
RESEARCH Open Access

A general neuro-space mapping technique
for microwave device modeling
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Abstract

Accurate modeling of nonlinear microwave devices is critical for reliable design of microwave circuit and
system. In this paper, a more general neuro-space mapping (Neuro-SM) method is proposed to fulfill the
needs of the increased modeling complexity. The proposed technique retains the capability of the existing
dynamic Neuro-SM in modifying the dynamic voltage relationship between the coarse model and the
desired model. The proposed Neuro-SM also considers dynamic current mapping besides voltage mappings.
In this way, the proposed Neuro-SM generalizes the previously published Neuro-SM methods and has the
potential to produce a more accurate model of microwave devices with more dynamics and nonlinearity. A
new formulation and new sensitivity analysis technique are derived to train the general Neuro-SM with dc,
small-, and large-signal data. A new gradient-based training algorithm is also proposed to speed up the
training. The validity and efficiency of the general Neuro-SM method are demonstrated through a real
2 × 50 μm GaAs pseudomorphic high-electron mobility transistor (pHEMT) modeling example. The proposed
general Neuro-SM model can be implemented into circuit simulators conveniently.
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1 Introduction
Microwave transistors are key components in the next
generation wireless communication systems [1–4],
such as cognitive multiple-input multiple-output
(MIMO) systems [5–7], and cognitive relay network
[8, 9]. With the increasing complexity of communica-
tion circuit and system structure, designers rely more
heavily on computer-aided design (CAD) software to
achieve efficient design. Microwave device models are
essential to CAD software. The accuracy of these
models can even decide whether the communication
circuit and system design is successful or not. Due to
rapid technology development in semiconductor in-
dustry, new microwave devices constantly arrive.
Models suitable for previous devices may not fit new
devices well. There is an ongoing need for new accur-
ate models.

In recent years, neuro-space mapping (Neuro-SM)
technique [10] combining artificial neural networks
[11] with space mapping [12] has been recognized in
microwave device modeling with the advantages of
good efficiency and accuracy. In Neuro-SM, neural
networks are used to automatically map and modify
an existing equivalent circuit model also called coarse
model to a desired/accurate model through a process
named training. In order to fulfill the needs of the
increased modeling complexity and the industry’s in-
creasing need for tighter accuracy, several improve-
ments on the basis of [10] were subsequently studied
to enhance the modeling accuracy and efficiency,
such as Neuro-SM with the output mapping [13], dy-
namic Neuro-SM [14], and analytical Neuro-SM with
sensitivity analysis [15]. Neuro-SM with the output
mapping [13] was introduced, through incorporation
of a new output/current mapping, for modeling of
microwave devices. Compared to the Neuro-SM
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presented in [10], Neuro-SM with the output map-
ping is more suitable for modeling nonlinear devices
with more nonlinearity due to the additional and
useful degrees of freedom from the output mapping
neural network. In order to accurately model nonlin-
ear devices which have higher order dynamic effects
(e.g., capacitive effect or non-quasi-static effect) than
that of the coarse model, dynamic Neuro-SM was in-
troduced [14]. However, when the modeling devices
have both more nonlinearity and high order dynam-
ics, in such case, even though existing Neuro-SM
[13, 14] is used to map the coarse model towards
the device data, the match between the trained
Neuro-SM models and the device data may be still
not good enough. More effective Neuro-SM methods
need to be investigated to overcome the accuracy
limit of the Neuro-SM presented in [13, 14].
In this paper, we propose a more generalized

Neuro-SM approach including not only static map-
ping but also dynamic mapping, and considering
both voltage mapping and current mapping for the
first time. This paper is a further expansion of the
work in [13, 14]. Compared to [13] where only static
mapping is used, the proposed technique is more
suitable for modeling nonlinear devices with higher
order dynamic effects and non-quasi-static effect
that may be missing in the coarse model due to in-
clusion of dynamic mapping. Compared to [14], the

general Neuro-SM considers not only input voltage
mapping, but also output current mapping, further
refining the existing coarse model. In this way, well
trained general Neuro-SM model can represent the
dynamic behavior and large-signal nonlinearity of the
microwave devices more accurately than the coarse
model, Neuro-SM model with the output mapping
[13], as well as dynamic Neuro-SM model [14]. The
modeling results of a real 2 × 50 μm GaAs pseudo-
morphic high-electron mobility transistor (pHEMT)
demonstrate the correctness and validity of the pro-
posed general Neuro-SM technique.

2 Concept of the general Neuro-SM model
Suppose the existing equivalent circuit model is a
rough approximation of the behavior of the micro-
wave device. We name this existing model as the
coarse model. Let the desired model that accurately
matches the device data be called the fine model.
Just take field effect transistor (FET) modeling as an
example, let the gate and drain voltages and currents
of the coarse model be defined as vc = [vc1, vc2]

T and
ic = [ic1, ic2]

T, respectively. Let the terminal voltages
and currents of the fine model as vf = [vf1, vf2]

T and
if = [if1, if2]

T, respectively.
Suppose the total number of voltage delay buffers

at gate and drain be the same and both equal to Nv.
Let τ be the time delay parameter. To represent

Fig. 1 Signal flow of the general Neuro-SM model
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time-domain behavior, the time parameter t is intro-
duced. Figure 1 illustrates the signal flow of the
general Neuro-SM model. At first, the present volt-
ages of the fine model vf(t) as well as their histor-
yvf(t − τ), vf(t − 2τ), …, and vf(t − Nvτ) are mapped
into the coarse model voltages vc(t). Because the
formula of the mapping is unknown and usually
nonlinear, a neural network is used to learn and
represent the mapping. While the Neuro-SM pre-
sented in [10] uses a static neural network such as
multilayer perceptron (MLP), we propose to use a
time delay neural network (TDNN) to map the
coarse model to fine model. In functional form, vc(t)
can be described as

vc tð Þ ¼ f ANN v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1
� �

;Nv≥0

ð1Þ

where fANN represents the input/voltage mapping
neural network, and w1 is a vector containing all the
weights of the input mapping neural network. As
seen from Eq. (1), voltages at gate and drain of the
coarse model depend on not only the present
voltages of the fine model, but also their history sig-
nals making the proposed technique more suitable
for modeling the dynamic behavior of the nonlinear
devices. Then, after the coarse model computation,
the coarse model currents ic(t) can be obtained. Sup-
pose the total number of current delay buffers at
gate and drain be the same and both equal to Nc. At
last, ic(t) and their history ic(t − τ), …, ic(t − Ncτ) as
well as the present voltages of the fine model vf(t)
are mapped by another TDNN to the external cur-
rents as

i f tð Þ ¼ hANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2
� �

;Nc≥0

ð2Þ

where hANN represents the output/current neural
network, and vector w2 contains all the output map-
ping neural network weights. Compared to [14], the
new output neural network mapping further refines
the coarse model current signals to produce the fine
model outputs. The combined dynamic voltage map-
ping neural network, coarse model, and dynamic
current mapping neural network is called the general
Neuro-SM model.
The proposed general Neuro-SM is more general

than Neuro-SM technique presented in [10, 13, 14].
While Nv = 0, then the general Neuro-SM model

without the output mapping is static Neuro-SM
model [10]. While Nv = 0 and Nc = 0, then the gen-
eral Neuro-SM model belongs to the Neuro-SM
model with the output mapping [13]. While Nv > 0,
then the general Neuro-SM model without the out-
put mapping is the dynamic Neuro-SM model [14].
In this way, the proposed general Neuro-SM gener-
alizes the previously published Neuro-SM technique.
Furthermore, while Nv> 0 and Nc> 0, a new Neuro-
SM technique is presented for the first time. Com-
pared to the Neuro-SM introduced in [10, 13, 14],
the new Neuro-SM is more suitable for modeling
the microwave devices with high order dynamics
and nonlinearity due to inclusion of dynamic map-
ping as well as current mapping.

3 Proposed analytical formulation of the general
Neuro-SM model for training
The general Neuro-SM model will not be accurate
unless the dynamic voltage and dynamic current
mapping neural networks are trained suitable. In
order to train the general Neuro-SM efficiently with
typical types of transistor modeling data, the
relationship between the dynamic voltage and
current mapping neural networks with typical types
of transistor data, such as DC, bias-dependent S
parameter, and large-signal harmonic data need to
be derived.
In the DC case, present voltage signals of the fine

model vf(t) as well as its history, i.e.,vf(t − τ), …, and
vf(t −Nvτ) are all equal and defined as Vf, DC. Simi-
larly, present current signals of the coarse model ic(t)
as well as its history, i.e.,ic(t − τ), …, and ic(t −Ncτ)
are all equal and defined as Ic, DC. The response of
the general Neuro-SM model at Vf, DCcan be gener-
ally described as

I f :DC ¼ I f ðV f :DCÞ

¼ hANNðV f ;DC; Ic;DCjV c;DC
; Ic;DCjV c;DC ;…; Ic;DCjV c;DC

z}|{Ncþ1

;w2Þ
ð3Þ

where

V c;DC ¼ f ANNðV f ;DC;V f ;DC;…;V f ;DC

z}|{Nvþ1

;w1Þ ð4Þ

The small-signal S parameter of the general Neuro-
SM model can be calculated by transforming its Y
parameters Yf, which can be obtained by mapping Y
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parameters of the coarse model Yc. In functional form, Yf can be described as

Y f ðωÞ

¼

 
XNc

l¼0

e− jωlτ � ∂h
T
ANNðv f ðtÞ; icðtÞ; icðt−τÞ;…; icðt−NcτÞ;w2Þ

∂icðt−lτÞ j v f ¼ V f :Bias

icðtÞ ¼ icðt−τÞ ¼ ⋯ ¼ icðt−NcτÞ ¼ IcjV c;Bias

!T

� Y cðωÞjV c;Bias

�

 XNv

k¼0

e− jωkτ � ∂ f
T
ANNðv f ðtÞ; v f ðt−τÞ;…; v f ðt−NvτÞ;w1Þ

∂v f ðt−kτÞ j
v f ðtÞ¼v f ðt−τÞ¼⋯¼v f ðt−NvτÞ¼V f ;Bias

!T

þ

 
∂hTANN ðv f ðtÞ; icðtÞ; icðt−τÞ;…; icðt−NcτÞ;w2Þ

∂v f ðtÞ j v f ¼ V f :Bias

icðtÞ ¼ icðt−τÞ ¼ ⋯ ¼ icðt−NcτÞ ¼ IcjV c;Bias

!T
ð5Þ

where

V c;Bias ¼ f ANN ðV f ;Bias;V f ;Bias;…;V f ;Bias;

z}|{Nvþ1

;w1Þ ð6Þ

where the first-order derivatives of fANN and hANN can be obtained at the bias Vf, Bias using adjoint neural network
method [15]. Superscript k and l represent the index of voltage and current delay buffers, respectively. Equation (5)
includes two parts. The first part is in the form of multiplications of three matrices, which are defined as the output/
current Y-mapping matrix, i.e., the sum of products of e−jωlτ and ∂hANN/∂ic, Y parameter matrix of the coarse model
Yc, as well as the input/voltage Y-mapping matrix, i.e., the sum of products of e−jωkτ and ∂fANN/∂vf. The other part is
the sensitivity matrix of hANN. Equation (5) is more general than formulas of small-signal Y parameter of the Neuro-
SM models in [10, 13, 14] due to the consideration of the new effects of current mappings and dynamic mappings.
For large-signal case, we need to derive the relationship between HB computation and dynamic voltage and current
mapping neural networks so that model training can be performed with harmonic data. Let the harmonic current of
the general Neuro-SM model and coarse model at a generic harmonic frequency ωk be If(ωk) and Ic(ωk), respectively.
The If(ωk) can be evaluated as

I f ωkð Þ¼ 1
NT

XNT−1

n¼0

hANNðv f tnð Þ; ic tnð Þj
vc tnð Þ; ic tn−τð Þj

vc tnð Þ;…; ic tn−Ncτð Þj
vc tnð Þ;w2Þ �WN n; kð Þ

ð7Þ
where
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vc tnð Þ ¼ f ANN v f tnð Þ; v f tn−τð Þ;…; v f tn−Nvτð Þ;w1
� � ð8Þ

v f tn−mτð Þ ¼
XNH

k¼0

V f ωkð Þ � e−jmωkτ �W �
N n; kð Þ;m ¼ 0; 1;…;Nv ð9Þ

where the subscript k represents the index of the harmonic frequency, k = 0, 1, 2, …, NH, where NH is the
number of harmonics considered in HB simulation. NT is the number of time sampling points, WN(n, k) is
the Fourier coefficient for the nth time sample and the k-th harmonic, superscript * denotes complex conju-
gate, and m represents the index of voltage delay buffers, m = 0, 1,…, Nv,. As seen from (7)~(9), apart from
changing the nonlinearity of the coarse model, dynamic voltage and current neural network mappings can
also change the dynamic order so that the proposed general Neuro-SM has the potential to model the
microwave devices with high order dynamics and nonlinearity.

4 Sensitivity analysis of the general Neuro-SM model with respect to mapping neural network
weights
Let the number of hidden neurons of the dynamic voltage and current mapping neural networks be Nhv

and Nhc, respectively. Let generic symbols w1, i (i = 1, 2,…, Nhv) and w2, i (i = 1, 2,…, Nhc) be internal
weights of the voltage and current mapping neural network, respectively. w1, i and w2, i are the i-th compo-
nent of vectors w1 and w2, respectively. In order to train the general Neuro-SM efficiently, gradient infor-
mation provided by sensitivities of the model with respect to w1, i and w2, i is needed [16].
(1) DC sensitivity: let the DC output at gate and drain of the general Neuro-SM model be If, DC. The sensitivities of

If, DC with respect to w1, i and w2, i are described in functional form as

∂I f ;DC
∂w1;i

¼ ∂ITf ;DC
∂Ic;DC

 !T

� ∂ITc;DC
∂V c;DC

 !T

� ∂V c;DC

∂w1;i

¼
 
∂hTANN

�
V f ;DC; Ic;DC

��
V c;DC ; Ic;DC V c;DC ;…; Ic;DC

�� ��
V c;DC

z}|{Ncþ1

;w2
�

∂Ic;DC

!T

� Gc

� ∂ f ANNðV f ;DC;V f ;DC ;…;V f ;DC

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Nvþ1

;w1Þ
∂w1;i

ð10Þ

∂I f ;DC
∂w2;i

¼ ∂hANNðV f ;DC; Ic;DC
��
V c;DC ; Ic;DC V c;DC ;…; Ic;DC

�� ��
V c;DC

z}|{Ncþ1

;w2Þ
∂w2;i

ð11Þ

where Gc ¼ ð∂ITc;DC=∂V c;DCÞT is the DC conductance matrix of the existing coarse model, and the first-order
derivatives ∂fANN/∂w1, i and ∂hANN/∂w2, i can be calculated by neural network backpropagation [17].
(2) S parameter sensitivity: S parameter sensitivity can be obtained by converting its Y parameter sensitivity.

The small-signal Y parameter sensitivities of the general Neuro-SM model with respect to w1, i and w2, i are
shown in Eqs. (12) and (13), respectively. These two equations can be obtain by differentiating (5) with respect
to w1, i and w2, i, respectively.
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∂Y f ωð Þ
∂w1;i

¼
X
r¼1;2

XNc

m¼0ððXNc

l¼0

e−jωlτ � ∂
2hTANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2

� �
∂ic t−lτð Þ∂icr t−mτð Þ

����� v f ¼ V f ;Bias

ic tð Þ ¼ ic t−τð Þ ¼ … ¼ ic t−Ncτð Þ ¼ Icj V c;Bias

ÞT

�e−jωmτ �
X
p¼1;2

Y c;rp

�����
V c;Bias

� ∂ f ANNp v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1
� �

∂w1;i

�����
v f¼V f :Bias

Þ
�Y c ωð ÞjV c;Bias

�
XNv

k¼0

e−jωkτ � ∂ f
T
ANN v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1

� �
∂v f t−kτð Þ

�����
v f tð Þ¼v f t−τð Þ¼…¼v f t−Nvτð Þ¼V f ;Bias

0
@

1
AT

þðXNc

l¼0

e−jωlτ � ∂h
T
ANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2

� �
∂ic t−lτð Þ

����� v f ¼ V f :Bias

ic tð Þ ¼ ic t−τð Þ ¼ … ¼ ic t−Ncτð Þ ¼ IcjV c;Bias

ÞT

�Y c ωð ÞjV c;Bias
�
XNv

k¼0

e−jωkτ � ∂
2 f TANN v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1

� �
∂v f t−kτð Þ∂w1;i

�����
v f tð Þ¼v f t−τð Þ¼…¼v f t−Nvτð Þ¼V f ;Bias

0
@

1
AT

þðXNc

l¼0

e−jωlτ � ∂h
T
ANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2

� �
∂ic t−lτð Þ

����� v f ¼ V f :Bias

ic tð Þ ¼ ic t−τð Þ ¼ … ¼ ic t−Ncτð Þ ¼ IcjV c;Bias

ÞT

�ðX
r¼1;2

∂Y c

∂vcr

����
V c;Bias

� ∂ f ANNr v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1
� �

∂w1;i

����
v f tð Þ¼v f t−τð Þ¼…¼v f t−Nvτð Þ¼V f ;Bias

Þ
�
XNv

k¼0

e−jωkτ � ∂ f
T
ANN v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1

� �
∂v f t−kτð Þ

�����
v f tð Þ¼v f t−τð Þ¼…¼v f t−Nvτð Þ¼V f ;Bias

0
@

1
AT

ð12Þ
∂Y f ωð Þ
∂w2;i

¼
XNc

l¼0

e−jωlτ � ∂
2hTANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2

� �
∂ic t−lτð Þ∂w2;i

����� v f ¼ V f :Bias

ic tð Þ ¼ ic t−τð Þ ¼ … ¼ ic t−Ncτð Þ ¼ IcjV c;Bias

0
BB@

1
CCA

T

�Y c ωð ÞjV c;Bias
�
XNv

k¼0

e−jωkτ � ∂ f
T
ANN v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1

� �
∂v f t−kτð Þ

�����
v f tð Þ¼v f t−τð Þ¼…¼v f t−Nvτð Þ¼V f ;Bias

0
@

1
AT

þ ∂2hTANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2
� �

∂v f tð Þ∂w2;i

����� v f ¼ V f :Bias

ic tð Þ ¼ ic t−τð Þ ¼ … ¼ ic t−Ncτð Þ ¼ IcjV c;Bias

0
BB@

1
CCA

T

ð13Þ
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where the second-order derivative of the dynamic voltage and current mapping neural networks fANN and
hANN, which are the differentiation of the Jacobian matrix ∂ f TANN=∂icðt−lτÞ and ∂ f TANN=∂v f ðt−kτÞ with respect
to w1, i and w2, i, can be obtained by the adjoint neural network back-propagation [17], respectively.
(3) HB sensitivity: the sensitivities of the large-signal harmonic current of the general Neuro-SM model with re-

spect to w1, i and w2, i at a generic harmonic frequency ωk, k = 0, 1, 2, …, NH can be described in functional form as

∂I f ðωkÞ
∂w1;i

¼ 1
NT

XNT−1

n¼0

 
XNc

m¼0

∂hANN

�
v f ðtnÞ; icðtnÞj

vcðtnÞ
; icðtn−τÞjvcðtnÞ;…; icðtn−NcτÞjvcðtnÞ;w2

�
∂icðtn−mτÞ � e− jωmτ

�GcðtnÞjvcðtnÞ �
∂ f ANNðv f ðtnÞ; v f ðtn−τÞ;…; v f ðtn−NvτÞ;w1Þ

∂w1;i
�WN ðn; kÞ

!
ð14Þ

∂I f ωkð Þ
∂w2;i

¼ 1
NT

XNT−1

n¼0

∂hANNðv f tnð Þ; ic tnð Þ��vc tnð Þ; ic tn−τð Þ vc tnð Þ;…; ic tn−Ncτð Þ�� ��
vc tnð Þ;w2Þ

∂w2;i
�WN n; kð Þ ð15Þ

where Gc(tn) at the mapped voltage of coarse model vc(tn) is the nonlinear conductance matrix of the existing coarse
model at time point tn.

5 Sensitivity analysis of the general Neuro-SM model with respect to coarse model parameters
Let x be a generic variable in the coarse model. In case the coarse model parameter needs to be treated as a
variable in circuit optimization, it is useful to obtain the sensitivity for DC, bias-dependent S parameter, and large-
signal HB responses of the general Neuro-SM model due to changes in the generic optimization variable x.
(1) DC sensitivity: the sensitivity of If, DC with respect to x is derived as

∂I f ;DC
∂x

¼ ∂ITf ;DC
∂Ic;DC

 !T

� ∂I
T
c;DC

∂x
¼

 
∂hTANN

�
V f ;DC; Ic;DC

��
V c;DC

; Ic;DC V c;DC ;…; Ic;DC
�� ��

V c;DC

z}|{Ncþ1

;w2
�

∂Ic;DC

!T

� ∂I
T
c;DC

∂x j
V c;DC

ð16Þ

where ∂ITc;DC=∂x is the DC current response due to changes in coarse model variable x evaluated at the mapped bias Vc, DC.
(2) S parameter sensitivity: S parameter sensitivity with respect to coarse model variable x can also be calculated by

converting its Y parameter sensitivity. The Y parameter sensitivity is shown as

∂Y f ωð Þ
∂x

¼
X
r¼1;2

XNc

m¼0

  
XNc

l¼0

e−jωlτ � ∂
2hTANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2

� �
∂ic t−lτð Þ∂icr t−mτð Þ

����� v f ¼ V f :Bias

ic tð Þ ¼ ic t−τð Þ ¼ … ¼ ic t−Ncτð Þ ¼ IcjV c;Bias

!T

� e−jωmτ � ∂icr
∂x

!

� Y c ωð ÞjV c;Bias
�

 
XNv

k¼0

e−jωkτ � ∂ f
T
ANN v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1

� �
∂v f t−kτð Þ

�����
v f tð Þ¼v f t−τð Þ¼…¼v f t−Nvτð Þ¼V f ;Bias

!T

þ

 
XNc

l¼0

e−jωlτ � ∂h
T
ANN v f tð Þ; ic tð Þ; ic t−τð Þ;…; ic t−Ncτð Þ;w2

� �
∂ic t−lτð Þ

����� v f ¼ V f :Bias

ic tð Þ ¼ ic t−τð Þ ¼ … ¼ ic t−Ncτð Þ ¼ IcjV c;Bias

!T

� ∂Y c ωð Þc
∂x j

V c;Bias

�

 
XNv

k¼0

e−jωkτ � ∂ f
T
ANN v f tð Þ; v f t−τð Þ;…; v f t−Nvτð Þ;w1

� �
∂v f t−kτð Þ

�����
v f tð Þ¼v f t−τð Þ¼…¼v f t−Nvτð Þ¼V f ;Bias

!T

ð17Þ
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where ∂Yc/∂x is the sensitivity for Y parameter of the coarse model due to changes in x. ∂icr/∂x, r = 1, 2 is the deriva-
tive of coarse model current with respect to x, which can be calculated by coarse model sensitivity analysis.
(3) HB sensitivity: the sensitivity of the harmonic current of the general Neuro-SM model with respect to x at a

generic harmonic frequency ωk, k = 0, 1, …, NH is shown in Eq. (18), where ∂ic(tn)/∂x is the sensitivity of the nonlin-
ear current of the coarse model with respect to x at time sample tn.

∂I f ωkð Þ
∂w1;i

¼ 1
NT

XNT−1

n¼0

XNc

m¼0

∂hANNðv f tnð Þ; ic tnð Þ��vc tnð Þ; ic tn−τð Þ vc tnð Þ;…; ic tn−Ncτð Þ�� ��
vc tnð Þ;w2Þ

∂ic tn−mτð Þ � e−jωmτ

� ∂ic tnð Þ
∂x

�WN n; kð Þ

0
BBB@

1
CCCA ð18Þ

6 Proposed training algorithm for the general Neuro-SM model
Training is the key step to determine the general Neuro-SM model. The model development process needs two
phases: initial training and formal training.

A. Initial training

Before the nonlinear device data from simulation or measurement is used for formal training, the general Neuro-
SM model is first initialized to be equal to the original coarse model. In such case, the dynamic voltage and current
neural networks are initialized to learn unit mappings, i.e., to learn the relationships vc1(t) = vf1(t), vc2(t) = vf2(t), ic1(t)
= if1(t), and ic2(t) = if2(t) in the entire operation range of the nonlinear device.

B. Formal training

In this phase, the weights of dynamic voltage and current mapping neural networks, i.e., w1 and w2, are
trained such that the overall training error of the general Neuro-SM model can be reduced to satisfy the
specifications. The overall training error for combined DC, small-signal S parameter, and large-signal HB
training is defined as the total difference between all nonlinear device data and the general Neuro-SM model
as:

E w1;w2ð Þ ¼ 1
2

XNV f 2

k¼1

XNV f 1

l¼1

A � I VGl;VDk ;w1;w2;ð Þ−IkDl
� ��� ��2

þ 1
2

XNV f 2

k¼1

XNV f 1

l¼1

XN freq

j¼1

B � S VGl;VDk ;ω j;w1;w2
� �

−SkDlj
� ���� ���2

þ 1
2

XNV f 2

k¼1

XNV f 1

l¼1

XNH

m¼1

XNP

n¼1

C � HB VGl;VDk ;ωm; Pn;w1;w2ð Þ−HBmn
Dkl

� ��� ��2
ð19Þ

where I(.), S(.), and HB(.) are the DC, bias-dependent S parameter, and HB responses of the general Neuro-SM
model, respectively. Take FET modeling as an example, vector I(.) contains gate and drain current If1 and If2,
which can be computed by Eq. (3). Vector S(.) is achieved from the Y matrix defined by Eq. (5). HB responses
of the general Neuro-SM model, i.e., HB(.) can be calculated by Eq. (7). ID, SD, and HBD represent the DC
current, small-signal S parameter, and large-signal HB responses of the modeling device, respectively. The sub-
script k ðk ¼ 1; 2;…;NV f 2Þ , l ðl ¼ 1; 2;…;NV f 1Þ , j (j = 1, 2,…,Nfreq), m (m = 1, 2,…,NH), and n (n = 1, 2,…,NP)
denote the indices of Vf2, Vf1, frequency, harmonic frequency, and input power level, respectively. NV f 1 , NV f 2 ,
Nfreq, NH, and NP are the total number of Vf1, Vf2,frequency, harmonic frequency, and input power level, re-
spectively. Diagonal matrices A, B, and C contain all the scaling factors, which are defined as the inverse of
the minimum-to-maximum range of the ID data, SD data, and HBD data, respectively. The training error calcu-
lation of the general Neuro-SM model for combined DC and S parameter training as well as HB training fur-
ther illustrates in Fig. 2. Figure 2a, b is error calculation for combined dc and small-signal S parameter training
as well as large-signal HB training, respectively.
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Fig. 2 Block diagram for error calculation of the general Neuro-SM model. a Error calculation for combined dc and small-signal S parameter train-
ing. b Error calculation for large-signal HB training
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The objective of the model training is to minimize the
error E defined in (19) by optimizing w1 and w2. In gen-
eral, gradient-based training algorithm is used. After
training, the general Neuro-SM model with appropriate
hidden neurons and delay buffers can accurately repre-
sent the nonlinear behavior of the modeling device.

7 Discussion
The proposed Neuro-SM model, after being trained for
a specific range, is very good at representing the nonlin-
ear behavior of the microwave device within the training
region. However, when we use model in a wider range
than the training range, inappropriate derivative infor-
mation of the model outside the training range may mis-
lead the iterative process into slow convergence or even
divergence during large-signal simulation. One possible
way to solve the divergence problem is to use

appropriate extrapolation technique. For general Neuro-
SM technique, a simple and effective extrapolation
technique is used to improve the convergence of the
model [18].
For simplification, the proposed general Neuro-SM

technique is formulated for 2-port field-effect transistor
(FET) modeling. This approach can be further extended
to n-port network, where all the notations and equations
are extended accordingly. After the generalization, the
proposed general Neuro-SM technique has the potential
to be used for developing models of microwave devices
with trapping effect.
The format of the general Neuro-SM model presented

so far is to map the voltage input signals between the
coarse and fine models. Hence, our approach presented
so far is applicable to modeling voltage controlled
devices, such as FET and HEMT. It is possible to extend

Fig. 3 Comparison between the pHEMT device data, coarse model, and three Neuro-SM models. a dc. b-e S parameter at two test biase points
(0.7V, 2.4V) and (0.3 V 5.2V). f HB at different input power levels -10-3dBm
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the method to a mixed input mapping case, where the
dynamic input mappings are for a mixture of port volt-
age and current signals. In that way, our approach can
be extended to modeling current controlled devices,
such as HBT.
The frequency limit of the proposed general Neuro-

SM model depends on the frequency limit of training
data. For example, if the frequency in the training data
extends to millimeter wave bands, the proposed general
mapping will be even more important because of the
need of capacitive effects, non-quasi-static effects, and

nonlinear effects in the model. In this case, more hidden
neurons and time delay buffers maybe needed to
guarantee the accuracy of the proposed general Neuro-
SM model.

8 A pHEMT modeling using the proposed general
Neuro-SM method
This example illustrates the use of the general Neuro-
SM for modeling of a real 2 × 50 μm GaAs pHEMT
device. The training and test data is obtained from
measurement. An enhanced Angelov model including a

Fig. 4 Structure of the general Neuro-SM model with two delay buffers in ADS
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thermal subcircuit to model the self-heating effect of the
device proposed in [19] is used as the existing coarse
model. Even though parameters in enhanced Angelov
model are extracted as much as possible, there are still
distinct differences between the model and measured
data. Thus, Neuro-SM is used to bridge the gap between
the coarse model and measured data. We then apply the
previously published Neuro-SM technique such as
Neuro-SM with the output mapping [13] and dynamic
Neuro-SM [14] to get more accurate models. After train-
ing, the accuracy of the two Neuro-SM models is clearly
improved compared to that of the coarse model, as
shown in Fig. 3. However, the previous Neuro-SM tech-
niques at their best are still insufficient to achieve the
desired accuracy. Then, our proposed general Neuro-SM
is used to get a more accurate model.
Training was firstly done in NeuroModelerPlus

[20] using DC and bias-dependent S parameter data
for 400 iterations. Then, training refinement was
done using combined DC, bias-dependent S param-
eter, and HB data at 189 different biases for 3600
iterations. Harmonic data used for HB training was
measured at 7.5 GHz fundamental frequency and dif-
ferent input power levels (− 10~ 3 dBm). Time delay
parameters are both 0.008 ns. The number of hidden
neurons for both voltage and current mapping
neural networks is 30.

9 Results
After training, we compared the DC, bias-dependent S par-
ameter, and large-signal HB responses of the pHEMT de-
vice with those computed from the coarse model, Neuro-
SM with the output mapping [13], dynamic Neuro-SM [14]
with 5 delay buffers and 30 hidden neurons, and the pro-
posed general Neuro-SM model with 5 delay buffers and 30
hidden neurons both for dynamic voltage and current map-
ping neural networks as shown in Fig. 3. In Fig. 3a, b–e, f
represent the comparisons of dc, S parameter at two test
bias points (0.7 V, 2.4 V) and (0.3 V, 5.2 V), as well as HB
responses at different input power levels (− 10~ 3 dBm), re-
spectively. As observed from Fig. 3, the responses com-
puted from the proposed general Neuro-SM are closest to
the data among all the four models in this comparison. We
obtain further improvement in model accuracy using gen-
eral Neuro-SM technique because additional and useful de-
grees of freedom provided by the new dynamic current
mappings at the gate and the drain in the general model.
The increased accuracy of the general Neuro-SM model
helps to improve the accuracy of circuit and system simula-
tion, such as simulation to predict power performance and
linearity of high-frequency PA designs.
There are two important factors that impact the accur-

acy of the dynamic Neuro-SM model and the proposed
general Neuro-SM model, i.e., number of hidden

neurons and delay buffers. To show the results further,
we compared the training and test error of the dynamic
Neuro-SM and general Neuro-SM with different delay
buffers and hidden neurons as shown in Table 1. As seen
in Table 1, general Neuro-SM with 30 hidden neurons
and 5 delay buffers both for dynamic voltage and current
mapping neural networks are suitable for this example.
The proposed general Neuro-SM model can be

conveniently implemented into the existing circuit
simulators such as Keysight ADS for high-level cir-
cuit and system design. Figure 4 shows the proposed
general Neuro-SM model structure in ADS. The time
delay parameter is 0.08 ns. In this figure, the dy-
namic voltage mapping neural networks are embed-
ded as the functions in two 7-port symbolically
defined devices (SDDs), i.e., SDD7P1, and SDD7P2.
Similarly, the dynamic current mapping neural net-
works are embedded as the functions in two 9-port
SDDs, i.e., SDD9P1 and SDD9P2. Time delay voltage
and current signals can be obtained using voltage
controlled voltage sources with delay parameters, i.e.,
SRC1~SRC8. After implementing the general Neuro-
SM model into ADS, we have also compared simula-
tion speed between coarse model, dynamic Neuro-
SM, and the proposed general Neuro-SM model on
an Intel i5-3230M 2.6 GHz computer as shown in
Table 2. The simulation was performed by Monte
Carlo analysis of 200 HB simulations. As seen in
Table 2, the simulation time is 48.32 s using coarse
model, compared to 57.17 s using general Neuro-
SM, showing that the simulation speed of the pro-
posed general Neuro-SM is acceptable in view of its
good accuracy.

10 Conclusions
This paper has presented a general Neuro-SM tech-
nique for nonlinear device modeling. By modifying
the dynamic current and dynamic voltage relation-
ships in the existing coarse model, the proposed gen-
eral Neuro-SM model can exceed the accuracy limit
over the coarse model, the Neuro-SM model with the

Table 1 Training and test error comparison of coarse model,
dynamic Neuro-SM model, and the proposed general Neuro-SM
model after combined DC, S parameter, and HB training

Model type Training/test error Training/test error

20 hidden neurons 30 hidden neurons

Coarse model 38.12%/38.53% 38.12%/38.53%

Dynamic Neuro-SM (Nv = 5) 3.34%/3.59% 3.17%/3.44%

Dynamic Neuro-SM (Nv = 7) 3.09%/3.28% 2.71%/2.96%

General Neuro-SM (Nv = 3, Nc = 3) 3.25%/3.30% 3.05%/3.27%

General Neuro-SM (Nv = 5, Nc = 5) 1.64%/1.77% 1.50%/1.69%
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output mapping, and the dynamic Neuro-SM model.
Compared to previously published Neuro-SM, the
proposed general Neuro-SM has demonstrated much
improved performance in terms of accuracy by a
pHEMT modeling example. The general Neuro-SM
model can be applied to microwave circuit and sys-
tem design.
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