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Abstract

Researching on the relationships among different multiple weighted type fractional Fourier transform (multi-WFRFT)
schemes, we in this paper provide the modulation order relation of different multi-WFRFT in theory. Moreover, we also
prove that the two matrix spaces (i.e., 4-WFRFT and multi-WFRFT) are equivalent. To apply multi-WFRFT into the
wireless communication, we design the implementation structure of multi-WFRFT (in particular, for 2n-WFRFT
scheme). Furthermore, the generalized hybrid carrier modulation (GHCM) system has been proposed in this paper,
which can be degenerated to the classical hybrid carrier modulation (HCM) system with special parameters. We also
verify the modulation order relationship between multi-WFRFT by numerical simulations. Leveraging the theory and
structure of multi-WFRFT, we finally discuss its potential applications over secure communication and multiple input
multiple output (MIMO) system.
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1 Introduction
Recently, 4-weighted type fractional Fourier transform
(4-WFRFT) has been popular in channel equalization,
narrow-band interference (NBI) suppression, and signal
processing [1–6]. Moreover, 4-WFRFT-based hybrid car-
rier modulation (HCM) system, due to its special struc-
ture, can achieve better performance than the traditional
single carrier modulation (SCM) system and orthogonal
frequency division multiplexing (OFDM) system under
doubly selective (DS) channels [1, 3, 6]. The reason is
that OFDM system will be plagued by inter-carrier inter-
ference (ICI) due to the highly time variance under DS
channels, and the effectiveness of SCM system is impaired
due to inter-symbol interference (ISI) cause by large time-
delay spread. Meanwhile, HCM system, convergence of
SCM and OFDM signal, can make the signal and resid-
ual interference evenly distribute in the time-frequency
plane. In this case, it is less possible to produce the
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strong interference and performs better under DS chan-
nels. Although, the complexity of HCM tolerably increase
byO(K log(K)) comparing with OFDM system.
However, there are little reports to research on mul-

tiple WFRFT (multi-WFRFT), which can be as the gen-
eralized formation of 4-WFRFT on wireless communi-
cations. Furthermore, the modulation order relationship
between different multi-WFRFT schemes is also vague in
theory. There are many different constitutions for multi-
WFRFT according to [5], such as the classical fractional
Fourier transform (CFRFT)-based multi-WFRFT [7–11].
However, the standard WFRFT (i.e., 4-WFRFT)-based
multi-WFRFT is interesting due to its implement struc-
ture. Ran et al. in [5] have provided the explanation of
multi-WFRFT in mathematics. Unfortunately, the imple-
mentation structure of multi-WFRFT and explanation in
physical are still ambiguous, which will obstruct its appli-
cation on wireless communications.
To apply multi-WFRFT to wireless communications, we

in this paper prove the relationship of modulation orders
between multi-WFRFT and 4-WFRFT in theory, and can
be described a simple formula, i.e., αM = M

4 α4 when
multi-WFRFT and 4-WFRFT of the same signal are equal
(αM and α4 are the modulation orders for multi-WFRFT
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and 4-WFRFT, respectively). As a corollary, we also
prove the relationship of modulation orders among multi-
WFRFT with different M. Furthermore, some important
properties of multi-WFRFT have also been given in this
paper. We finally prove that any N × N matrix spaces for
multi-WFRFT are equivalent.
We also provide the implementation structure of multi-

WFRFT (in special, 2n-WFRFT). Furthermore, the gen-
eralized hybrid carrier modulation (GHCM) system has
been proposed in this paper, which can be degenerated
to the classical hybrid carrier modulation (HCM) system
with special parameters. We also verify the modulation
order relationship between multi-WFRFT by numerical
simulations. Leveraging the theory and implementation
structure ofmulti-WFRFT, we finally analyze the potential
applications on wireless communications.
The rest of this paper is organized as follows. The basic

knowledge of WFRFT is introduced in Section 2. Further-
more, the modulation order relationships between differ-
ent multi-WFRFT will be proved in Section 3. To apply
multi-WFRFT system into wireless communication, we
provide the implementation structure for multi-WFRFT
system (in special, 2n-WFRFT system) and its complex-
ity requirements in Section 4. We then propose a GHCM
system and provide some numerical simulations in
Section 5. The potential applications of multi-WFRFT is
also discussed in Section 5. We conclude the whole paper
in Section 6.

Notations: αm is the modulation order for m-WFRFT
(m ≥ 4). And Wαm

m denotes the m-WFRFT matrix.
Then, Al(α4)(l = 0 ∼ 3) is the weight coefficient of 4-
WFRFT while Bm,l(αm)(l = 0 ∼ m − 1) is the weight
coefficient of m-WFRFT (m > 4). F is the normal-
ized discrete Fourier transform, and the elements of F,
[F]j,k = 1/

√
N exp(−2π ijk/N), j, k = 0, 1, ...,N−1. More-

over, 〈.〉N denotes the modulo-N calculation. At last, δ(.)
is the Kronecker delta. In this paper, M-WFRFT is used in
the processing of proof; meanwhile, m-WFRFT is used in
other places.

2 The basic knowledge for WFRFT
The α4-order 4-WFRFT of the original signal X with
length of N can be defined as follows:

Fα4X = Wα4
4 X, (1)

where Fα4 is the 4-WFRFT operator. α4 terms the modu-
lation order and can be any real number.Wα4

4 is theN×N
4-WFRFT matrix with

Wα4
4 =

3∑

l=0
Al(α4)Fl, (2)

in which, the subscript 4 denotes 4-WFRFT. Al(α4)(l =
0 ∼ 3, l ∈ Z) is the weight coefficients of 4-WFRFT, can
be expressed as [12]:

Al(α4) = 1
4

1 − exp[−2iπ(α4 − l)]
1 − exp[−2iπ(α4 − l)/4]

. (3)

F is the discrete Fourier transform (DFT) matrix.
Accordingly, Fl is the l-time Fourier transform [5, 12].
Note that, F4 = F0 = I due to the 4-periodicity of Fourier
transform [5]. Also, the 4-WFRFT simplifies to Fourier
transform (FT) when α4 = 1. Moreover, the identity oper-
ation can be obtained when α4 = 0. For any real α4 and
β4, the following additive characteristic holds [1, 3]:

Wα4+β4
4 = Wα4

4 Wβ4
4 = Wβ4

4 Wα4
4 (4)

There are various methods for defining multi-WFRFT
[5]. Based upon 4-WFRFT, multi-WFRFT (M-WFRFT,
M > 4) of the original signal X, can be defined as [5]:

F
αM
M X = WαM

M X, M > 4, (5)

with

WαM
M =

M−1∑

l=0
Bl(αM)W

(
4l
M

)

4 , M > 4. (6)

where WαM
M denotes the N × N M-WFRFT matrix with

subscript of M. The definition of WαM
M , as shown in (6),

will be employed in this paper unless otherwise noted.
To distinguish the weight coefficients between 4-

WFRFT and M-WFRFT, we employ Bl(αM)(M > 4) to
represent the weight coefficient ofM-WFRFT and can be
written as:

Bl(αM) = 1
M

1 − exp [−2iπ(αM − l)]
1 − exp [−2iπ(αM − l)/M]

, M > 4. (7)

According to (3) and (7), the following relationships
hold:

Al(α4) = Ak(α4 − l + k), l, k = 0 ∼ 3, l, k ∈ Z, (8)

and

Bh(αM) = Bj(αM − h+ j), h, j = 0 ∼ (M− 1), h, j ∈ Z.
(9)

We have derived the relationships of Al(α4) and Ak(α4)
via (8), and the relationships of Bh(αM) and Bj(αM) via (9).
However, the order relationships between 4-WFRFT and
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M-WFRFT are vague.We will reveal these relationships in
the next section.

3 Themodulation order relationships between
4-WFRFT andmulti-WFRFT

In this section, we will reveal the modulation order rela-
tionship between 4-WFRFT and multi-WFRFT, which
is essential for realizing the nature characteristics of
WFRFT.

Theorem 1 Assuming α4 and αM are the modulation
orders of 4-WFRFT and multi-WFRFT, respectively, and
Wα4

4 and WαM
M denote the matrices for 4-WFRFT and

multi-WFRFT, accordingly. IfWα4
4 = WαM

M , then

αM = M
4

α4, M > 4, (10)

Proof Mathematical induction will be exploited in the
proof process, which incorporates three steps.

• Step 1 We firstly prove that whenWα5
5 = Wα4

4 , (10)
holds, i.e., α5 = 5

4α4.
InsertingM = 5 into (6), then

Wα5
5 =

4∑

p=0
Bp(α5)W

4p
5
4 (11)

Note thatW
4p
5
4 (p = 0 ∼ 4, p ∈ Z) involves the sum of

four terms and can be expressed as:

W
4p
5
4 =

3∑

j=0
Aj

(
4p
5

)
Fj, p = 0 ∼ 4 (12)

By substituting (12) into (11):

Wα5
5 =

3∑

j=0
�j(A,B)Fj (13)

where

�j(A,B) =
4∑

p=0
Bp(α5)Aj

(
4p
5

)
, j = 0 ∼ 3. (14)

Comparing (2) with (13),Wα5
5 = Wα4

4 holds if and
only if each coefficient of Fj(j = 0 ∼ 3, j ∈ Z) is equal.
For brevity, we employ the coefficient of F0 in (2) and
(13) to obtain the modulation order relationship.
When j = 0, (14) can be expressed:

�0(A,B) =
4∑

p=0
�p, (15)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0 = 1
5
1 − exp(−2π iα5)

1 − exp
(−2π iα5

5

)

�1 = − 1
20

1 − exp(−2π iα5)

exp
(−2π i

5
) − exp

(−2π iα5
5

)

�2 = 1
20

1 − exp(−2π iα5)

exp
(
π i
5
) + exp

(−2π iα5
5

)

�3 = 1
20

1 − exp(−2π iα5)

exp
(−π i

5
) + exp

(−2π iα5
5

)

�4 = − 1
20

1 − exp(−2π iα5)

exp
(2π i

5
) − exp

(−2π iα5
5

)

(16)

Through (16), we can derive that

4∑

p=0
�p = U

∑3
j=0(j + 1) exp

(−2jπ iα5/5
)

20
∑4

p=0 exp (−2pπ iα5/5)
(17)

where U = 1 − exp(−2π iα5).
Obviously, both numerator and denominator are
geometric sequence or its expansion [13]. Therefore,
(17) can be simplified:

4∑

p=1
�p = 1 − 5 exp(−8π iα5/5) + 4 exp(−2π iα5/5)

20
[
1 − exp(−2π iα5/5)

]

(18)

Finally, according to (15) and (18), �0(A,B) can be
expressed as follows:

�0(A,B) = 1 − exp(−8π iα5/5)
4[ 1 − exp(−2π iα5/5)]

(19)

To explicitly compare the coefficients between
4-WFRFT and M-WFRFT, we provide the expression
of A0(α4):

A0(α4) = 1 − exp(−2π iα4)

4[ 1 − exp(−2π iα4/4)]
(20)

Exploiting �0(A,B) = A0(α4) , (19) and (20), we
obtain that

α5 = 5
4
α4 (21)

Until now, we have completed the proof of step 1.
• Step 2 Assuming that whenM = k(k ≥ 5), Theorem 1

holds [14]. That is, ifWαk
k = Wα4

4 , the following
formula holds:



Li et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:41 Page 4 of 10

αk = k
4
α4 (22)

Then, we will employ (22) to prove Theorem 1 for
M = k + 1.

• Step 3 As stated previously, we will prove when
M = k + 1, (10) holds. To distinguish the coefficients
of k-WFRFT and (k + 1)−WFRFT, we in this step
employ Bk,l and Bk+1,l denote the l th weight
coefficient for k-WFRFT and (k + 1)-WFRFT,
respectively.
We first derive the relationship between αk and αk+1
whenWαk

k = Wαk+1
k+1 .W

αk+1
k+1 can be written as:

Wαk+1
k+1 =

k∑

q=0
Bk,q(αk+1)W

4q
k+1
4 (23)

By substituting (22) into (23), we obtain

Wαk+1
k+1 =

k∑

q=0
Bk,q(αk+1)W

kq
k+1
k (24)

Based upon k-WFRFT, we can get the coefficients of(
F
4
k
)0

for bothWαk
k andWαk+1

k+1 .

Bk,0(αk) = 1 − exp(−2π iαk)

k[ 1 − exp(−2π iαk/k)]
, (25)

�0(Bk ,Bk+1) =
k∑

q=0
�q, (26)

�q = Bk+1,q(αk+1)Bk,0

(
kq

k + 1

)
,

q = 0 ∼ k, q ∈ Z. (27)

with

�q = Bk+1,q(αk+1)Bk,0

(
kq

k + 1

)
, q = 0 ∼ k, q ∈ Z

(28)

With observation and complex computation,∑k
q=1 �q can be obtained:

k∑

q=1
�q =

V
∑k−1

j=0 (j + 1) exp
(−2jπ iαk+1

k+1

)

k(k + 1)
∑k

q=0 exp
(−2qπ iαk+1

k+1

) (29)

with

V = 1 − exp(−2π iαk+1) (30)

In this case, (29) can be expressed as:

k∑

q=1
�q=

1−(k + 1) exp
(−2π i(k)αk+1

k+1

)
+ k exp

(−2π iαk+1
)

k(k + 1)
[
1 − exp

(−2qπ iαk+1
k+1

)]

(31)

Thus,

�0(Bk ,Bk+1) =
1 − exp

(−2π ikαk+1
k+1

)

k
[
1 − exp

(−2π iαk+1
k+1

)] (32)

Comparing (32) with Bk,0(αk), we can obtain:

αk+1 = k + 1
k

αk (33)

Finally, by substituting (22) into (33),

αk+1 = k + 1
4

α4 (34)

We have completed the proof of Theorem 1.

According to Theorem 1, if Wαm
m = Wαn

n (m, n ≥ 4),
then

αm = m
n

αn (35)

Moreover, M-WFRFT can also satisfy the boundary
axiom according to the following corollary.

Corollary 1 The boundary axiom and periodicity
axiom for m-WFRFT (m ≥ 4) can be revealed as:

Wm/4
m = F (36)
W0

m = I (37)
Wαm+m

m = Wαm
m . (38)

Proof According to [5], when α4 = 1, the following
formula holds:

W1
4 = F (39)

Moreover, αm = m
4α4 if Wα4

4 = Wαm
m via Theorem 1,

then

W1
4 = W

m
4
m = F (40)

Similarly, (37) and (38) can be derived via Theorem 1.

The Corollary 1 can be straightforwardly derived via
Theorem 1. Furthermore, Corollary 1 reveals a flexible
method to switch between time domain and frequency
domain with special modulation orders controlling.

Corollary 2 LetG4 andGm be the N ×N matrix spaces
consisting of Wα4

4 (α4 ∈ R) and Wαm
m (αm ∈ R,m > 4),

that is,
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G4 = {Wα4
4 |α4 ∈ R}

Gm = {Wαm
m |αm ∈ R}

Then, these two matrix spaces are equivalent.

Proof To anyWα4
4 ∈ G4, we find

Wα4
4 = W

4
mαm
m (41)

according to Theorem 1.
And,

W
4
mαm
m ∈ Gm, (42)

Thus,

Wα4
4 ∈ Gm (43)

That is to say, G4 is the subspace of Gm.
Similarly,

Wαm
m = W

m
4α4
4 ∈ G4 (44)

holds for anyWαm
m ∈ Gm via Theorem 1. Thus, Gm is also

the subspace of G4.
In summary, the G4 space and Gm space are equivalent.

As a generalized of Corollary 2, Gm and Gn will be
equivalent for any real m, n. This is obvious according to
Corollary 2.

4 Implementation structure of 2n-WFRFT and its
complexity requirements

As stated previously, we have proved the modulation
order relationship between 4-WFRFT and M-WFRFT via
Theorem 1. There would be a question about the next
research in our mind. What is the significance to research
the M-WFRFT since it can be represented by 4-WFRFT?
As a special case of multi-WFRFT, we in this section will
give the 2n-WFRFT (n ≥ 2) implementation structure and
the complexity requirements.

4.1 Implementation structure of 2n-WFRFT
The 2n-WFRFT of the original signal X with the length of
N can be expressed as:

FαX = WαX, n ≥ 2. (45)

Note that, we drop the subscript 2n for brevity in this
section. The 2n-WFRFT matrix,Wα , can be written as:

Wα =
2n−1∑

p=0
Bp(α)W

4p
2n
4

=
2n−2−1∑

p=0

[
Bp(α) + Bp+2n−2(α)F

+Bp+2n−1(α)P + Bp+3×2n−2(α)PF
]
W

4p
2n
4 ,

(46)

in which P is the permutation matrix with [P]m,n =
δ(〈m + n〉N ) (m, n = 0, 1, ...,N − 1), which can be as
the inverse module. Due to the special structure of 2n-
WFRFT, we can design the implementation structure,
which can be the generalized form of that in [15]. We can
implement the 2n-WFRFT using (46).
We provide the implementation structure of 2n-WFRFT

and signal compositions in Fig. 1. Note that, when n =
2, the structure of 2n-WFRFT reduces to the well known
structure of 4-WFRFT. The serial signal X with length of
N was transmitted in parallel. According to (46), there are
4-WFRFTmodules [15], discrete Fourier transform (DFT)
modules, and inverse modules (termed as “P” in Fig. 1) in
the implementation structure.
Different signals, dividing into different channels, will

then be multiplied by the corresponding weight coeffi-
cients (Bj, j = 0, ..., 2n−1). After taking the summation for
all channels, the derived signal will be transmitted. And
then, we obtain the output signal Y by parallel and serial
transform.
Note that there are two time domain signals over “channel

0” and “channel 2n−1,” which can be as the single carrier
components. Moreover, there are two frequency domain
signals over “Channel 2n−2” and “Channel 3×2n−2,” which
can be as the multi-carrier components [1, 3, 15]. Differing
from [15], 2n-WFRFT involves 2n − 4 weight fractional
Fourier transform domain signals over the other chan-
nels, which can be as the hybrid carrier components [1, 3].
These hybrid carrier components can be derived by differ-
ent order 4-WFRFT transform. Therefore, 2n-WFRFT is a
compatible modulation system of “single carrier,” “multi-
carrier,” and “hybrid carrier” modulations.

4.2 Complexity requirements
In this subsection, we will discuss the calculation com-
plexity for 2n-WFRFT. The computation complexity con-
sists of three parts: the 4-WFRFT modules, the DFT
modules, and multiply modules. Computing a 4-WFRFT
module costs N logN + 4N operations according to [3],
where N is the length of original signal. The calcula-
tion for each of DFT modules depends on FFT, which
needs N logN operations. Another 2nN multiplies will
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Fig. 1 Implementation structure of 2n-WFRFT and signal compositions

be employed in the weight coefficients multiply. The
details of complexity requirements have been given in
Table 1. Note that n is the number of the chan-
nels (or antennas), in general, n << N . Besides, 2n-
WFRFT will be degenerated into the classical 4-WFRFT
for n = 2.

5 Simulation and potential applications analysis
In order to verify the relationship betweenm-WFRFT and
n-WFRFT, we first provide a generalized hybrid carrier
modulation system (GHCM) as shown in Fig. 2. The orig-
inal signal f, assumed to be in the α order m-WFRFT
domain, can be converted back to time domain through
a −α order m-WFRFT at the transmitter. Generally, the
received signal f ′, at the receiver, can be converted back to
the original m-WFRFT domain by a α order m-WFRFT.
However, we can also obtain f ′, according to Corollary 1,
by a β order n-WFRFT with β = n/mα. This is a sim-
ple model without any equalization modular. Besides, the

Table 1 The details of complexity requirements

Operators Complexity Times

4-WFRFT O(N logN + 4N) 2n−2 − 1

DFT O(N logN) 2n−2

Multiply O(N) 2n

GHCM system model, with m = n = 4, can be degen-
erated to the classical hybrid carrier modulation system
(HCM) [1, 3, 6]. The primary contribution of GHCM sys-
tem is that the modulation orders (i.e., α and β) at the
transmitter and receiver can be flexibly selected, which
can expand the applications over communications (i.e.,
the security communication and MIMO systems). Finally,
we also discuss the potential applications ofmulti-WFRFT
over wireless communication.

5.1 Simulation and analysis
First, we will provide some simulations to verify the
theorem on the relationship of modulation orders.
Assuming the original signal is x = sinc(t), where t ∈
[−5, 5]. Here, we mainly want to verify the relationship
between m-WFRFT and n-WFRFT. Therefore, the chan-
nel is assumed to be ideal without any interference and
noise. The simulation results have been demonstrated
from Figs. 3 and 4.
Figure 3 is the relationship between 8-WFRFT and 4-

WFRFT of the original signal. The original signal has been
shown in Fig. 3a. Figure 3b is the result of – 0.8 order 8-
WFRFT of original signal (here m and α are 8 and 0.8,
respectively). The recover signal is derived by a 0.4 order
4-WFRFT. From Fig. 3c, we can clearly observe that the
demodulation signal can be well coincide with the origi-
nal signal. Moreover, the common communication signal
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Fig. 2 The generalized hybrid carrier modulation (GHCM) system

to be simulated in Fig. 4a. Figure 4b is the result of – 0.6
order 16-WFFRFT of original signal (here m and α are 16
and 0.6, respectively). The recover signal is derived by a
0.3 order 8-WFRFT. From Fig. 4c, we can clearly observe
that the demodulation signal can be well coincide with
the original signal. Furthermore, according to the error
between original signal and recover signal in Figs. 3d and
4d, we can also confirm the effectiveness of theorems
above.
To verify the superiority of GHCM, we set the sim-

ulation under DS channels, in comparison with SCM
and OFDM systems. We consider the 512 QPSK sym-
bol for each block under DS channels. The bandwidth
is 2 MHz. Moreover, the normalize Doppler frequency
fdTd = 0.00384, where fd is the single-side Doppler
spread in Hz and Td denotes the sampling interval
of the discrete-time system. The DS channel is mod-
eled by a sixteen-tap WSSUS channel with an expo-
nential multipath intensity profile [16]. In order to be
fairly compared, we employ the partial FFT demod-
ulation [1, 3] in the three systems and the division
number of 16. Without loss of generality, we employ
8-WFRFT in the transmitter and 4-WFRFT in the
receiver.
The simulation results have been shown in Fig. 5. The

modulation order α of 1, herem = 8 and n = 4 via Fig. 2,
is selected in the transmitter. According to Theorem 1, the
demodulation order β , in the receiver, should be chose as
0.5. The selection of modulation order can be found in
[17]. It is demonstrated that the superiority of the GHCM
is obvious in comparison to OFDM systems under this
DS channel. Moreover, GHCM performs better than SCM
system when Eb/N0 ≥ 15 dB. The GHCM system can be
degenerated to HCM system [2] when m = n = 4 via
Fig. 2. However, the communication security performance

of GHCM can be enhanced as the different order
at the transmitter and receiver, in comparison to the
HCM system. The reason will be provided in the
next section.

5.2 Potential applications of multi-WFRFT
The communication security is a crucial problem to the
wireless communication [18–21]. Two classes of methods
for wireless communication security have been exploited.
First, the transmitter and receiver have the different secret
key and cannot be obtained by each other [21, 22]. Sec-
ond, we also enhance the physical security in the wireless
transmission [20]. In the multi-WFRFT scheme, we can
design the communication system with the secrete key
of the modulation order α. According to Theorem 1, the
transmitter and receiver may exploit different secrete keys
to guarantee the wireless communication security. In this
case, the order using at the transmitter is not necessary
to be transmitted under wireless channels, it only trans-
mits the encrypted signal and the order employing at the
receiver. What is more, we can also employ the antenna
array redundancy [19] to enhance the physical security
due to the multi-antenna transmitting characteristics of
multi-WFRFT. The advantage of the multi-WFRFT is
that, it is not necessary to transmit the order of trans-
mitter under wireless channels. Even if the illegitimate
receiver intercepts the signal encrypted by m-WFRFT at
the transmitter, the signal cannot be correctly recovered
without the order of m-WFRFT. Thus, the theorem for
multi-WFRFT is important for communication security.
The immediate application is to employ multi-WFRFT

into Multi-Input Multi-Output (MIMO) system due to its
multi-access sampling characteristics for multi-WFRFT,
specially for 2n-WFRFT scheme. At the transmitter, we
employ different antennas to transmit signals in the
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(a) (b)

(c) (d)

Fig. 3 The relationship between 8-WFRFT and 4-WFRFT of the original signal ( denotes the real part. And denotes the image part of
8-WFRFT signal. Moreover, is the original signal and is the recover signal.)

different channels of multi-WFRFT implement struc-
ture. We can receive the signals using multi-antennas
in the receiver. It can take advantage of the chan-
nel diverse gain [23–25] of 2n-WFRFT scheme shown
in Fig. 1.
4-WFRFT has various applications, i.e., channel

equalization [1, 3] and narrow-band interference (NBI)
suppression [4], which can also be generalized into multi-

WFRFT scheme. Besides, the multi-WFRFT, as a new
carrier convergence system, can also be exploited in the
next generation cellular system.

6 Conclusions
In this paper, we focus on the modulation order relation-
ship among different multi-WFRFT schemes and prove
that αM = (M/4)α4 if Wαm

M = Wα4
4 . Moreover, we



Li et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:41 Page 9 of 10

(a) (b)

(c) (d)

Fig. 4 The relationship between 16-WFRFT and 8-WFRFT of the original signal ( denotes the real part. And denotes the image part of
16-WFRFT signal. Moreover, is the original signal and is the recover signal.)

prove that the equality of 4-WFRFT space and multi-
WFRFT space through the corollary. In particular, the
implementation structure for 2n-WFRFT, which is the
convergence of single carrier, multi-carrier, and hybrid
carrier components, has been well designed in this paper.
According to the theorem of this paper, we propose a
generalized hybrid carrier modulation (GHCM) system,
which simplifies to the classical hybrid carrier modula-
tion (HCM) system with m = n = 4. Also, the

modulation order relationships between different multi-
WFRFTs have been further demonstrated through some
numerical simulations. Furthermore, it can be demon-
strated that, through numerical simulation, GHCM based
on multi-WFRFT performs better than SCM system
and OFDM system under typical doubly selective chan-
nels. Finally, we discuss the potential applications of
multi-WFRFT scheme over secure communication and
MIMO system.
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Fig. 5 The performance comparison of GHCM, SCM, and OFDM
system
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