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Abstract

Ultra-wideband (UWB) impulse radar plays an important role in contactless vital sign (VS) detection. The VS can be
extracted remotely by acquiring the oscillations in the human chest. Unfortunately, it is usually challenging to
identify VS due to the low signal-to-noise ratio (SNR) only based on the traditional fast Fourier transform (FFT)
especially in complicated conditions. To extract VS accurately, this paper presents a new scheme by analyzing the
skewness characteristic of the received UWB impulses, which are modulated by life activities. The distance from the
human subject to the radar antenna can be calculated by performing the discrete short-time Fourier transform
(DSFT) on skewness. The frequency of human respiratory movement can be estimated based on the developed
ensemble empirical mode decomposition (EEMD)-based accumulation technique by canceling out the harmonics
effectively. The performance of the developed detection method is tested with several experiments carried out in
different environments.

Keywords: Ultra-wideband (UWB) impulse, Vital signs (VS), Discrete short-time Fourier transform (DSFT), Ensemble
empirical mode decomposition (EEMD)

1 Introduction
Recently, contactless vital sign (VS) detection has
drawn wide attention and achieved great achievements
[1–4].The electromagnetic detection is regarded as the
most promising technique, which can acquire VS in the
range-frequency matrix. Ultra-wide band (UWB) im-
pulse radar has been widely applied in indoor target
localization, VS detection, and human fall detection by
employing the continuous wave [5–8]. As a better alter-
native, UWB pulse radar has been widely used in moving
target detection [3, 9, 10], through-wall imaging [11, 12]
and post-earthquake search and rescue [13–15] due to its
insightful advantages such as strong permeability and
excellent time resolution.
Many techniques have been analyzed for VS detection

[16–42]. The fast Fourier transform (FFT)-based Hilbert
transform is used in analyzing the time-frequency
characteristic of the respiratory movements [24, 25].
Considering the additive white Gaussian noise (AWGN),
a maximum likelihood period estimator with lower

complexity is proposed to acquire the period of human
respiratory motions [29]. The singular value decompos-
ition (SVD) algorithm is used to improve signal-to-noise
ratio (SNR) by suppressing the non-stationary clutter [30].
The stationary clutter and linear trend are removed by
employing the linear trend subtraction (LTS) technique
[35]. In [39], the harmonics are suppressed based on the
effective complex signal demodulation (CSD) algorithm.
The accuracy of human respiratory frequency (RF) is
improved by using the arctangent demodulation (AD)
method [40]. However, they cannot achieve better
performance especially in complicated conditions as they
can only deal with some aspects including stationary and
non-stationary clutter removal, respiratory characteristic
analysis, and frequency estimates. Consequently, extensive
research efforts are required to apply UWB pulse radar in
VS detection.
This paper presents a new method for VS detection in

through-wall and long-range conditions. The distance
from human target to the radar antenna is calculated by
performing the discrete short-time Fourier transform
(DSFT) algorithm on the calculated skewness from the
received pulses. A whole new analytical framework is
provided for VS detection. The frequency of human
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respiratory movement can be estimated more accurately
by employing the developed ensemble empirical mode
decomposition (EEMD)-based accumulation method for
the first time, which can better eliminate the harmonics
of human respiratory movement. The performance of
the developed method is validated with several experiments
carried out based on the UWB radar designed by the Key
Laboratory of Electromagnetic Radiation and Sensing
Technology, Chinese Academy of Sciences.
The remainder of this paper is organized as follows.

Section 2 introduces the VS detection model. The
developed detection technique is analyzed in Section 3.
Section 4 shows the performance of the proposed
method in different environments. Section 5 concludes
the whole paper.

2 System model
In VS detection, the distance from human subject to
radar antenna can be expressed as [37]:

d tð Þ ¼ d0 þ r tð Þ ¼ d0 þ Ar sin 2π f rtð Þ
þ Ah sin 2π f htð Þ ð1Þ

where t represents the slow time and d0 represents the
distance from the radar antenna to the center of the
human chest; the respiratory amplitude is Ar, and the
heartbeat amplitude is Ah; the frequencies of the respiratory
and heartbeat movements are fr and fh, respectively.
If any other objects in the detection environment are

stationary except for the human subject, the impulse re-
sponses can be given by:

h τ; tð Þ ¼ avδ τ−τv tð Þð Þ þ
X
i

aiδ τ−τið Þ ð2Þ

where τ represents the fast time,
X
i

aiδðτ−τiÞ represents
the response from the ith stationary object with the ampli-
tude ai and time delay τi, and avδ(τ − τv(t)) represents the
response from life activity with the amplitude av and time
delay τv(t), which is:

τv tð Þ ¼ 2d tð Þ
v

¼ τ0 þ τr sin 2π f rtð Þ
þ τh sin 2π f htð Þ ð3Þ

where v represents the light speed; τ0 = 2d0/v; τr = 2Ar/v;
τh = 2Ah/v.
To clearly show the relationship between the fast time

and slow time, the sketch map of the received pulses
only reflected from the respiratory movements is given
in Fig. 1.
The received pulses can be given by:

R τ; tð Þ ¼ s τð Þ � h t; τð Þ ¼ avs τ−τv tð Þð Þ þ
X
i

ais τ−τið Þ ð4Þ

where s(τ) represents the transmitted pulse.

Equation (4) can be described in the discrete form as:

R m; nð Þ ¼ avs mδT−τv nTsð Þð Þ þ
X
i

ais mδT−τið Þ

¼ avs mδR−vτv nTsð Þð Þ þ
X
i

ais mδR−vτi=2ð Þ
¼ h m; n½ � þ c m½ �

ð5Þ
where Ts represents the pulse repetition time; t = nTs, n= 0,
. . …, N− 1; δT represents the interval of the fast-time sam-
ples, m= 0, . …, M − 1; δR= vδT/2 represents the interval
of the range samples; h[m, n] represents the discrete life sig-
nals; and c[m] represents the discrete stationary clutter.
However, various clutters exist in the real environment.

Equation (4) may contain not only stationary clutter and life
signals but also the Gaussian noise w[m, n], non-stationary
clutter q[m, n], linear trend a[m, n], and some unwanted
clutters g[m, n].
As a result, (5) can be represented as:

R m; n½ � ¼ h m; n½ � þ c m½ � þ a m; n½ � þ w m; n½ �
þ q m; n½ � þ g m; n½ � ð6Þ

In a static environment, the ideal pulses without
clutters can be given by:

R τ; tð Þ ¼ avs τ−τv tð Þð Þ ð7Þ
However, the existing various clutters as shown in (6)

make it challenging to estimate the fast-time estimate τ0
and cause large errors in frequency estimates. Figure 2a
shows (7), and the received pulses under AWGN are
given in Fig. 2b, which indicate it is challenging to
extract VS in low SNR.

3 Detection method
In this section, the presented method for VS detection is
analyzed based on the detailed steps as shown in Fig. 3.

Fig. 1 The sketch map of the received pulse reflected only with
human respiratory
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3.1 Clutter suppression
The VS are usually covered by c[m] with strong
amplitude, which can be estimated as:

ℑ ¼ 1
M � N

XM
m¼1

XN
n¼1

Ψ m; n½ � ð8Þ

After removing (8), the resulting matrix ΩM ×N can be
expressed as:

Ω ¼ Ψ−ℑ ð9Þ

To remove a[m, n], the LTS algorithm is used. The
result WM ×N is

W ¼ ΩΤ‐X XΤX
� �−1

XΤΩT ð10Þ

where X = [x1, x2], x1 = [0, 1, . . …, N − 1]Τ and x2
¼ ½1; 1; ::…; 1�ΤN�1.

Fig. 2 The resulting matrix: a without clutter and b under AWGN
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Usually, the maximum SNR cannot be obtained only
based on the matched filter, as the reflected pulses are
different from the traditional radiated signals. Some
other effective methods are required to improve SNR. In
this paper, an infinite impulse response band-pass filter
is used with the transfer function given by:

H ωð Þj j2 ¼ 1

1þ ω=ωcð Þ2N f
: ð11Þ

where ωc represents the cut-off frequency and Nf repre-
sents the filter order.
The band-pass filter is performed on (10) in the range

direction for each slow-time index n; the outputs are:

Λ m; n½ � ¼ χ1W m; n½ � þ χ2W m−1; n½ � þ…
þ χNbþ1W m−Nb; n½ �−κ2W m−1; n½ �−…
−κNaþ1W m−Na; n½ �

ð12Þ
where Nb =Na = 5 and κi and χi are the filter coefficients.
Further, to improve SNR, an average extraction filter is

applied in (12) in slow-time direction with λ = 7, and the
result is given by:

Φ k; n½ � ¼ 1
7

X8λ−1
m¼7λ

Λ m; n½ � ð13Þ
where k = 1, . …, ⌊M/λ⌋. ⌊M/λ⌋ represents the maximum
integer less than M/λ.

After removing the various clutters as shown in (6),
(7) can be described in the discrete form as:

Ψ m; n½ � ¼ avs mδT−τv nTsð Þð Þ
¼ avs mδR−vτv nTsð Þð Þ ¼ h m; n½ � ð14Þ

3.2 Range estimate
In this section, a new scheme for range estimate is de-
veloped by analyzing the skewness of VS.
The skewness for each range index m in (14) can be

given by [43, 44]:

Z mð Þ ¼ E
Ψ m;N½ �−μ

σ

� �3
" #

ð15Þ

where Ε[•] represents the expectation and μ and σ are
the mean and standard deviation.
In this paper, the skewness spectrum is analyzed to es-

timate the range between the radar antenna and human
subject. To show the skewness of VS, one data acquired
from one female subject is applied. The distance from
the human subject to the radar antenna is 9 m outdoors,
which will be introduced in Section 4.
As shown in Fig. 4a, the skewness in human subject

area follows the periodicity approximately as show in
Fig. 4b. To estimate the range, the DSFT is performed
on (15), which has been widely applied in signal process-
ing [44, 45]. The result is given by:

K o; p½ � ¼
XM
m¼1

Z m; 1½ �Ξ o−m½ �e− j2pπm=P: ð16Þ

where P denotes the discrete frequency, which follows
the uniform distribution. Ξ represents the Hamming
window, which can be expressed as:

Ξ oð Þ ¼ α−β cos
2πo
O

� �
; o ¼ 0; 1; ::…O: ð17Þ

where α = 0.54, β = 0.46, and O = 512 is the width of the
Hamming window [46].
The result KO × P acquired by performing DSFT on

(15) with human subject is shown in Fig. 5. When there
is no any human subject in the detection environment,
the calculated skewness is shown in Fig. 6a, and the cor-
responding time-frequency matrix is given in Fig. 6b.
It can be seen that the distance can be estimated as:

L̂ ¼ vτ̂ ð18Þ
where τ̂ represents the time estimate related to the max-
imum in (16).

3.3 Frequency estimate
The index of the time estimate in (13) can be given by:

Fig. 3 The flowchart of the proposed detection method
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ℑ ¼ τ̂=δT ð19Þ
To acquire the frequency of human respiratory, the

corresponding signal in slow time is chosen as the effect-
ive signal, which can be given by:

O ¼ Ψ ℑ ; n½ � ð20Þ
As an adaptive method, EEMD has been widely ap-

plied in analyzing non-stationary signals [45, 46], which
overcomes the drawback in the traditional empirical

mode decomposition [47]. Based on the EEMD tech-
nique, the non-stationary signal can be broken down
into several intrinsic mode functions (IMFs) and a re-
sidual trend by employing the AWGN adaptively. The
IMFs and residual trend can be used to reconstruct
AWGN, which can improve SNR effectively.
To acquire the IMFs of (20), the steps for the EEMD

method can be summarized as:

I) Add the AWGN to (20);

Fig. 4 a The calculated skewness values with the data acquired at a distance of 9 m away from the radar antenna. b The local values
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II) Based on the empirical mode decomposition, (20)
can be decomposed into IMFs as:

1) Let v = 0, which is used to indicate the vth IMF;
2) To acquire all these local maximum and minimum

values of (20);
3) To get the envelopes including the upper envelope

ru(t) and the lower envelope rl(t)of (20) based on the
values from 2) by employing the cubic spline
function;

4) To generate the average envelope from 3), which
can be given by [48]:

m tð Þ ¼ ru tð Þ þ rl tð Þ
2

ð21Þ

5) Subtracting (21) from (20), which can be given by:

h tð Þ ¼ ~O1�N−m tð Þ ð22Þ

6) Go to step (II), (22) is processed until an IMF meets
the stoppage criteria;

7) v = v + 1, IMFv(t) = h(t). The residue trend can be
given by [49]:

qv tð Þ ¼ ~O1�N−IMFv tð Þ ð23Þ

8) Go to step (II) and (23) is processed. The whole
decomposition stops until the amplitude of IMFv(t)
is small enough.

Based on the empirical mode decomposition method,
(20) can be broken into several IMFs, and the residue
signal given by:

~O1�N ¼
XMv

v¼1

IMFv tð Þ þ qMv
tð Þ ð24Þ

III)For each added AWGN, (20) is processed by
employing the steps (I)–(II) repeatedly;

IV)The average values of the IMFs are considered as
the final result, which are given by:

~O1�N ¼
XMv

v¼1

IMFmean
v tð Þ þ qmean

Mv
tð Þ ð25Þ

where

IMFmean
v tð Þ ¼ 1

Nv

XNv

v¼1

IMFv tð Þ ð26Þ

qmean
Mv

tð Þ ¼ 1
Nv

XNv

v¼1

qv tð Þ ð27Þ

and Nv is the times of the added AWGN.
For the EEMD method, two key parameters are re-

quired to be determined such as the amplitude and the
times of the added AWGN. Usually, the relationship be-
tween the amplitude of (20) and the added AWGN can
be given by:

εn ¼ εffiffiffiffiffiffi
Nv

p ð28Þ

where ε is the standard deviation of the added AWGN
and εn is the error between (20) and the ideal signal re-
constructed based on the chosen IMFs.
Figure 7 shows the time-frequency matrix of (20) and

the acquired IMFs based on EEMD, and Fig. 8 shows the
corresponding welch power spectral density of the IMFs.
As known, the frequency of human respiratory move-
ment is usually within 0.2–0.5 Hz with the amplitude of
0.5–1.5 cm. As a result, the corresponding IMFs with
the power being in the range of 0.1–0.8 Hz are chosen
to reconstruct the signal, which can be given by:

~Ο1�N ¼
X5
v¼4

IMFmean
v tð Þ ð29Þ

A rectangular window χ is performed on the frequency
components of (29), which gives

Fig. 5 The resulting matrix with DSFT performed on the skewness values
at a distance of 9 m away from the antenna
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Ω n½ � ¼ χ n½ � DFT ~Ο1�N
� �� �

n∈K �;K�

¼ k�; k� þ 1;…; k� þ κ−1f g ð30Þ
where DFTf~O1�Ng is the discrete fast Fourier transform
(DFT) of (29) and k∗ corresponds to the index of the
lowest retained frequency component.
The frequency of human respiratory movement can be

acquired as:

f r ¼ w μrð Þ ð31Þ

where μr corresponds to the index of the maximum
value in (30), and w ∈ (0.1, 0.8).
As known, the harmonics are the major factor affect-

ing the frequency estimate. To suppress the harmonics,
an accumulation method is proposed [50], which gives:

Fig. 6 The calculated results without human target: a the calculated skewness values with normalized amplitude and b the time-frequency characteristic
using the DSFT method
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Fig. 7 The time-frequency characteristic of the calculated IMFs using EEMD: a original signal, b IMF1, c IMF2, d IMF3, e IMF4, f IMF5, g IMF6, h IMF7,
i IMF8, j IMF9, and k IMF10
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Fig. 8 The welch power spectral density of the IMFs: a IMF1, b IMF2, c IMF3, d IMF4, e IMF5, f IMF6, g IMF7, h IMF8, i IMF9, and j IMF10
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δ n½ � ¼ l n½ � þ jl n½ � ð32Þ
where

l n½ � ¼
2Ω n½ �; κ > 0
Ω n½ �; κ ¼ 0
0; κ < 0

8<
: ð33Þ

4 Results and performance
4.1 Measurement setup
To test the performance of the presented method, sev-
eral experiments are carried out in different environ-
ments. The measurement setup for the experiments is
shown in Fig. 9a.

(I) Several experiments are conducted outdoors at the
Institute of Electronic, Chinese Academy of Science, as
shown in Fig. 9b. A female volunteer served as the de-
tection subject for data acquisition. The used UWB
radar is placed on a table, which is 1.5 m in the air. The
wall consists of three materials such as brick wall (.3 m),
concrete (.35 m), and plank (.35 m). The volunteer
standing behind the wall stayed dormant, relaxed, and
breathed normally. She faced the radar straightly. The
distance from the detection subject to the radar is 3, 6,
9, and 11 m, respectively.

a

b c

Fig. 9 Measurement setup for acquiring data. a The sketch map. b Outdoor environment. c Indoor environment

Table 1 The key parameters for the UWB radar system

Parameters Value

Center frequency 400 MHz

Amplitude of transmitted signal 50 v

Pulse repeated frequency 600 KHz

Average number 128

Total time window 124 ns

Sampling points 4096

Antenna gain 5–7 dBi

Input bandwidth of ADC 2.3 GHz

ADC sampling rate 500 MHz

Data bit 12 bit

Dynamic range of receiver 72 dB Fig. 10 The normalized received signal using the UWB radar
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(II) Several experiments are conducted indoors in the
China National Fire Equipment Quality Supervision
Center, Shanghai, as shown in Fig. 9c. A male volunteer
served as the detection subject for data acquisition. The
volunteer standing behind the wall stayed dormant,
relaxed, and breathed normally. She faced the radar
straightly. The distance from the detection subject to the
radar is 4, 7, 10, and 12 m, respectively.
In this section, the methods such as the FFT, constant

false alarm ratio (CFAR), and the advanced method (AM)
are used to validate the performance of the new method.

4.2 UWB radar
The UWB impulse radar used for data acquisition
consists of one transmitting antenna and one receiving
antenna, which are stored in a 45 cm × 22 cm × 45 cm
box and operated by a wireless personal digital assistant.
The key parameters for the radar system are given in
Table 1. The time window is 124 ns with 4096 samples
acquired in the fast time totally. To improve SNR, 128
points are averaged for one measurement. In slow time,
it takes 17.6 s to store 512 pulses. The received pulse
with the normalized amplitude is shown in Fig. 10.

Fig. 11 The resulting matrix at a distance of 9 m. a Received pulses. b Remove static clutter. c LTS. d Filtering in fast-time dimension. e Filtering
in slow-time dimension

Fig. 12 The calculated skewness values with normalized amplitude at the distance of a 3 m, b 6 m, c 9 m, and d 11 m away from the antenna
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4.3 Intuitive detection performance
The results are analyzed in this section based on the
steps for clutter suppression using the data sets
acquired outdoors. The distance from the detection to
the radar antenna is 9 m. The received raw echoes are
shown in Fig. 11a. Figure 11b shows the result by
removing the stationary clutter, and the result after
canceling out the linear trend is shown in Fig. 11c. We
can see that the VS is too weak to extract. By employing
the band-pass filter, the result is shown in Fig. 11d, and
Fig. 11e shows the result after filtering in slow time. All
these steps for clutter suppression result in an

improvement in VS. By employing the methods for
clutter suppression mentioned above, the VS becomes
more and more easy to extract compared with the raw
echo as shown in Fig. 11a.

4.4 Performance outdoors
As usual, VS can be extracted more easily by improving
SNR [37]. If only the frequency component containing
VS is referred as the effective frequency any other
components are considered as AWGN. SNR can be
estimated as [37]:

Fig. 13 The range estimations using the new method at the distance of a 3 m, b 6 m, c 9 m, and d 11 m away from the antenna

Fig. 14 The RF estimations using the new method at the distance of a 3 m, b 6 m, c 9 m, and d 11 m away from the antenna
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Fig. 15 The range and RF estimations using the advanced method at the distance of a 3 m, b 6 m, c 9 m, and d 11 m away from the antenna

Table 2 Performance with different methods

Method 3 m 6 m 9 m 11 m

Proposed Range (m) 3.079 6.113 9.084 11.24

Frequency (Hz) 0.2308 0.2307 0.2932 0.3329

SNR (dB) 5.62 4.82 2.17 2.12

AM Range (m) 3.942 6.86 3.837 18.58

Frequency (Hz) 0.087 0.2038 0.1456 0.7862

SNR (dB) 2.78 − 5.04 − 14.29 − 15.64

Fig. 16 The calculated skewness values with normalized amplitude at the distance of a 4 m, b 7 m, c 10 m, and d 12 m away from the antenna
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SNR ¼ 20 � log10

Xμrþ1

n¼μr−1

δ n½ �j j

Xμr−2
n¼γ1

δ n½ �j j þ
Xγ2

n¼μrþ2

δ n½ �j j

0
BBBBB@

1
CCCCCA ð34Þ

where μr represents the respiratory rate estimate. γ1 and
γ2 are the indexes of χ.
Usually, (34) decreases with increasing the distance from

the radar to the detection subject due to the attenuation
of electromagnetic wave. Consequently, the capability of

improving SNR can be analyzed qualitatively by analyzing
the performance of VS detection at different distances.
The skewness values obtained from the data sets

outdoors are shown in Fig. 12. The distance from the
detection subject to the radar antenna is 3, 6, 9, and
11 m, respectively. Figure 13 shows the range estimates
based on the developed detection method. The range
estimates are 3.079, 6.113, 9.084, and 11.24 m. The
frequency estimates are shown in Fig. 14. The estimates
are 0.23, 0.23, 0.29, and 0.33 Hz, respectively.
By employing the AM, the detection results including

the range and frequency estimates based on the acquired

Fig. 17 The range estimations using the new method at the distance of a 4 m, b 7 m, c 10 m, and d 12 m away from the antenna

Fig. 18 The RF estimations using the new method at the distance of a 4 m, b 7 m, c 10 m, and d 12 m away from the antenna
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data sets outdoors are shown in Fig. 15. The range
estimates are 3.942, 6.86, 3.837, and 18.58 m. The
respiratory frequency estimates are 0.08, 0.20, 0.14, and
0.78 Hz, respectively. Compared with the results
acquired from the AM method, we can see that the
developed method can provide range and frequency
estimates more accurately. Further, Table 2 gives the
detection performance based on different methods.

4.5 Performance indoors
In this section, the data sets acquired indoors are used
to test the performance of the developed detection
algorithm. Based on the acquired data sets at different
distances, the skewness values are shown in Fig. 16. The
distances from the radar antenna to the detection
subject are 4, 7, 10, and 12 m, respectively. Figure 17
shows the range estimates based on the developed
method. The range estimates are 4.122, 7.078, 10.071,
and 12.25 m, respectively. The frequency estimates are
shown in Fig. 18; the estimates are 0.24, 0.23, 0.22, and
0.27 Hz, respectively.

Table 3 shows the detection results by employing the
CFAR and the developed method. We can see that the
developed method shows better capability of improving
SNR than the CFAR method such as SNR is 5.07 dB
using the new method while it is − 5.21 dB for the CFAR
method at 7 m.

4.6 Performance of clutter suppression
In this section, the capability of clutter removal is dis-
cussed based on the data set acquired at a distance of 6 m
from the antenna outdoors. To remove the harmonics,
the accumulation method is used for four times in the
paper. In this section, several techniques are used as
examples to validate the performance of the new method
such as the including FFT, EEMD-based one accumula-
tion (OA) method, EEMD-based two accumulation (TA)
method, EEMD-based four accumulation (FA) method,
and EEMD-based six accumulation (SA) method.
The detection result is shown in Fig. 19a based on the

FFT. It can be seen that various clutters exist in the
frequency domain with the same band as human respira-
tory, which makes it challenging to extract VS. The
corresponding results based on the EEMD-based accu-
mulation methods for different times are shown in
Fig. 19b–e. We can see that the FA method can better
remove clutters and improve SNR compared with other
methods. Table 4 shows the SNR values based on

Fig. 19 The ability to remove clutter using a FFT, b EEMD-based one FA method, c EEMD-based two FA method, d EEMD-based four FA method,
and e EEMD-based six FA method

Table 3 Detection performances compared with the reference
CFAR method

Method 4 m 7 m 10 m 12 m

CFAR Error (m) 0.26 NA NA NA

Frequency (Hz) 0.18 NA NA NA

SNR (dB) − 3.56 − 5.21 − 8.56 − 10.67

Proposed Error (m) 0.12 0.07 0.07 0.25

Frequency (Hz) 0.24 0.23 0.22 0.27

SNR (dB) 9.08 5.07 5.27 3.53

"NA" denotes no values can be acquired in the experiment

Table 4 Detection performances in improving SNR

Method FFT EEMD OA TA FA SA

SNR (dB) − 24.37 − 18.85 − 11.44 − 8.89 − 3.92 − 3.88
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different methods. It is clear that SNR cannot be further
improved even SA is performed.
Table 5 shows the frequency estimates based on the re-

constructed signal from different IMFs. Results indicate VS
primarily concentrates upon IMF6 and IMF5. As a result,
the VS can be extracted effectively based on the selected
IMFs. All results prove the capability of clutter suppression
and improving SNR based on the new method.

5 Conclusions
This paper presents a new de-noising method for VS
detection. The VS information such as the range and
respiratory frequency can be estimated based on the
developed algorithm more accurately by employing the
UWB pulse radar. Further, the EEMD-based accumula-
tion method is proposed to remove harmonics effect-
ively. By analyzing the skewness of the VS, the range
can be estimated via applying the DSFT method.
Several experiments are conducted in different conditions
to show the excellent performance of the developed
algorithm. The detection capability of the proposed
method is validated compared with several techniques.
Results are presented to show the ability to remove clutter
and improve SNR.
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