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Abstract

In the past, investigators tend to use multi-channel surface electromyography (sEMG) signal acquisition devices to
improve the recognition accuracy for the study of gesture recognition systems based on sEMG. The disadvantages
of the method are the increased complexity and the problems such as signal crosstalk. This paper explores a gesture
recognition method based on a single-channel sEMG envelope signal feature in the time domain. First, we get the sEMG
envelope signal by using a preprocessing circuit. Then, we use the improved method of valid activity segment extraction
to find every valid activity segment and extract 15 features from every valid activity segment. Next, we calculate the
absolute value of the correlation coefficient between each of the features and target values. After removing the feature
with the smaller correlation coefficient, we reserve the 14 features. By the PCA dimensionality reduction algorithm, we
transform the 14-dimensional feature into 2-dimensional feature space. Finally, we use the improved KNN algorithm and
the soft margin SVM algorithm to complete the classification of five types of gestures. We obtain the gesture recognition
rates of 75.8 and 79.4% by using the improved KNN algorithm and the soft margin SVM algorithm.
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1 Introduction
Surface electromyography (sEMG) is the temporal and
spatial superposition of faint bioelectrical signals generated
by the muscle nerve cells during muscle contraction [1]. It
is collected and recorded through the skin surface elec-
trodes. Compared to conventional EMG signal acquisition
that requires inserting a needle electrode into muscle tissue,
the sEMG signal has the advantages of being noninvasive
and providing the convenience of collection. The sEMG
signal from the arm has been used in human-computer
interaction, rehabilitation training, and artificial prosthesis
[2–5]. Because it can indirectly reflect the gestures of the
person, it has extensive application and research value [6].
A Canadian company (Thalmic Labs) develops the

world’s first Myo armband based on sEMG signal in
2013, which is used in the contactless human-computer
interactive device [7–10]. In 2015, Harbin Institute of
Technology in China develops an imitation humanoid
“dexterous hand” for the national lunar exploration
project. One of the key technologies is gesture recogni-
tion based on sEMG [11, 12]. Previously, in the study of

gesture recognition based on sEMG signal, investigators
tend to increase the number of acquisition channels to
improve the recognition rate [2]. Not only does this
increase costs, but it also increases the complexity of the
acquisition process and the number of data processing.
Especially in application for commerce, multi-channel
has a high requirement for hardware. So it leads to a
high cost and is hard to popularize. Besides, multi-channel
is easy to cause signal crosstalk problems [13, 14]. More-
over, previous investigators just study the raw sEMG
property. Motivated by the aforementioned discussions,
we investigate a new method.
In this paper, we develop and design the sEMG acqui-

sition system and study the envelope property of the
signals obtained. We put forward an improved method
for extracting valid activity segment, and the method
can be used to find with precision the starting point
and ending point for each of the valid activity segments,
which greatly reduce the noise interference and increase
the precision of extraction. We extract 15 common features
which include all sEMG envelop properties and analyze the
correlation between every feature and five types of gestures.
We find that the slope sign change (SSC) is unsuitable for
the studying of sEMG envelope signal. However, according
to previous research, SSC is an important feature to study
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of the raw sEMG signal. We also find that sEMG envelop
signal can greatly reflect sEMG amplitude property but
ignore its frequency property. These are the major differ-
ences between raw sEMG signal and sEMG envelop signal.
Therefore, we only keep the other 14 features. However,
there are still too many data for processing, which increase
the burden of classifier. Furthermore, we use the PCA
linear dimension reduction algorithm to transform 14-
dimensional features into 2-dimensional. Finally, we apply
three pattern recognition algorithms to classify the five
types of gestures and find that the soft margin SVM is the
best classifier with a recognition rate of 79.4%, while the
improved KNN algorithm gives a gesture recognition rate
of 75.8%. It turns out sEMG envelope property is an im-
portant way for the study of sEMG.

2 sEMG signal acquisition
2.1 Introduction of process of this experiment
We design the acquisition system to get the sEMG enve-
lope signal. The sEMG envelope signal is the DC signal
after the process of amplification, rectification, integra-
tion, and amplification again for the raw sEMG signal by
the preprocessing circuit. Then, we use an improved
method for extracting valid activity segments. After that,
we extract 15 features and analyze the correlation. Next,
we reduce the feature dimension by PCA dimension
reduction. Finally, we compare the three pattern recog-
nition algorithms. The whole process of the experiment
is shown in Fig. 1.

2.2 Experimental methods
In this paper, five kinds of gestures are studied: bend the
wrist up while flat, bend the wrist down while flat, bend
the wrist up while in shake hand position, bend the wrist

down while in shake hand position, and make a fist (as
shown in Fig. 2). AgCl electrodes are placed in the pos-
ition of the ulnar flexor carpi ulnaris of the right forearm
(as shown in Fig. 3). The subjects are four college
students, aged 23–25 years, two men and two women,
all right-handed. Before the experiment, the skin of each
subject’s right forearm is cleaned with soap [15]. The
sampling frequency is set at 2000 Hz. Every gesture is
repeated 60 times, and 300 samples are collected from
each subject (as shown in Table 1). The typical waveform
which corresponded with each of the five types of ges-
tures is shown in Fig. 4.

3 The experimental algorithm
3.1 An improved method for extracting valid activity
segment based on the moving square method
The purpose of valid activity segment extraction is to
efficiently identify every valid activity segment to reduce
the amount of processing data, to determine the starting
and ending sampling points of every activity waveform,
to distinguish from noise, and to lower the effect from
noise interference. In this paper, an improved method
is proposed based on the moving square method, as
stated below:
① Assuming xki represents the ith sampling point in kth

activity segment, and within 32 ms after xki there are 64
sampling points at the sampling frequency of f = 2000 Hz,
then the average short time energy within 32 ms (window
width, w= 64) is:

Ek ¼ 1
64

X
63
i¼0 x

2
ki ð1Þ

② In accord with our experience, we selected the appro-
priate thresholds as TH1 and TH2. TH1 is the starting point

Fig. 1 The whole process of this experiment
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threshold, and TH2 is the ending point threshold. When
satisfying Ek >TH1, the first sampling point is recorded xks.
After xks is recorded, the first sampling point is recorded
xke (e > s) when satisfying Ek <TH2.
③ Activity duration is recorded T, then:

T ¼ e−sð Þ � 1
f

ð2Þ

④ From sampling point xks to xke, the average energy
is recorded �Ek , then

�Ek ¼ 1
e−s

X
e
i¼s x

2
ki ð3Þ

⑤ In accord with our experience, choosing TH3,
TH4 (TH3 < TH4), and TH5 as the third, fourth, and fifth
thresholds, respectively, when satisfying TH4 > T > TH3

and �Ek > TH5 , the kth activity segment is valid. xks is the
real starting sampling point, and xke is the real ending
sampling point during the valid activity segment.
Otherwise, the activity segment is regarded as noise
and considered invalid.
Figure 5 shows the process of extraction of valid activity

segment about the sEMG envelope signal corresponding to
the five types of gestures. Figure 5a shows the short time
energy (Ek) distribution of the sEMG envelope signal when
the window width w= 64. In order to improve the perform-
ance of anti-interference, TH1 is slightly higher than TH2.
Figure 5b shows the duration (T) of valid activity segment.

According to the experiment results, we set TH3 = 500 ms
and TH4 = 1800 ms. Figure 5c shows the average energy �Ek

for five types of gestures. In Fig. 5c, we chose the appropri-
ate threshold as TH5. Figure 5d shows the extraction of
valid activity segment for the sEMG envelope signal.

3.2 Feature extraction
The sEMG signal is a non-stationary random signal, but
it can be regarded as a stationary random signal in short
periods of time [2]. At present, the common feature
extraction methods applied to raw sEMG signal are
feature extraction methods based on time-domain statis-
tical features, frequency-domain statistical features, time-
frequency domain statistical features, and parametric model
[11]. Time-domain features extract time structures in the
sEMG signal [16–19]. Time-domain statistical features can
intuitively reflect the amplitude characteristics of the sEMG
signal, and its algorithm is easy to implement. It has the ad-
vantage of real-time and speed. In frequency-domain statis-
tical features, investigators first need to take the Fourier
transform of the time-domain sEMG signal and then
extract power spectrum or spectral characteristics of the
sEMG signal. But the method creates difficultly and com-
plexity. In this experiment, because the sEMG envelope
signal loses its frequency property, we only extract the
features from time-domain and parametric model. In the
experiment, we find that the trend lines of the envelopes
corresponding to the five gestures are obviously different.
Therefore, we extract 15 features of the sEMG envelope
signal in the time-domain and the parametric model.

Fig. 2 Five kinds of gestures in this work

Fig. 3 Electrode’s placement

Table 1 Classification distribution of the sample in training and
test sample dataset

Classification (gesture’s type) Training set Testing set Total

The first gesture 30 30 60

The second gesture 30 30 60

The third gesture 30 30 60

The fourth gesture 30 30 60

The fifth gesture 30 30 60

Total 150 150 300
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3.2.1 Feature extraction based on time-domain statistical
features
Time-domain statistical characteristics mainly extracted
the sEMG signal’s duration T, integral IEMG, mean abso-
lute value (MAV), variance (VAR), standard deviation (s),
average energy (E), maximum (MAX), slope sign change

(SSC), skewness (Sk), and kurtosis (Ku). Assuming that
{xki| i = 1, 2……n} represent all the sampling points in the
kth valid activity segment, where n represents the total
number of sampling points in the valid activity segment,
xk1 represents the starting sampling point of this valid ac-
tivity segment, and xkn represents the ending sampling
point of this valid activity segment. In time-domain statis-
tical features, the formulas are as follows:
① Time of duration for each valid activity segment T:

T ¼ n−1
f

ð4Þ

② Integral, IEMG:

IEMG ¼
X

n
i¼1 xkij j ð5Þ

③ Mean absolute value, MAV:

MAV ¼ 1
n−1

X
n
i¼1 j xki j ð6Þ

④ Variance, VAR:

Fig. 4 The typical waveform for five types of gestures

Fig. 5 The process of extraction of the valid activity segment. a The short-term energy distribution of raw sEMG signal. b Duration (T) of valid
activity segment. c The average energy �Ek for five types of gestures. d The extraction of the valid activity segment for sEMG envelope signal. The
legends first, second, third, fourth, and fifth represent the five kinds of gestures. Starting point represents the first sampling point in the valid activity
segment. Ending point represents the last sampling point in the valid activity segment
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VAR ¼ 1
n−1

X
n
i¼1 xki−μð Þ2 ð7Þ

⑤ Standard deviation, s:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n−1

X
n
i¼1 xki−μð Þ2

r
ð8Þ

⑥ Average energy, E:

E ¼ 1
n−1

X
n
i¼1 x

2
ki ð9Þ

⑦ Maximum, MAX:

MAX ¼ max xk1; xk2; xk3⋯xknð Þ ð10Þ
⑧ Slope sign change, SSC:

SSC ¼ 1
n−2

X
n−1
i¼2 f ið Þ ð11Þ

f ið Þ ¼ 0; xki−xk i−1ð Þ
� �

xk iþ1ð Þ−xki
� �

> 0
1; xki−xk i−1ð Þ
� �

xk iþ1ð Þ−xki
� �

< 0

�
ð12Þ

⑨ Skewness as the index of data symmetry, Sk:

Sk ¼ n
n−1ð Þ n−2ð Þs3

X
n
i¼1 xki−μð Þ3 ð13Þ

⑩ Kurtosis (Ku) describes the steep degree of data
state, the formula is as follows:

Ku ¼ n nþ 1ð Þ
n−1ð Þ n−2ð Þ n−3ð Þs4

X
n
i¼1 xki−μð Þ4− 3 n−1ð Þ2

n−2ð Þ n−3ð Þ
ð14Þ

where f is the frequency of sampling, s is the standard
deviation of this valid activity segment, and μ is the
mean.

3.2.2 Feature extraction based on parameter model
Although the sEMG signal is a nonstationary random
signal, it has good stability in short time intervals and
can be regarded as a piecewise stationary quasi station-
ary signal [11, 12]. Therefore, a mathematical model can
be established for this property. According to the AR
model, the jth sampling point in the kth valid activity
segment is

xkj ¼
X

p
i¼1 αixk j−ið Þ þ β jð Þ ð15Þ

where αi is the model coefficient, β(j) is the white noise,
p is the order of the model, and p = 4 is appropriate
according to the experimental results.
In this experiment, the AR model intercept (IT) and

the fourth-order (p = 4) model coefficients α1、α2, α3,
and α4 of the AR model are chosen as the features.
Finally, we extract 15 features in total.

3.3 The correlation analysis between features and five
types of gestures
We calculate absolute value of the correlation coefficient
between each of the 15 features and five types of ges-
tures, respectively [16]. Calculating it as follows:

r t; y j
� �

¼
X

n
i¼1 ti−tð Þ yij−y j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

n
i¼1 ti−�tð Þ2

Xn
i¼1

yij−y j
� �2

" #vuut
ð16Þ

where n is the number of all samples, yij represents the
jth (1 ≤ j ≤ 15) feature of the ith sample, �y j represents the
mean of the jth feature in all samples, t represents the
target value, and �t is the mean of the target value. Define
the target value of the first gesture is 1, the target value
of the second gesture is 2, the target value of the third
gesture is 3, the target value of the fourth gesture is 4,
and the target value of the fifth gesture is 5. Each final
correlation coefficient is the mean absolute value of all
experimenters’ correlation coefficient. Then, we illustrate
with a bar graph (as shown in Fig. 6). In this paper, we
obtain the sEMG envelope signal, and this is the DC
signal after the raw sEMG signal is amplified, rectified,
integrated, and amplified again. As a result, the sEMG
envelope signal is different from the raw sEMG signal.
So, we make the correlation analysis about the suitability
of the classification for the five types of gestures. It can
be seen from Fig. 6 that the absolute value of the correl-
ation coefficient between SSC and the target value is the
smallest and is approximately equal to zero. It is irrele-
vant. So SSC almost has no effect for classification of
five types of gestures. We remove the SSC from all fea-
tures. Lastly, we get the 14 features.

3.4 PCA linear dimensionality reduction algorithm
High-dimensional spatial data cannot be visually expressed,
so we cannot choose the appropriate classifier subjectively.

Fig. 6 The absolute value of correlation coefficient
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In addition, the higher the dimension means the greater the
amount of data, the more complex the data for handling,
and the higher the hardware requirements. In order to
observe distribution of the sample data and simplify the
task of classifier, we use the dimensionality reduction algo-
rithm. PCA (principal component analysis) is the most
commonly used linear dimensionality reduction algorithm.
Through a kind of linear projection, this algorithm can
make the data be mapped to low-dimensional space from
high-dimensional space. We assume that n dimensional
vector w is the mapping vector, then make the mapping
data variance maximum:

max
W

1
m−1

X
m
i¼1 wT X i−�Xð Þ� �2 ð17Þ

where m is the number of all samples, Xi is the eigen-
vector which consists of all the features of every sample,
and �X is the average vector of all the features of all
samples. W is a matrix containing all the mapping
vectors as column vectors. After transformation, the
following optimal projection matrix can be obtained:

min
W

tr W TAW
� �

; S:T : W TW ¼ I

A ¼ 1
m−1

X
m
i¼1 X i−X

� �
X i−�Xð ÞT

8<
: ð18Þ

where tr is the trace of the matrix, I is the unit matrix,
and A is the covariance matrix of all the sample data.
The optimal projection vector W′ is composed of eigen-
vectors that are column vectors which are determined
by the front k largest eigenvalues of the sample data
covariance matrix A, so that the transformed dimension-
ality reduction matrix can be obtained as follows:

Ym�k ¼ Xm�nW
0
n�k ð19Þ

where n (n > k) is the number of all original features.
Finally, we get the k-dimensional features. Experiments
show that when feature matrix is reduced to 2-dimensional
(k = 2), the proximate recognition effect as the original data
can be achieved with the least amount of data. After the
14-dimensional feature matrix is reduced to 2-dimensional
feature matrix, the data distribution of five types of gestures
is shown in Fig. 7. In Fig. 7, the horizontal axis x represents
the first dimensional value and the vertical axis y represents
the second dimensional value in the 2-dimensional feature
matrix. The legends first, second, third, fourth, and fifth
represent the five kinds of gestures. It can be seen from
Fig. 7 that every type within the five types of gestures is
grouped together. According to the figure, we can select an
optimal pattern recognition algorithm to achieve the opti-
mal classification effect.

3.5 Pattern recognition algorithm
3.5.1 KNN algorithm based on weight optimization
In the traditional k-nearest neighbor (KNN) algorithm, in
order to judge the category of unknown instances, all known
instances are taken as references. The distance between each
unknown instance and all known instances is calculated,
and the k-nearest neighbor in known instance sets are
selected. We obey the rules that the minority obeys the
majority. And lastly, we make the unknown instances be
classified into the category of the largest number of k-near-
est neighbor samples. This traditional algorithm has obvious
shortcomings. When the sample distribution is unbalanced,
such as one of the samples is too large or dominant, the
new unknown sample can easily be classified as the domin-
ant or scattered category. In view of such a problem, this
paper proposes an improved KNN algorithm, taking the
reciprocal of distance as the weight. Assuming that the
known set of instances of known categories is Ω= {X1, X2,
X3⋯⋯Xn} and the set of instances of unknown categories
to be classified is Ψ= {Y1,Y2,Y3⋯⋯Ym}. The process is as
follows:
① We calculate all distance dij between each unknown

instance Yj to be classified and all Xi in Ω, respectively.

dij ¼ ∥X i−Y j∥ ð20Þ

② In descending order of dij, we select k-nearest
neighbor known instances from Ω.
③ We calculate the k reciprocal of distances dij,

respectively, and make the reciprocal 1
dij

as the weight.

④ In these k known instances, we calculate the
number of instances of each category as α and sum of
the weights of each category as β ¼ Pα

i¼1
1
dij
.

Fig. 7 The distribution of sample data point for five types of gestures.
The horizontal axis x represents the first dimensional value, and the
vertical axis y represents the second dimensional value in the
2-dimensional feature matrix. The legends first, second, third,
fourth, and fifth represent the five kinds of gestures
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⑤ Next, we calculate the value of α × β as the weight
of this category and name the value of α × β as θ.
⑥ Lastly, we classify the unknown instance into the

category that has the highest weight θ.

3.5.2 Soft margin support vector machine algorithm
Support vector machine (SVM) is a supervised algorithm
[20]. Its principle is to maximize the margin between a
data set and the hyper plane separating two data sets.
The soft margin SVM algorithm is to solve the linear
nonseparable problem. Its idea is to find an n − 1 dimen-
sional hyperplane in n-dimensional space as a decision
function and divide the data into two parts, each of
which belongs to a category. Its model is as follows:

min
w

∥w∥2

2
þ C

X
m
i¼1 ξ i ð21Þ

S:T: yi w
Txiþb

� �
≥1−ξ i; ξ i≥0; i ¼ 1; 2…m

where w is the vector representing adaptive model
parameters, C is the weight of the outlier, that is, the
penalty factor. The larger the C means the greater the
impact of the outlier for the target. ξi is a slack variable,
and m is the number of sample data points. yi is the
label associated with a data point xi, and yi is − 1 or 1. xi
is the vector representing a data point. b is the intercept
of the hyper plane. After computing for formula (21), we
get the hyper plane of classification for the two categor-
ies as follows:

w�xþ b� ¼ 0 ð22Þ

In addition, it has been successfully applied to classifi-
cation for multiclass.

3.5.3 Comparison of recognition results
The experiment finds that waveform features from the
same gesture differ from one person to another [21], so we
only need to train the sample data collected from different
people in order to recognize the gestures from different
people. Table 2 and Fig. 8 show the average recognition ac-
curacy of the four subjects by three recognition algorithms.
In order to verify the effect of PCA algorithm, we also get
the recognition accuracy in the 14-dimensional feature

space. In Fig. 8, the legends first, second, third, fourth, fifth,
and mean, respectively, represent the first gesture, the sec-
ond gesture, the third gesture, the fourth gesture, the fifth
gesture, and mean of five types of gestures. T-KNN repre-
sents the traditional KNN algorithm, and I-KNN represents
the improved KNN algorithm. S-SVM represents the soft
margin SVM algorithm. Figure 8a shows the accuracy in

Table 2 The accuracy comparison of KNN and improved KNN and soft margin SVM for 14-D and 2-D gesture recognition

Feature dimension Algorithm First gesture (%) Second gesture (%) Third gesture (%) Fourth gesture (%) Fifth gesture (%) Mean (%)

14-D KNN 76.00 72.00 66.00 69.00 90.00 74.60

Improved KNN 75.00 82.00 68.00 70.00 90.00 77.00

Soft margin SVM 80.00 82.00 71.00 74.00 93.00 80.00

2-D KNN 78.00 70.00 61.00 69.00 88.00 73.20

Improved KNN 79.00 81.00 63.00 67.00 89.00 75.80

Soft margin SVM 84.00 80.00 74.00 67.00 92.00 79.40

Fig. 8 Comparison of accuracy of recognition for three algorithms. a
Accuracy in 14-dimensional feature space. b Accuracy in 2-dimensional
feature space. The legends first, second, third, fourth, fifth, and mean,
respectively, represent the first gesture, the second gesture, the third
gesture, the fourth gesture, the fifth gesture, and mean of five types of
gestures. T-KNN represents the traditional KNN algorithm, and I-KNN
represents the improved KNN algorithm. S-SVM represents the soft
margin SVM algorithm
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14-dimensional feature space. Figure 8b shows the accuracy
in 2-dimensional feature space. It can be seen that the over-
all recognition accuracy in 14-dimensional feature space
and in 2-dimensional feature space belong to the same
order of magnitude, which illustrates the reliability of the
PCA dimensionality reduction algorithm in this experi-
ment. It can also be seen from Fig. 8 that the KNN algo-
rithm based on weight optimization is better than the
traditional KNN algorithm and that the soft margin algo-
rithm is the best in this experiment.

4 Conclusions
This paper explores a gesture recognition method based on
a single-channel sEMG envelope signal. In the experiment,
after the raw sEMG signal passed the preprocessing circuit,
we obtain its envelope signal. We just use one channel to
extract features from the sEMG envelope signal and get the
about 80% average accuracy. It shows that the study of
gesture recognition based on the sEMG signal can also be
researched from the sEMG envelope signal. The property
of sEMG envelope signal contains great information of ges-
ture. If we ignore the problems caused by multi-channel,
we will get the higher recognition accuracy by using multi-
channel acquisition. So how to deal with the contradiction
between these problems caused by multi-channel acquisi-
tion and high-accuracy will be our next task in the future.
This paper provides a reference value for future research,
especially applications for prosthesis and biomimetic robot.
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