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Abstract

The localizationofsensornode isanessentialproblemformanyeconomic forecastingapplications inwireless sensor
networks.Consideringthat themobilesensorschangetheir locations frequentlyover time,MonteCarlo localization
algorithmutilizes themovingcharacteristicsofnodesandemploys theprobabilitydistributionfunction(PDF) in the
previous timeslot toestimatethecurrent locationbyusingaweightedparticle filter.However, it alsohastheproblemof
insufficientnumberofvalidsamples,which furtheraffects thenode’s localizationaccuracy. In thispaper,differential
evolutionmethod is introduced intotheMonteCarlo localizationalgorithm.Thesampleweight is takenastheobjective
function,anddifferential evolutionalgorithmis implemented insamplestage.Finally, thenodeposition isestimatedby
makingthesampleclosetotheactual locationof thenode insteadofbeingfilteredout. Thesimulationresults
demonstrate that theproposedalgorithmprovidesabetterpositionestimationwith less localizationerror.
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1 Introduction
In the era of big data, economic forecasting is crucial.
The nodes’ localization in wireless sensor networks
(WSNs) refers to the process of obtaining their own or
monitoring the geographic position of the object in a
certain way [1]. It is important to obtain the sensor
node’s location, and the monitoring data will be mean-
ingless without location information. For instance, in
precision agriculture, the sensor nodes can gather data
of light intensity, humidity, and temperature, which
must be accompanied by the coordinates of the collec-
tors [2]. Without such positional information, the obser-
ver cannot match the data with the region and make an
appropriate decision. Meanwhile, the exact location
information of sensor nodes are of great help in improv-
ing the efficiency of network routing [3]. Since the wire-
less sensor network consists of a large number of
sensors and the topology often change especially for the

environment with mobile nodes, each sensor nodes need
to be equipped with a positioning system, such as GPS.
Due to the high cost of GPS, it is not suitable for low-
power and low-cost requirements of sensor nodes [4]. In
addition, for some special application scenarios (such as
shopping malls), the positioning performance of GPS
will be affected [5]. Generally, there are two types of
nodes in wireless sensor networks, which are called as
anchor node and blind node. Anchor nodes, which are
usually configured manually or equipped with a GPS re-
ceiver to obtain their location information, can obtain
position coordinates by themselves. However, the pro-
portion of anchor nodes in all sensor nodes is relatively
small. Comparatively, blind node can only acquire its
position information by using the localization algorithm.
The rest of the paper is structured as follows. The

motivation for this work is discussed in Section 2. In
Section 3, we derive Monte Carlo localization methods
based on differential evolution optimization (MCL-DE)
for valid samples in mobile wireless sensor networks. In
Section 4, a comparative performance evaluation is
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carried out. Finally, concluding remarks and future work
are given in Section 5.

2 Related work
So far, the research of node’s localization algorithm in
wireless sensor networks has been widely carried out.
The main purpose of sensor localization is to deter-
mine the location of sensors in WSNs via noisy mea-
surements, and most of the methods for localization
can be classified into geometrical techniques, multidi-
mensional scaling, stochastic proximity embedding,
convex and nonconvex optimization, and hybrid. In
range-based measurement localization, the major task
is to find the accurate position in non-line-of-sight
(NLOS) paths. These range-based measurements may
include time-of-arrival (TOA) [6], time-difference-of-
arrival (TDOA) [7], angle-of-arrival (AOA) [8], and
received signal strength (RSS). After evaluating the
distance between the nodes, the position of the blind
node can be obtained based on three edge-measuring
or maximum likelihood methods [9].
Range-based localization requires additional hardware

and power consumption, so nodes can achieve accurate
positioning resolution. However, the demand to reduce
hardware dependency and energy cost has been the
focus of academia and industry, and some researchers
also proposed a range-free localization algorithm [10].
Usually, range-free location algorithms demonstrate
poor performance in the aspect of positioning accuracy
than the range-based localization algorithm, but it does
not need additional hardware support and can meet
many requirements in the scenarios with rough
localization effect. In [10], an indoor localization strategy
for mini-UAV in the presence of obstacles is proposed,
in which the signal propagation state is identified
according to the prior probability and statistics of
TDOA and RSS measurements. In [11], a NLOS identifi-
cation and weaken algorithm with machine learning is
proposed to identify and weaken the NLOS error by
means of support vector machine (SVM), which can em-
ploy a large number of data samples to train the SVM
classifier. A voting matrix is constructed to weaken the
error of non-line-of-sight and obtain the candidate pos-
ition in accordance with the error characteristics of LOS
measurements and NLOS measurements. Then, the re-
sidual weighted method is used to obtain the final posi-
tioning results. Base on the range distance in each
sampling period, Cui et al. [12] use multidimensional scal-
ing localization algorithm to evaluate the location of the
target and fit the result of the estimation by polynomial.
The estimation results of current position can be cor-
rected effectively, and the method is proven to achieve
high positioning accuracy in indoor environment.

In recent years, interacting multiple model (IMM)
combined with filtering technology has become a hot re-
search topic. Chen et al. [13] combine IMM and
extended Kalman filtering to achieve accurate posi-
tioning in NLOS environment. Zhang et al. [14]
propose a Kalman filter model based on interacted
multiple objectives to filter the measured distance
under the LOS/NLOS mixed environment, in which
the IMM algorithm is applied to filter the distance,
and then the extended Kalman filtering algorithm is
used to realize the positioning. Under the IMM
framework, Ru et al. [15] employ hidden Markov ran-
dom field to solve the nonlinear Bayesian estimation
problem and improve the positioning accuracy.
Nevertheless, the above methods are put forward in
the premise of accurate NLOS error parameters. But in
the actual environment, the parameters of NLOS error are
usually unknown. In [16], an Advanced DV-Hop
localization algorithm is proposed to reduce the
localization error without requiring additional hardware
and computational costs. The hop-size of the anchor node
is obtained base on the distance measurement of
unknown nodes, and the weighted least square algorithm
is introduced to decrease the inherent error in the
estimated distance between the anchor and an un-
known node. In [17], a mixed localization algorithm
for wireless sensor networks based on APIT is pro-
posed to deal with the problem of low localization ac-
curacy with dense distribution of beacon nodes and
low coverage ratio in the sparse case.
As a fundamental requirement in Internet of

Things (IoT) and other wireless sensor applications,
localization awareness is an important part of
network design. Due to the complexity of related
algorithms, researchers in this area have acquired sig-
nificant progress but still exists quite a few deficien-
cies. Most of the solutions are static localization
algorithms for node’s positioning, but the perform-
ance of those algorithms in mobile wireless sensor
network is unsatisfactory. In the real scene, such as
target tracking, the sensor nodes are usually mobile
and the node localization mechanism should be suit-
able for mobile wireless sensor networks. Consider-
ing that the mobile sensors change their locations
frequently over time, Monte Carlo localization algo-
rithm utilizes the moving characteristics of nodes and
employs the probability distribution function (PDF)
in the previous time slot to estimate the current loca-
tion by using a weighted particle filter. However, it
also has the problem of insufficient number of valid
samples, which further affects the node’s localization
accuracy. Therefore, it is necessary to increase the
number of valid samples to improve the localization
accuracy under low anchor node density.
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3 System and network model
3.1 Monte Carlo localization method
Monte Carlo localization method was originally applied
to the field of robot localization, and the distinction be-
tween the robot localization and the sensor node’s
positioning in mobile wireless sensor network is very
remarkable [18]. In the process of robot walking, the
robot’s CPU is equipped with a map, and the path
guidance will be abided to the prescribed route in the
map. However, all sensor nodes will move in a ran-
dom mode in the designated area. The location
method based on Monte Carlo is actually a continu-
ous iterative Bayesian filter, and the basic idea is to
make use of some weighted samples to represent the
posterior probability density distribution of the esti-
mated state, so as to obtain the solution of the node
position. This method can be applied to non-Gauss,
nonlinear and multidimensional system, which is
beneficial for the characteristics including flexibility,
easy to implement, and suitable for parallel process-
ing. Those merits make it very suitable for node
localization in wireless sensor networks.
Since that the neighbor nodes within the range of

transmission radius can communicate with each other,
the known information from anchor nodes can be used
to assist blind node’s localization [19]. The Monte Carlo
localization method is based on the Bayes filtering the-
ory, and the main idea is by utilizing the new observa-
tion from the adjacent anchor nodes within the range,
the sample and filter steps will be repeated until enough
valid samples can be obtained. Then, the blind node can
estimate its current location as it completes the move-
ment [20]. Therefore, the resolution of the blind node’s
localization can be transferred into the posterior prob-
ability density function. Let t be a discrete time series, xt
is the state of hidden Markov processes with initial dis-
tribution P(x0), xt∈R

n
x where nx is the dimension of state

vector. Transfering equation P(xt|xt-1) demonstrates the
dynamic features of the state space model. Meanwhile,
the observation sequences {o1, o2, o3, …, ot} are inde-
pendent of each other at a given node’s position {x1, x2,
x3 …, xt}, where Ot∈ Rn0 and n0 is the dimension of the
observation vector. P(ot|xt) is the observation equations,
and it denotes the probability of observed values under
the condition of a given position xt.
Suppose that the location of mobile nodes satisfies

Markov assumptions in mobile wireless sensor net-
works, and the observation and node’s position are
independent. This indicates that the observations only
depend on the current position, and the current pos-
ition xt lies on the position xt-1 at the previous time
interval. Thus, the resolution of the location of blind
nodes can be converted into a posteriori probability
density function p(xt|o0t).

The posterior probability density function at time t
can be approximated by some weighted samplesðxit ;wi

tÞ ,
and we have:

p xt jo0:tð Þ ¼
XN
i¼1

wi
t
�
δ xt−xit
� � ð1Þ

where δ is the Dirac-delta function, and N represents
the number of samples for the node’s location. xit is a
possible sample of node at time t, and wi

t is a nonnega-
tive weight.
The sample weight will be updated as the following

formula:

wi
t ¼

p ot jxit
� �

p ot jxit−1
� �

ϕ xit ; x
i
0:i−1; o0:t

� � wi
t−1 ð2Þ

where ϕ is the adjustment function being relevant to xit ;
xi0:i−1; o0:t .
Since the sensor nodes move randomly in a certain

area, and the size and direction of motion are unknown.
The maximum speed of motion is limited to v0; the
current position of the node must be in the circle area
with the center point of the position at the previous mo-
ment and a radius of maximum moving speed v0. Then,
the sample probability distribution at the present mo-
ment can be expressed as:

p zt jzt−1ð Þ ¼
0; d zt ; zt−1ð Þ≥v0
1ffiffiffiffiffiffiffiffi
πv20

p ; d zt ; zt−1ð Þ < v0

8<
: ð3Þ

where d(zt,zt-1) denotes the Euclidean distance between
the sample at current and previous time.

3.2 Objective function optimization based on sample
weight
The anchor nodes will broadcast the ID identification
and location information periodically. Suppose that the
broadcast message from the set of anchor nodes within
one-hop S(s) and the two-hop T(s) can be received by
the blind node at the current time, the samples that does
not satisfy the condition can be rejected in the process
of filtering prediction with reference to the observation
requirement. The eligible samples must be within the
communication radius of a neighbor anchor node;
meanwhile, the distance between the sample and the
two-hop anchor node must be less than two times of the
communication radius. Thus, the constraints can be
expressed as: ∀s∈S(s), d(z,s) ≤ r∩∀s∈T(s), r < d(z,s) ≤ 2r.
According to the N samples of the position and the

value of ðzit ;wi
tÞ , the current position of the blind node

can be estimated as:
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CurPOSt ¼
XN
i¼1

zit � wi
t ð4Þ

The sample weights, i.e., the proportion of the samples
in the final positioning result, are a measure of the
merits of the standard sample. The observation results
Ot of ordinary nodes are composed of a one-hop neigh-
bor anchor node set S, two-hop anchor node set T and
the set of normal nodes within the transmission range
TR, and Ot = S∪T∪TR. Considering the size of the sam-
ple constraint box, the confidence function is introduced
into the localization results to reflect the confidence de-
gree of node i at time t, of which the value depends on
the size of the constraints from sampling box.

wi
t ¼ p Ot jzit

� � ¼ Y
s∈S∪T

p sjzit
� � !

� f
X
s∈TR

ðγ s; t−1ð Þ; d zit; s
� �

< rg

ð5Þ
where γði; tÞ ¼ γ=γti and γti is the diagonal length of the
sampling box of node i at time t, and γ is the diagonal
length of the entire region.
if s ∈ S,

p sjzit
� � ¼ 1; 0 < d s; zit

� �
< r

0; else

�
ð6Þ

if s ∈ T,

p sjzit
� � ¼ 1; r < d s; zit

� �
< 2r

0; else

�
ð7Þ

where the sample weight is regarded as the objective
function of the optimization.

3.3 The process of sampling optimization
Owing to the similarity of the idea between the differen-
tial evolution algorithm and the Monte Carlo algorithm,
the individual vector in differential evolution algorithm
can be regarded as a particle sample. Moreover, if the
population number is equal to the size of the particle
set, then the population in the differential evolution al-
gorithm is equivalent to the particle set in the Monte
Carlo localization algorithm. Hence, it is convenient to
involve differential evolution method into Monte Carlo
localization algorithm. In the sampling phase, the sample
weight is taken as the objective function, and the differ-
ential evolution algorithm is implemented. Then, the ac-
tual position of sample can be approached to the node
to be positioned actively rather than to be filtered, and
the final estimate of node’s position can be obtained.
The detailed steps are as follows:

1. Initialization: According to the initial variable
interval [zmin,zmax] of the variable given by the

specific problem, the linear transformation can be
given as:

zij 0ð Þ ¼ zmin þ rand 0; 1ð Þ � zmax−zminð Þ ð8Þ
where zij(0) denotes the j-th variable of individual i;
rand(0,1) represents the random number with the range
of [0,1].
2. Mutation: The different individuals Zr1(g), Zr2(g),

and Zr3(g) are selected, and the perturbation vectors
are generated according to the following method:

vi g þ 1ð Þ ¼ zr1 gð Þ þ η zr2 gð Þ−zr3 gð Þð Þ ð9Þ
where η is the control factor to adjust the amplitude of
the individual difference, and Zi(g) denotes the i-th indi-
vidual in population g.

During the process of evolution, it is necessary to
determine whether the variables satisfy the boundary
conditions to ensure the validity of the solution.
Otherwise, the variable will be generated randomly
repeatedly.

3. Cross operation: The crossover between individuals
{Zi(g)} of the g-th generation and its mutant
intermediates {vi(g + 1)} can be given as:

uij g þ 1ð Þ ¼ vij g þ 1ð Þ; rand 0; 1ð Þ ≤ρ
zij gð Þ

�
ð10Þ

where ρ is the crossover probability.
4. Select operation: Greedy algorithm is applied to

select the individuals with high fitness to enter
the next generation:

zi g þ 1ð Þ ¼ ui g þ 1ð Þ; f ui g þ 1ð Þð Þ≤ f zi gð Þð Þ
zi gð Þ; else

�
ð11Þ

3.4 Self-adaption of scaling factor and cross probability
Since the selection of η and ρ is the key to the behavior
and performance of differential evolution and affects the
convergence of the algorithm directly, η and ρ should be
varied with fitness and evolutionary algebra dynamically.
When the fitness of individuals in the population tends

to converge or converges to the local optimal solution,
the value of η will increase. Otherwise, η decreases as
the fitness of population is being dispersed. At the same
time, for the individuals whose fitness is greater than the
average, the corresponding value of η is large and the
solution should be given up. On the contrary, the indi-
vidual’s fitness is lower than the average value, of which
is close to the average degree. Therefore, the adaptive
zoom factor can provide the optimal solution with re-
spect to the value ofη. The adaptive differential evolution
algorithm should maintain the diversity of population as
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well as to ensure the convergence of difference. Based
on the above analysis, η can be adjusted adaptively ac-
cording to the following formula:

η ¼ ln
f avg− f

0

f avg− f best
; f 0 < f avg

1; f 0≥ f avg

8><
>: ð12Þ

where f indicates the fitness value of individuals to be
mutated, favg is the average fitness value of the popula-
tion, and fbest is the maximum fitness value in the popu-
lation. At the beginning of the algorithm, the difference
between favg and fbest are very large, and there is almost
no possibility of local convergence. With the progress of
the generation evolution, the gap between favg and fbest
will decrease. Meanwhile, f merges a decrease trend and
the speed for converging to the optimum solution will
continue to be accelerated gradually, which reduce the
risk of falling into local convergence.
The probability of crossover demonstrates the possibil-

ity that the genes for mutating individuals can be se-
lected to a new individual. Hence, the adaptive function
is presented to adjust the value of ρ dynamically accord-
ing to the senior generation individual. Initially, ρ is set
as a relatively small value ρ0, which ensures the popula-
tion diversity with a low probability of crossover. With
the evolution of the individual, the individuals begin to
converge gradually. At this time, the increase of ρ value
will not only improve the variation of gene selection’s
probability but also speed up the convergence rate.
When the ρ = ρ*, the value of ρ will increase no longer
and remain stable. The value of ρ can be given as:

ρ ¼
G

ln 100−Gð Þ þ ρ0; ρ < ρ�

ρ�; ρ≥ρ�

8<
: ð13Þ

where G indicates the generation.
The value of sample weights is equal to 0 or 1, and

value 1 denotes that the corresponding sample can sat-
isfy with the filtering condition. When the number of
sample weights reaches to N or the maximum gener-
ation G, the evolutionary algorithm terminates. Finally,
the estimation of node’s localization can be obtained by
using the sampled nodes being selected optimally from
the differential evolution algorithm.

3.5 Obtain the positioning results
Before employing the final N samples to calculate the
localization results, the weights of the samples should be
normalized as:

~wi
t ¼ wi

t=
XN
i¼1

wi
t ð14Þ

Then, the estimation of the coordinate of the node i at
time t can be obtained by the N samples:

xti ¼
XN
j¼1

wj
t � x j

t

yti ¼
XN
j¼1

wj
t � y jt

8>>>><
>>>>:

ð15Þ

Considering that the actual position of the nodes be
included in the constraint sampling box, the range of
(xmin,xmax; ymin,ymax) denotes that all the samples are ob-
tained in the sample box. The sample within the range
must satisfy the constraints of the weighted average.
Therefore, the actual node’s localization error must be
less than the maximum difference between the estima-
tion of node’s position and the boundary coordinates of
sampling box. We have:

errtx; max ¼ max ~xt−xmin; xmax−~xtð Þ
errty; max ¼ max ~yt−ymin; ymax−~ytð Þ

�
ð16Þ

4 Experiments and results
In this section, we will conduct the experiments to com-
pare our algorithm with the traditional method, for ex-
ample, RMCL [18] and DLS [19] in terms of the
localization precision, sample size, maximum velocity,
and the density of anchor nodes. In order to verify the
indicators objectively, the parameters of the experiments
are set to be identical in different scenarios. The specific
parameters are set in details as follows: the number of
sensor nodes is 320, the deployment area is 500 ×
500 m2; the transmission radius of sensor node is r =
50 m; the number of valid samples is N = 50. The mo-
tion process of the node employs RWP model [20], and
the maximum moving speed vmax = 0.2r. Besides, the
main parameters of differential evolution are set as:
η=0.8, ρ0 = 0.4, and ρ* = 0.9.
To evaluate the effects on the localization algorithm

by setting different parameters, the average localization
error and the number of candidate samples are regarded
as key indicators. Among them, the number of candidate
samples reflects the number of times as the sampling
process is executed for obtaining the valid samples. Usu-
ally, the lesser the number of candidate samples is, the
higher the success rate of sampling can obtain.
Figure 1 shows the localization performance of the sam-

ples of different generations with differential evolution.
Once the sampling box and a certain number of initial

samples are acquired, the proposed differential evolution

Qin and Zhu EURASIP Journal on Wireless Communications and Networking  (2018) 2018:32 Page 5 of 9



Fig. 1 Localization performance of the samples of different generations with differential evolution. a Generation = 0. b Generation = 10. c Generation = 20

Qin and Zhu EURASIP Journal on Wireless Communications and Networking  (2018) 2018:32 Page 6 of 9



algorithm will be executed, which uses the sample
weight as objective function. Since the observation re-
sults from the normal nodes only involve anchor nodes,
the sample weight is equal to 0 or 1. Next, the derived
sample weight is equal to 1 and it can be remained in
the next generation. Otherwise, the parents’ sample can
only reserve in the next generation. After several genera-
tions being produced, plenty of samples can be satisfied
with the filtering conditions, most of which is close to
the actual position of the node. As can be seen from
Fig. 1, compared with the initial samples, the samples of
subsequent generation with differential evolution are
closer to the actual location of the node.
Figure 2 shows the comparison of convergence of the

algorithm. As can be seen from the result, the
localization accuracy of all algorithms demonstrates ab-
solutely low-quality in the initial stage. With the time
goes, the number of valid samples is getting more and
more, and the accuracy is corrected by iteration. There-
fore, the localization error decreases and fluctuates in a
relatively stable range. During the whole convergence
phase, we can observe that the average error in MCL-
DE shows approximately 21.23% lower than RMCL,
about 35.42% lower than DLS. Generally, the speed and
direction of the node are unknown except for the
maximum velocity. The maximum velocity and previous
position can be utilized to predict the constrained
sampling area in current time.
When the maximum moving speed is slow, the size of

the sampling box based on the moving velocity is rela-
tive small. Apparently, the actual position of the nodes
will be of high probability to fall outside of the sampling
box and the localization results will be very poor. With
the increase of the maximum velocity, the node will be
able to establish a better sampling box, which can con-
tain the actual position with high probability, to reduce

the localization error. However, excessive value of the
maximum velocity of node can constraint the size of
sampling box and result in the increase of the average
node’s localization error and it can be seen from Fig. 3.
In the process of the whole trend, the MCL-DE algo-
rithm always keeps the advantage over other methods in
localization accuracy.
The number of the candidate samples depends on the

size of sampling box, and Fig. 4 demonstrates the rela-
tionship between the maximal moving velocity and the
number of candidate samples. For DLS, since the effect
of sampling is entirely determined by the maximum vel-
ocity of the node, the increase of the maximum velocity
of movement will extend the range of the sample box as
well as increase the number of final candidate samples.
However, the sampling constraint box of MCL-DE is
mainly composed of one-hop and two-hop neighbor an-
chor nodes, and the size of the sample box will be pri-
marily restricted by the anchor nodes. That is, when the
maximum velocity of motion is increased, the number of
candidate samples will not change obviously due to the
stable observation results from the anchor nodes.
Next, the experiment is conducted to verify the effect

on localization error in different density of anchor
nodes. As can be seen from the Fig. 5, the samples being
selected optimally can approximate to the actual pos-
ition, and the results with weighted average calculation
make the average localization error as small as possible.
From the results, the trend of average localization error
in all algorithms shows very clearly. Comparatively, the
average location error in different densities of anchor
nodes in MCL-DE is less than RMCL and DLS. Espe-
cially, when the density of anchor nodes is set to 1, the
average localization error of MCL-DE can be less than
RMCL about 16.59% and DLS about 33.43%.

Fig. 2 Localization error with time steps Fig. 3 Localization error with maximum velocity
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Moreover, the increase of the anchor node’s density
will bring about more constraint conditions for filtering
process. As a result, the filtration rate of samples will in-
crease. As shown in Fig. 6, with the increase of anchor
node’s density, the number of candidate samples in
RMCL and RMCL grows remarkably. In contrast, the
growth of DLS algorithm is greater because it does not
make use of the anchor node’s information at the sam-
pling stage. Due to fixed samples for initial operation,
the number of candidate samples remains constantly.

5 Conclusions
After obtaining a certain number of initial samples, we
select the weight of the sample as the objective function
of the optimization and present the differential evolution
algorithm to obtain valid samples rather than perform
initial sample filtering and resampling. Finally, the node
position is estimated by making the sample close to the

actual location of the node instead of being filtered out.
The simulation result demonstrates that the proposed
algorithm provides a better position estimation with less
localization error. In the future, we will study and valid-
ate the signal strength indicator to improve the perform-
ance of our method in aspect of computational and
communication costs. And we are also planning to dis-
cuss the challenges and open research issues related to
the parameters and focus on the localization accuracy of
range-free schemes.
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