problem is transformed into a shortest path problem
and could be solved by the shortest path algorithm.
Many improvements are made based on this approach.
For example, Djidjev integrates Voronoi diagram and
Euler-Lagrange equation to find the minimum exposure
path [29, 30]. Zhang et al. propose a distributed path
search method based on Voronoi diagram [32]. In ref.
[33], Zhou applies Voronoi graph and Dijkstra algorithm
to search vulnerable path in the sensors network. How-
ever, Voronoi diagram-based approach cannot be used in
networks including directional sensors, unless the range
of directional sensor is transformed into a special region.
In addition, the time complexity of computation will be
sharply increased as the total number of sensors grows.
Moreover, this approach is also inaccessible when the
source and target are not on the Voronoi edges or the
sensing intensity is not decided only by the nearest sen-
sor [34].
Grid-based approach divides detecting region into m× n

square grid cells. Each cell has four nodes and four edges.
Each node connects its four neighboring nodes by four
edges. The weight of each edge is the exposure, which is
obtained by sensing intensity from the sensors. Then, the
whole nodes and edges form a weighted undirected net-
work. The object is restricted to move along the edges or
diagonals of the grid, and then the minimum exposure path
is identified based on the edge exposures [24]. Liu et al. uses
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a grid-based approach in the field with directional and
omni-directional sensors deployment, and applies the phy-
sarum optimization to obtain the minimum exposure path
[35]. Ref. [36] proposes a bond percolation-based scheme to
put the exposure path problem into a 3D uniform lattice,
and then uses grid-based approach to find the minimum ex-
posure path. Aiming at the MEP problem with path con-
straint conditions, Hao et al. divides the path into three
parts. The paths of the first part and the last part are calcu-
lated by grid-based approach, while the middle part is solved
through the hybrid genetic algorithm [37]. Liu uses adaptive
cell decomposition to transform the minimal exposure path
problem into a discrete problem, and then designs an
OMEPS algorithm to search for the obstacle-avoidance
minimum exposure path in the grid-based network [38]. Ac-
cordingly, other various improved algorithms based on grid
partition also have been proposed [39–42]. It is noted that,
in grid-based approach, the larger the scale of the grid net-
work within a fixed region is, the more accurate the solution
to the MEP problem will be. However, since the complexity
rises sharply as the grid scale increases, it is difficult to solve
the problem in large-scale grids. Some heuristic algorithms
have been proposed to simplify the complexity. For example,
Liu et al. proposed a physarum optimization algorithm
(POA) based on the light-avoidance of physarum, which
could be used to obtain minimum exposure path with edge-
cutting method in the grid [40]. The shortage of this method
is that, in the simulations, parameters of POA need to be
retuned when the grid scale and sensor density change.

3 Minimum exposure path problem
Generally speaking, wireless sensors applied in different
fields have different functions, but their common feature
is that their detecting sensitivity gradually attenuates as
the detecting distance increases. For directional sensor,
the sensitivity of the sensor is inversely proportional to
the offset angle.
Suppose ns sensors fs1; s2;…; snsg, directional or omni-

directional, are randomly distributed in a rectangle field
Q which is an arbitrary point in the sensor-detected
field. The detecting sensitivity ss(si,Q) of sensor si to the
point Q could be represented as follows:

ss si;Qð Þ ¼
μ= d si;Qð Þ½ �τ siis omnidirectional

μ cos
φ V i

�!
; siQ
�!� �

2

2
4

3
5

8<
:

9=
;

γ

= d si;Qð Þ½ �τ siis directional

8>><
>>:

ð1Þ

Where d(si,Q) represents Euclidean distance between

sensor si and point Q. V i
�!

denotes the unit vector which
determines the sensing direction of sensor si in the case

of directional sensor. siQ
�!

is the vector from sensor si to

point Q, φð V i
�!

; siQ
�!Þ denotes the angle between V i

�!
and

siQ
�!

. Parameter μ, τ, and γ are the sensor-dependent
parameters. According to the literature [40], parameter
μ denotes the sensitivity of the sensor at the unit
distance or the direction of directional sensor, parameter
τ denotes the attenuation coefficient of sensor sensitivity
on distance, and parameter γ denotes the attenuation
coefficient of the directed sensor sensitivity on deviating
from the central direction.
The sensitivity S of point Q detected by field sensors

could be represented by two methods. One is to con-
sider the sensitivity S as the sum of ns sensors’ sensitiv-
ities, which can be represented as SðQÞ ¼ Pns

i¼1 ssðsi;QÞ.
The other is to consider the sensitivity S as the max-
imum sensitivity of ns sensors to the point Q, which is S

ðQÞ ¼ max
i¼1;…;ns

ssðsi;QÞ . Following ref. [40], we use the

latter method to represent the sensitivity.
The concept of exposure is used to measure the cover-

age quality of the field with sensor deployment. Once
the walker’s path f(x) is known, the exposure E(f(x)) of
the path could be calculated by curvilinear integral
method as follows:

E f xð Þð Þ ¼
Z ve

vs

S x; f xð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 xð Þð Þ2

q
dx ð2Þ

Where vs and ve are the source point and target point,
respectively.
MEP problem is to find a path in which the exposure

reaches minimum, while the minimum E(f(x)) could be
obtained by variation method of extremum. Here, we

denote F ¼ Sðx; f ðxÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð f 0ðxÞÞ2

q
and substitute it into

the following Euler-Lagrange equation:

∂F
∂ f xð Þ−

d
dx

∂F
∂ f 0 xð Þ ¼ 0 ð3Þ

Theoretically, the minimum E(f(x)) can be obtained only
when the above equation is solved. However, in the field
with multiple sensors, higher-order nonlinearity makes it
difficult to solve the Euler-Lagrange equation. Therefore,
the problem of continuous minimum exposure path is
transformed into a discrete problem in this paper.
Supposing that the detected field is a rectangle area,

the rectangle can be divided into m × n grids. Then, the
walker can move only along the edges of the grid net-
work, as shown in Fig. 1.
Here, the sensor-detected grid is a weighted connected

network graph G = (V, E,W), where V = {v1, v2,…, vi,…,
vm × n} represents the set of all nodes and E is the set of
all edges. Let wij ∈W denote the weight of the edge eij
between two nodes vi and vj, which shows the exposure
of eij detected by all sensors in the grid field. Since this
graph is an undirected network graph, we have wij =wji.
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Let the length of the edge be l, the coordinate of node vi
be (xi, yi), the weight wij could be calculated as follows:

wij ¼ E eij
� �

¼

Z min xi;x jf gþl

min xi;x jf g
S x; yið Þð Þdx eij is horizontal

Z min yi;y jf gþl

min yi;y jf g
S xi; yð Þð Þdy eij is vertical

8>>>><
>>>>:

ð4Þ

Once the exposure of each edge in the grid is obtained,
the minimum exposure path between source point vs and
target point ve can be got through optimized algorithm
(such as Dijkstra algorithm). Nevertheless, the time com-
plexity of Dijkstra algorithm is O(m2n2), making it difficult
to solve MEP problem in a large-scale field. Therefore, this
research will apply random walk to imitate the path-finding
process of a walker in a strange area. After generating a
sufficient number of connected paths between vs and ve,
Dijkstra algorithm is used to seek minimum exposure path
in the sub-network formed by these connected paths.

4 TGSARWI DA algorithm for MEP problem
4.1 Self-avoiding random walk
For the random walk algorithm [43], a walker starts at the
node vi and moves to a randomly chosen neighbor vj ∈V
at each step. The above process could be denoted as xt + 1

= Pxt, where P represents the matrix of transition prob-
ability, which is column-normalized matrix of weighted
adjacency matrix of network graph G. The transition
probability from node vi to vj is inversely proportional to

the weight wij of the edge eij, which could be represented
as follows:

pij ¼
1=wijP

eik∈E 1=wikð Þ ð5Þ

In a random walk, the node-visiting sequence of the
walker is a finite state Markov chain, which is only related
to the currently visited node rather than the previous
sequence of nodes. However, in the shortest path-finding
process, the next node that will be visited should not be
included in the nodes that have been visited. Namely, the
transfer process of MEP problem is not a Markov chain.
Thus, a self-avoiding random walk is defined to avoid any
visited nodes. In such a random walk, for a path H, the

transition probability pð1Þij ðHÞ from node vi to vj is modified

as follows:

p 1ð Þ
ij Hð Þ ¼

1=wijP
eik∈Evk∉H1=wik

v j∉H

0 v j∈H

8<
: ð6Þ

Where, the operator “&” denotes the logical operation
symbol “AND”. Unfortunately, as shown in Fig. 2, when
the walker performs a self-avoiding random walk, it could
be besieged by sensors or the previously visited path. In
this situation, the walker is expected to take local back-
tracking or restart a walk.

4.2 Self-avoiding random walk with intersection
Since the time complexity of computation of the self-
avoiding random walk to find a path between a source
point and a target point is the square of the distance, the
algorithm of self-avoiding random walk with intersection
is proposed.
We assume that the source and target are two “bases,”

each of which dispatches several “walkers” to contact each
other. When the walkers move in the grid network G by
self-avoiding random walk, they move by transition prob-

ability pð1Þij ðHÞ and leave marks on the nodes that have been

visited. If two walkers from two bases meet directly or one
walker moves to a node that has been visited by a walker
from the opposite base, the path connecting two bases
could be generated by routes of these two walkers, as Fig. 3
shows. Thus, this process is called as a self-avoiding ran-
dom walk with intersection.
Suppose that nu(nu≫ 1) walkers are simultaneously dis-

patched from the base vs and ve, respectively, and routes
created by walkers from the two sides are defined as Hs

ið1
≤ i≤nuÞ and He

jð1≤ j≤nuÞ . In the seeking process, if Hs
i∩

He
j≠∅ , there exists one intersection between routes from

the i-th walker from vs and the j-th walker from ve. Then,
these two walkers stop path seeking. Since the walkers

Fig. 1 The grid network with scale m × n, where the walker can
move only along its edges
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from the two sides always check the intersection during the
seeking processes, they could ensure that the connected
path has only one intersection point. The connected path
obtained between vs and ve is described as follows.
Assume that Hs

i∩H
e
j ¼ fv0g, Hs

i ¼ fvs; vi1 ; vi2 ;…; vin ; v0;

…g , and He
j ¼ fve; v j1 ; v j2 ;…; v jn0 ; v0;…g , then the con-

nected path between vs and ve is H ¼ fvs; vi1 ; vi2 ;…; vin ;

v0; v j
n
0 ; v j

n
0 −1
;…; v j2 ; v j1 ; veg.

4.3 Target guiding self-avoiding random walk with
intersection
As a single path obtained by random walk possesses great
randomness, it probably includes a roundabout route as
shown in Fig. 3, which is unacceptable as the shortest
path. Thus, target guiding is added in the random walk.

In the algorithm of a random walk with intersection, it
is assumed that walkers from each side cannot predict
the location of the opposite. In practice, locations of the
base vs and ve could be obtained in advance, so that
walkers from two sides could use the information of
their target locations. Then, the algorithm of target guid-
ing self-avoiding random walk with intersection
(TGSARWI) is proposed, whose transition probability is
deduced as follows.
Assuming that the coordinate of each node is

known in the grid network G, and the coordinate of
node vi is (xi, yi). If vi and vj are two nodes in the
network, the ray angle θij from vi to vj is described
as Eq. (7) and Fig. 4.

θij ¼
arctan

y j−yi
x j−xi

� 	
y j−yi

� �
arctan

y j−yi
x j−xi

� 	
> 0

π þ arctan
y j−yi
x j−xi

� 	
y j−yi

� �
arctan

y j−yi
x j−xi

� 	
< 0

8>><
>>:

ð7Þ

When a walker whose destination is v∗(x∗, y∗)reaches a
node vt(xt, yt) through the route Ht, its undirected transi-

tion probability pð1Þtj ðHtÞ from vt to vj could be calculated

by Eq. (6). Since locations of vt and vj have been known
in advance, the transition probability could be repre-

sented by a vector dtj
*

as follows:

dtj
*¼ p 1ð Þ

tj Htð Þ cosθtj; sinθtj
� � ð8Þ

Meanwhile, unit vector et�
*

from vt to v∗ is

et�
*¼ cosθt�; sinθt�ð Þ ð9Þ

Thus, considering the target guiding, the transition prob-
ability can be modified through vector projection as follows:

Fig. 3 The diagram of self-avoiding random walk with intersection,
where red cycle nodes represent the two bases, the blue and black
paths denote the routes walked by walkers from the two bases,
respectively. The roundabout path inside the dashed box is unreasonable

Fig. 2 The diagram of the besieged walker, where a shows the walker is besieged by the path visited before, b shows the walker is besieged by sensors

Yang et al. EURASIP Journal on Wireless Communications and Networking  (2018) 2018:33 Page 5 of 14



p 2ð Þ
tj Htð Þ ¼dtj

* � et�*¼ p 1ð Þ
tj Htð Þ cos θtj−θt�

� � ð10Þ

It is noted that the value of transition probability pð2Þtj ðHtÞ
may be negative. To ensure it satisfies the non-negative and
normalization requirement, Eq. (10) is improved as follows:

p 3ð Þ
tj Htð Þ ¼ p 1ð Þ

tj Htð Þeρ cos θtj−θt�ð Þ
P

vt ;vkð Þ∈Ep
1ð Þ
tk Htð Þeρ cos θtk−θt�ð Þ

ð11Þ

As is shown above, the transition probability of
TGSARWI, where ρ(ρ ≥ 0) is a target guiding factor, repre-
sents the strength of target guiding. Whenρ = 0, the target

guiding is ineffective, and pð3Þtj ðHtÞ ¼ pð1Þtj ðHtÞ. While ρ→

+∞, the exposure wtj of the transition edge will play little

role to pð3Þtj ðHtÞ , and the path found by the algorithm is

approximately a straight line between the two bases.

4.4 Dijkstra algorithm based on sub-network
Based on random walk algorithm, the TGSARWI algo-
rithm would not definitely produce a connected path
which is the optimum one. Thus, nh(nh≫ 1) connected
paths were firstly generated. Then, those paths with the
same source point and target point were combined to
construct a connected sub-network G1 = (V1, E1,W1) of
the grid network G followed by Dijkstra algorithm (DA)
to solve MEP problem in this sub-network [44].
The exposure value of one path H ¼ fvt1 ; vt2 ;…; vtpg

is the sum of all edges’ exposures along the path
defined as follows:

E Hð Þ ¼
Xp−1
j¼1

wt jt jþ1 ð12Þ

DA is considered as a perfect method to solve the short-
est path problem of a single source in a non-negative

weight network. The core idea of DA is that the gener-
ation of the new shortest path is based on the existing
shortest. Traditional DA has the shortage that it extends
only one node by the shortest tentative distance at each
step [45]. In the complex network of grid-based MEP
problem, there is a high probability that multiple nodes
have the same shortest tentative distance at one step.
Thus, DA is improved to allow the extending of multiple
nodes at one step and record necessary information.
Assuming that vs and ve are the source and target

node, respectively, what the researcher needs to do
is to find the shortest path between vs and ve. Here,
the weight of edge eij ∈ E1 is defined as wij in the
sub-network G1. In DA, P and T are denoted as the
sets of permanent and temporary nodes, respectively.
Based on the above analysis, the improved DA could
be described as follows:
(1) Label P to the node vs and record P(vs) = 0. Then,

define the set of new nodes labeled P as R = {vs}. Label T
to other nodes and record Δ = {vj|vj ∈V& vj ≠ vs}, when
∀vj ∈Δ, T(vj) =∞;
(2) For eachvt ∈ R, for each vj ∈Δ& etj ∈ E1, if T(vj) >

P(vt) +wtj, set T(vj) = P(vt) +wtj and Γ(vj) = vt;
(3) Set R =∅;
(4) For eachvi ∈ Δ, if TðviÞ ¼ min

v j∈T
Tðv jÞvi≠ve , label P

to the node vi, and define P(vi) = T(vi), R = R ∪ {vi}, Δ =Δ
− {vi}. if TðviÞ ¼ min

v j∈Δ
Tðv jÞvi ¼ ve , label P to the node vi,

and define P(vi) =T(vi), algorithm end, else return to (2).
In the above steps, Γ records the shortest path informa-

tion from the source node to other nodes in the improved
DA. The information recorded by Γ is incomplete, because
the algorithm calculates part of the shortest paths from
the source node to all other nodes. However, it can be
ensured that the information of the shortest path Hm from
vs to ve is complete. Then, Hm can be obtained through
the following backtracking algorithm:

Fig. 4 The diagram of the ray angle θij from vi to vj, where the θij in a is a acute angle, and the θij in b is a obtuse angle
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(1)Initialize Hm = {Γ(ve), ve} and set vt = Γ(ve);
(2)If vt = vs, backtracking end, or go to (3);
(3)Set Hm ¼ fΓðvtÞg~∪Hm, vt = Γ(vt), and return

to (2).

Where Hm is the shortest path fromvs to ve, which
is an ordered set, ~∪ in step (3) represents ordered
union operation. For example, if there exists an
ordered set A = {v1, v2}, then the following results
will be obtained, fv3g~∪A ¼ fv3; v1; v2g and A~∪fv3g
¼ fv1; v2; v3g.

4.5 Algorithm pseudocode
Here, the pseudocode is presented for the overall
algorithm, including the TGSARWI algorithm and
the improved DA (called TGSARWI DA).

5 Simulation result and discussion
The studies about the convergence and complexity for ran-
dom optimization-based heuristic algorithm are usually
based on Markov chain, which has no aftereffect property
[46–52]. TGSARWI DA is based on the algorithm of self-
avoiding random walk and combines target guiding and
intersection of paths. Since the walking process does not
have after effect property, it no longer belongs to the
category of Markov process. Hence, it is inappropriate to
do the complexity analysis for our algorithm by common
theories. This work integrates theoretical analysis and
numerical simulation to discuss the algorithm performance.
In this section, simulations are conducted to verify the

algorithm for the MEP problem. Firstly, the effect of the
parameter ρ on the algorithm is evaluated. Secondly, the
algorithm performance is analyzed with precision assess-
ment, complexity analysis, and comparison with POA.
Finally, the robustness of the algorithm is discussed.
In order to distinguish the application of DA to the glo-

bal grid network and the sub-network created by
TGSARWI, they are defined as Global DA and TGSARWI
DA, respectively.

5.1 Effect evaluation of the target guiding factor
The effects of the target guiding factor ρ are discussed on
the number of iterations for finding the first connected path
(Tf), the number of iterations for finding all the required
connected paths (Tl), and the minimum exposure E(H),
respectively.
The simulation is implemented in the grid with the

scale of 50 × 50, in which the length of edge is 10, the
number of sensors is 50 and their directions, and coordi-
nates are generated randomly. The initial graph created
is shown in Fig. 5. For each parameter ρ, the algorithm
is simulated 100 times and the average values of Tf, Tl,
and E(H) could be obtained.
Figure 6a shows that when the parameter ρ increases,

Tf and Tl decrease. The reason is that the influence of tar-
get guiding on the transition probability increases with the
increment ofρ, which weakens the walker’s randomness
and decreases the number of iteration. In fact,Tf and Tl de-
crease sharply when ρ belongs to the area of [0, 0.9]. How-
ever, when ρ > 0.9, the numbers of iterations reach stable.
This means that, as ρ further increases, the influence on
finding the connected path is little.
The effect of parameter ρ to minimum exposure E(H) is

displayed in Fig. 6b. Roughly speaking, with the increment
of ρ, the value of E(H) first decreases and then increases.
When ρ is small, the randomness of the walkers is large.
Thus, the sub-network formed by nh connected paths is
sparse (see Fig. 7a, b), leading to a large value of E(H). How-
ever, if ρ is too large, walkers cannot avoid moving along
edges with large exposure due to the constraint of target
guiding (see Fig. 7c, d). This can also make the value of
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E(H) large. Figure 6b shows that E(H) achieves the mini-
mum as ρ = 0.9. Thus, ρ is set as 0.9 in simulations.
Taking ρ as 0.9, the MEP problem presented in Fig. 5

is addressed with TGSARWI DA algorithm. It is also
solved with Global DA as a comparison. As shown in
Fig. 8, although those algorithms generate different
optimum paths, the values of E(H) are very close.
It is worth to note that TGSARWI DA algorithm owns

good generality. Once the value of parameter ρ is
chosen, the algorithm could solve MEP problem with
various field scales and different sensor densities. In the
following simulations, ρ is always set as 0.9.

5.2 Performance evaluation of TGSARWI DA
The performance of TGSARWI DA algorithm is evalu-
ated from three aspects, i.e., precision, complexity ana-
lysis, and comparison with POA.

The minimum exposure path found by Global DA is con-
sidered as optimal path. Thus, TGSARWI DA is compared
with Global DA. Considering the time efficiency, the first
path found by TGSARWI is also included in the compari-
son. In order to overcome the randomness feature of single
simulation, 30 independent repetitive simulations are per-
formed and the average value is taken.
The numbers of walkers and connected paths which form

sub-network are related with the scale of the field. As for a
field with scale m× n, these values are respectively taken as
nu ¼ b30þ ffiffiffiffiffiffiffi

mn4
p c, and nh ¼ b30þ 2� ffiffiffiffiffiffiffi

mn4
p c.

5.2.1 Precision assessment
Since the time complexity of Global DA grows rapidly as
field scale increases, simulations are initially conducted in
the field whose scale changes from 10 × 10 to 150 × 150
(see Fig. 9a). In order to avoid the effect of sensor density,
the density of sensors is fixed as 0.02. Namely, the sensor
number is 2% of the total number of nodes in the grid net-
work. Then, the field scale is fixed as 50 × 50, and the sen-
sor density is adjusted from 0.04 to 0.4 (see Fig. 9b).
Figure 9a shows the trends of E(H) corresponding to the

first connected path HTFP obtained by TGSARWI, path
HTDA obtained by TGSARWI DA and path HGDA obtained
by Global DA with the increasing of scale, respectively.
E(H) of HTDA and HGDA are almost equal, whose relative
error is 4.59% and maximum value is 6.39%. In contrast,
E(H) of HTFP is much larger than that of HGDA. Their aver-
age relative error is 85.49%. In Fig. 9, E(H) of HTDA and
HGDA are almost the same in various sensor density fields.
In fact, their average relative error is only 2.19%. However,
E(H) of HTFP is greater than HGDA, and their average rela-
tive error is 50.41%. These results suggest that, when deal-
ing with MEP problem with various field scales and
different sensor densities, TGSARWI DA exhibits perform-
ance nearly as well as Global DA.

Fig. 5 The initial graph which used to simulate our algorithm, in which
sensor types include directional sensor and omnidirectional sensor

Fig. 6 The diagram of the effect of factor ρ to the algorithm, where a shows the trends of iteration number of first path and TGSARWI paths with the
changes of ρ, and b shows the trend of the minimum exposure obtained by TGSARWI DA with the changes of ρ
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5.2.2 Time computation complexity analysis
For a field with scale m × n, the time computation com-
plexity of DA is O(m2n2),

1 which means that DA is not
suitable for solving MEP problem with a rather large-
scale field. Here, the time computation complexity of
Global DA is compared with TGSARWI DA in different
grid scales and various sensor densities. The scale of the
field is set from 10 × 10 to 900 × 900, and the sensor
density is in the area of [0 0.4].
In this paper, the time computation complexity is mea-

sured from two aspects, i.e., first connected path found by

TGSARWI and the minimum exposure path found by
TGSARWI DA.
For the first connected path, the time computation

complexity is mainly associated with the transition pos-

sibility pð3Þtj ðHtÞ of each walker at each step in the grid

network, which is about O(nu × Tf ). Further, the time
computation complexity benefit ηTFP of the first path
found by TGSARWI is defined as the ratio of complexity
of finding first connected path by TGSARWI and DA,
which is represented as follows:

ηTFP ¼ nu � T f

m� nð Þ2 ≈ T f 30 mnð Þ−2 þ mnð Þ−7
4

� �
ð13Þ

For the minimum exposure path, to quantitatively
analyze the simplifying efficacy of TGSARWI algorithm
to MEP problem, the reduction ratio r is defined as the
norm ratio of sub-network G1 formed by nh connected
paths to the original grid network G:

r ¼ ‖G1‖

‖G‖
¼ ‖G1‖

m� n
ð14Þ

Where ‖•‖ is the number of edges of the network.
Since the time computation complexity of sub-network
forming is aboutO(nu × Tl), and the time computation
complexity of minimum exposure path found by
TGSARWI DA is O(nu × Tl + r2 × (m × n)2), the time
computation complexity benefit ηTDA is calculated as
follows:

Fig. 7 The sub-network created by TGRWI algorithm with different target guiding factor, where the ρ is set as 0.01, 0.9, 10, and 500, respectively

Fig. 8 An example of comparison of Global DA and TGSARWI DA
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ηTDA ¼ nu � Tl þ r2 � m� nð Þ2
m� nð Þ2 ≈ Tl 30 mnð Þ−2 þ 2 mnð Þ−7

4

� �
þ r2

ð15Þ
In Fig. 10a, the iteration number Tf is growing

linearly as the field scale increases, whose slope is
about 0.9803. Compared with the time computation
complexity of DA that is O(m2n2), the efficiency of
first path found by TGSARWI algorithm is higher.
From Eq. (13) and Fig. 10b, it is shown that the first
path benefit ηTFP decreases significantly as the scale
increases. Specifically, when the field scale is 900 ×
900, ηTFP is only 8.3493 × 10−8. These results suggest
that TGSARWI is efficient to find out the first path
for timeliness demand in large-scale field, such as
real-time solution and online calculation, although
the exposure performance of HTFP is not as good as
Global DA.
In Fig. 10c, although the iteration number Tl of

TGSARWI DA increases exponentially with the change
of field scale, its exponential coefficient is only about
0.0046. Meanwhile, in Fig. 10d, the complexity benefit
ηTDA gradually deceases with the increasing of the
scale, and finally goes close to zero. Particularly, its
minimum value is 0.0042 when the field has the scale
of 900 × 900, suggesting that TGSARWI DA only uses
0.42% computation time of Global DA.
Similar measures are also employed to analyze the

time computation complexity of TGSARWI DA with
various sensor densities. In Fig. 11a, iteration numbers
of the first path found in the field for different sensor
densities are visualized. The number of iterations in-
creases linearly with the density of sensors in the areas
of [0.0.312] and (0.312, 0.4], respectively. The linear re-
lation suggests that TGSARWI is not sensitive to the
change of sensor density, making it suitable to solve
MEP problem in the field with high density sensors.

The equations of the two fitting lines are shown in the
inner figure. The slope of the straight line in the latter
area is much larger than that in the former area, imply-
ing that the time to find a path increases sharply when
the density of sensors exceeds the critical value 0.312.
This is because if the distribution of sensors is too
dense, it will be rather difficult for the walker to find an
accessible path. In the area that density of sensors is
reasonable (here it is [0, 0.312]), TGSARWI is expected
to identify a path at a rather fast speed. For example,
when the number of sensors is 780, corresponding to
the density of sensor 0.312, only 41 steps are needed to
find the first connected path. Figure 11b shows how the
iteration number to find all the required connected
paths changes with sensor density. The iteration num-
ber Tl is proportional to the sensor density. The curve
increases gently when the sensor density is below 0.312
and grows rapidly as the density is above 0.312. The fit-
ting function of the curve is y ¼ 30:2064

0:4276−x. Accordingly, it
is obviously shown that the complexity of finding con-
nected path increases as the density becomes denser,
while the maximum sensor density for TGSARWI algo-
rithm to find connected sub-network is 0.4276.

5.3 Comparison with POA
As a representative of heuristic algorithms in solving
MEP problem, physarum optimization algorithm (POA)
has the ability to find the minimum exposure path in
the field with various type sensors and reduce the time
computation complexity [40]. However, the growth of
time computation complexity is still too fast.
According to ref. [40], in the field with scales of 10 ×

10, 20 × 20, 50 × 50, and 100 × 100, as well as with the
sensor number of 10, 30, and 50, the minimum expo-
sures of paths found by POA and DA are quite close.
The relative errors of E(H) of paths got by POA and

Fig. 9 Precision comparison of Global DA, TGSARWI DA, and the first path obtained by TGSARWI in various field scales and sensor densities, where a shows
the exposure trends of three paths with the changes of field scale, and b shows the exposure trends of three paths with the changes of sensor density
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Global DA are 0.0240 and 0.0542 in different field scales
and sensor densities. TGSARWI DA is also compared
with Global DA in the same condition. The relative
errors are 0.0219 and 0.0459 in different field scales
and sensor densities, respectively. These results sug-
gest that the algorithm has slightly better perform-
ance than POA.
The time computation complexity of TGSARWI DA

is further compared with that of POA. Numbers of
iteration for POA are taken from ref. [31]. As shown
in Fig. 12, the iteration number of POA is far greater
than that of TGSARWI DA, no matter what scale the
field and the sensor density are. These results fully
demonstrate that TGSARWI DA is more appropriate
to solve MEP problem with a large-scale field and
high-sensor density.

5.4 Robustness discussion
In this section, variation coefficient is applied to
quantitatively analyze the vulnerability of TGSARWI
deceased by the stochastic fluctuations of target guid-
ing factor ρ, the number of walkers nu and the num-
ber of connective paths nh [53]. The fluctuation
coefficient φ(X) of sample data X is defined as:

φ Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
D Xð Þp
F Xð Þ ð16Þ

where F(X) and D(X) donate the expectation and vari-
ance of X, respectively. The closer the coefficient φ(X) to
zero is, the smaller fluctuation the sample data Xhas.
Based on current parameters, 100 groups of normal

distribution rates are generated and 50 groups of sample

Fig. 10 The time computation complexity of TGSARWI with various field scales. a Shows the trend of iteration number of the first path obtained
by TGSARWI. b Shows the trend of the first path benefit. c Shows the trend of iteration number for finding all the required connected paths. d
Shows the benefit trend of iteration number for finding all the required connected paths

Fig. 11 The time computation complexity of TGRWI for various sensor densities. a Shows the trend of iteration number of the first path obtained
by TGSARWI. b Shows the trend of iteration number for finding all the required connected paths
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data are created, according to each normal distribution
rate. Then, corresponding iteration number Tl, and the
minimum exposure E(H) are calculated according to
each normal distribution. Finally, values of φ(ρ), φ(nu),
φ(nh), φ(Tl), and φ(E(H)) are obtained. φ(Tl) and φ(E(H))
are set as vertical coordinates, φ(ρ), φ(nu), and φ(nh) as
horizontal coordinates, respectively and show their rela-
tionships in Fig. 13.
From Fig. 13a, b, when ρ and nu fluctuate in the inter-

val [0, 0.5], the fluctuation coefficients of the minimum
exposure E(H) change little, the maximum values of
φ(E(H)) are 0.0331 and 0.0315, respectively. They are all
smaller than the corresponding fluctuation coefficients
of parameters, indicating that TSAGRWI DA owns quite
excellent robustness to the stochastic fluctuations of

these two parameters. In Fig. 13c, φ(E(H)) increases qua-
dratically with φ(nh), but still satisfies φ(E(H))
< φ(nh).The maximum value of φ(E(H)) is 0.0726, indi-
cating E(H) also owns better robustness to the stochastic
fluctuation of nh. In summary, E(H) is not sensitive to
the fluctuation of the three parameters nh, ρ, and nu.
Figure 13d–e show that φ(Tl) increases as φ(ρ), φ(nu),

and φ(nh) grow. The values of φ(Tl) increases quadrati-
cally with the increase of φ(ρ) and φ(nu), and the in-
creasing rate of the former is faster than the latter.
When φ(ρ) ≤ 0.1611 and φ(nu) ≤ 0.2370, the fluctuation
coefficient of Tl is smaller than those of ρ and nu, sug-
gesting that Tl is not sensitive to the fluctuation of ρ and
nu in these areas. φ(ρ) > 0.1611 and φ(nu) > 0.2370, the
fluctuation coefficient of Tl is larger than those of ρ and

Fig. 12 Comparison of time computation complexity for POA and TGSARWI DA with different field scales and sensor number. a Shows the comparison of
iteration number Tl with the various field scales. b Shows the comparison of iteration number Tl with the different sensor number

Fig. 13 Comparisons of fluctuation coefficients of the parameters. a Shows the fluctuation effect of ρ to E(H). b Shows the fluctuation effect of nu
to E(H). c Shows the fluctuation effect of nh to E(H). d Shows the fluctuation effect of ρ to Tl. e Shows the fluctuation effect of nu to Tl. f Shows
the fluctuation effect of nh to Tl
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nu, which indicates that Tl is sensitive to the fluctuation
of ρ and nu in these areas. φ(Tl) grows linearly as φ(nh)
increases, and the slope is 0.7224, which is smaller than
1, implying that Tl has better robustness to the fluctu-
ation of nh. In a word, the sensitiveness of iteration
number Tl to the stochastic fluctuations of parameters
could be sorted in descending order as ρ, nu, and nh.
It is worth to note that both fluctuation coefficients of

Tl and E(H) have positive values during the fluctuations of
ρ, nu, and nh, which are mainly caused by the randomness
of TGSARWI.

6 Conclusions
MEP problem comes from the requirement to evaluate the
coverage quality of field with sensor deployment. According
to the minimum exposure path, the deployment of sensors
could be improved. This study aims to enhance the compu-
tation efficiency for MEP problem. The random walk is
modified from the perspective of target guiding, self-
avoiding, and route interaction to propose an algorithm
called TGSARWI. A sub-network is constructed by
multiple connected paths generated by a group of random
walkers using TGSARWI. Then, Dijkstra algorithm is ap-
plied to solve MEP problem in this sub-network. The simu-
lations mentioned in this study suggest that, the minimum
exposure path solved by the approach above is comparable
to that solved by Global DA, while the time computation
complexity of TGSARWI DA is only 10− 3 of that for DA.
Compared with existing heuristic algorithms such as
physarum optimization algorithm (POA), this algorithm
exhibits higher generality and efficiency. Therefore, our
algorithm could solve MEP problem in fields with large-
scale or high-density sensors. In fact, it is possible to extend
TGSARWI DA to solve the MEP problem in the three-
dimensional field, or the field with special protection area,
etc. It is expected to shed new lights on the study about
MEP problem and promote the development of WSN.

7 Endnotes
1Note: There also exist some improved Dijkstra’s algo-

rithm. For example, the reference [54] uses special data
structure, Fibonacci heaps, to improve the efficiency of
search and comparison, and then it makes the time com-
putation complexity decrease to O(E + VlogV), where E
and V represent the numbers of edge and node in the
graph G(V, E), respectively.
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