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Abstract

In this paper, we propose a novel method named transfer deep convolutional activation-based features (TDCAF) for
domain adaptation in sensor networks. Specifically, we first train a siamese network with weight sharing to map the
images from different domains into the same feature space, which can learn domain-invariant information. Since
various feature maps in one convolutional layer of the siamese network contain different kinds of information, we
propose a novel vertical pooling strategy to aggregate them into one convolutional activation summing map (CASM)
which contains the completed information and preserves the spatial information. We stretch the CASM into one
feature vector to obtain the TDCAF. Finally, we feed the proposed TDCAF into a Support Vector Machine (SVM) for
classification. The proposed TDCAF is validated on three generalized image databases and three cloud databases, and
the classification results outperform the other state-of-the-art methods.
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1 Introduction
With the rapid development of wireless communications
and electronics, the sensor networks have attracted much
attention due to the great value for practical applications,
such as health, weather forecast, military, and so on [1–3].
Imagine that we train a classifier with images captured

from one sensor. Can we utilize the classifier to recog-
nize objects captured from other sensors in the network,
and hope the classifier still works well? Similarly, there
are about 2424 weather stations distributed in China,
and some of them are connected by a sensor network.
Since the weather stations are distributed in various loca-
tions, and installed with different capturing equipment,
the ground-based cloud images captured by them are
various. Can we train a classifier with images from one
weather station, and still hope the classifier works well on
other weather stations? The above two problems are about
training on one domain while testing on another domain.
Here, a domain often refers to a database collected by one
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sensor where samples belong to the same feature space
and follow the same data distribution.
As for object recognition, many traditional classifica-

tion methods have shown attractive performance on a
specific sensor (domain) [4–6]. However, such methods
often fail when presented with a novel domain, and a
series of works have shown that when classifiers are eval-
uated outside of their training domains, the performance
degrades significantly [7, 8]. In order to solve this prob-
lem, a desirable alternative is known as domain adaptation
which has been extensively studied [9–13]. The objective
of domain adaptation is to adapt classifiers trained on the
source domain to the target domain for keeping accept-
able performance. Here, the source domain contains a
great amount of labelled samples so that a classifier can
be reliably trained. The target domain usually includes
a few labelled samples and a lot of unlabelled samples.
The existing methods for domain adaptation mainly focus
on deriving new domain-invariant representations. Gong
et al. [14] proposed a kernel-based method to learn fea-
ture representations. They utilized a geodesic flow kernel
to model the domain shift by integrating an infinite num-
ber of subspaces that characterize changes in geometric
and statistical properties from the source domain to the
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target domain. Hoffman et al. [15] formed a linear trans-
formation that mapped features from the target domain
to the source domain. Baktashmotlagh et al. [16] intro-
duced a domain invariant projection approach to extract
the information that is invariant across the source and
target domains. More recently, as convolutional neural
networks (CNNs) have shown remarkable performance in
image classification [17], researchers have applied CNNs
to facilitate domain adaptation and obtained promising
performance. Some researchers [18, 19] came up with
the domain-adversarial approaches, where high-level rep-
resentations from CNNs are optimized to minimize the
loss on the source domain and maximize the loss on the
domain classifier. Long et al. [20] proposed a deep adapta-
tion network (DAN) architecture which generalizes deep
convolutional neural network to the domain adaptation
scenario.
Most domain adaptation algorithms focus on general-

ized classification tasks. However, as for ground-based
cloud classification, there are a few literature studying
domain adaptation when the cloud images are presented
with the domain shift. What is more, successful classifica-
tion of cloud types plays an important role in the research
of climate change and meteorological services [21–23].
Therefore, this is an especially important problem to apply
domain adaptation to ground-based cloud classification.
In this paper, we propose a novel method named

transfer deep convolutional activation-based features
(TDCAF) for domain adaptation in sensor networks.
The proposed TDCAF can be applied to the general-
ized image classification and ground-based cloud classi-
fication. Specifically, we use unlabelled samples to train
a siamese network that predicts similarity scores. The
siamese network consists of two convolutional neural
network (CNN) models, and we train the models with
weight sharing, that is, the parameters of two CNNs are
the same. The inputs of the siamese network are sam-
ple pairs where a sample is from one sensor (the source
domain) and another one from another sensor (the target
domain). Then we take deep convolutional activations in
feature maps of the siamese network as features to repre-
sent images. We utilize deep convolutional activations for
two reasons. First, many studies have shown that the con-
volutional activation-based features perform better than
the fully connected layer-based features [24–26]. Second,
convolutional activations in feature maps can be intu-
itively interpreted as local features of images. As for one
convolutional layer, there are various feature maps which
contain different kinds of information. In order to obtain
completed information and preserve the spatial informa-
tion, we propose a novel vertical pooling strategy named
vertical pooling to aggregate these feature maps into one
feature map which is defined as the convolutional activa-
tion summing map (CASM). Then the CASM is stretched

into one feature vector, and we define the resulting fea-
ture vector as the TDCAF. It should be noted that we
demonstrate the effectiveness of the proposed TDCAF on
the tasks of both the generalized image classification and
ground-based cloud classification.
In summary, there are three main contributions of the

proposed TDCAF.
(1) We fine-tune a siamese network with weight shar-

ing to learn a similarity metric using unlabelled samples.
The network forces the features from the source and tar-
get domains to the same feature space, which could learn
the domain-invariant representations.
(2) We extract deep convolutional activations from fea-

ture maps as features, and employ the proposed vertical
pooling to aggregate deep convolutional activations across
all feature maps, so that we can extract completed features
and preserve the spatial information of images.
The rest of this paper is organized as follows. Section 2

introduces the proposed TDCAF for domain adaptation
in detail. Section 3 provides comprehensive analysis of
the proposed TDCAF on generalized image databases and
ground-based cloud image databases. We conclude this
paper in Section 4.

2 Method
In this section, we introduce the procedure of the pro-
posed TDCAF. First, we utilize unlabelled samples to train
a siamese network that predicts similarity scores for sam-
ple pairs. Then, we extract deep convolutional activation-
based features from the trained siamese network. Finally,
we apply the proposed vertical pooling strategy for the
final feature representation.

2.1 The siamese network
Figure 1 briefly illustrates the architecture of the siamese
network. Given a sample pair as the input, the siamese
network predicts the similarity score of the two samples.
The siamese network usually consists of two CNN mod-
els, one connection function and one fully connected (FC)
layer. We utilize sample pairs to train the siamese network
with weight sharing. Here, sample pairs consist of simi-
lar pairs and dissimilar pairs. When two samples from the
source domain and the target domain belong to the same
class (the different classes), we define them as a similar
pair (a dissimilar pair). We utilize such sample pairs to
train the siamese network so that the samples from dif-
ferent domains can be forced to the same feature space
and could learn some domain-invariant characteristics.
The CNN model can be CaffeNet [17], VGG19 [27], or
ResNet-50 [28], where we change the number of kernels
in the final FC layer according to the number of classes for
fine-tuning the networks.
It should be noted that we train the siamese network

with weight sharing. That means the trainable parameters
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Fig. 1 The architecture of the siamese network, including two CNN models, one connection function and one fully connected (FC) layer

used in the two CNN models are the same. The weight
sharing strategy is an important principle in the siamese
network because it helps to reduce the total number of
trainable parameters. Furthermore, weight sharing leads
to more efficient training and more effective model espe-
cially when some similar local structures appear in the
input feature space.
The connection function is used to connect the output

vectors of the two CNN models. In our model, we define
the connection function as

f = (f1 − f2)2 (1)

where f1 and f2 are the output vectors of the two CNN
models, respectively, and they are both 1024-dim vec-
tors. f is the 1024-dim output vector of the connection
function.
As shown in Fig. 1, we then take f as the input of the FC,

and the resulting vector x can be expressed as

x = θ ◦ f (2)

where ◦ denotes the convolutional operation. θ is the
parameters of the FC, and its dimension is 1024.
Since this is a binary classification problem, we utilize

the final layer to convert x to a 2-dim vector (z1, z2) which
is then fed into the softmax function to obtain the pre-
dicted probability of the input sample pair belonging to
the same class. The formulation of the softmax function is

p̂i = ezi
∑2

k=1 ezk
(3)

where p̂i is the predicted probability, and p̂1 + p̂2 = 1.
Finally, we use the cross-entropy loss for this binary

classification

Loss =
2∑

i=1
−pi log(p̂i) (4)

where pi is the true probability. As for a similar pair, p1 =
1, and p2 = 0.While for a dissimilar pair, p1 = 0, and p2 = 1.

In the forward propagation, according to Eq. (3), Eq. (4)
can be reformulated as

Loss = −p1 log
ez1

∑2
k=1 ezk

− p2 log
ez2

∑2
k=1 ezk

(5)

As for a similar pair, i.e., p1 = 1, and p2 = 0. Equation (5)
can be rewritten as

Loss = −log
ez1

∑2
k=1 ezk

(6)

and as for a dissimilar pair, i.e., p1 = 0, and p2 = 1.
Equation (5) is reformulated as

Loss = −log
ez2

∑2
k=1 ezk

(7)

We adopt the mini-batch stochastic gradient descent
(SGD) [29] and error backpropagation algorithm (BP) to
train the siamese network. In the backpropagation, we
take the derivative of Eqs. (6) and (7) with respect to z1
and z2, respectively, and obtain

Loss′ = ez1
∑2

k=1 ezk
− 1 (8)

Loss′ = ez2
∑2

k=1 ezk
− 1 (9)

Generally, since a large number of trainable parameters
should be learned for CNN, an effective model requires
lots of training samples. If we train a CNN model with
insufficient training samples, it would lead to overfitting.
To address the problem, we train the siamese network by
fine-tuning the pre-trained CNN model.

2.2 Transfer deep convolutional activation-based
features

The convolutional layers are main components of the
CNN model and can capture more local image charac-
teristics [30, 31]. Hence, we extract deep convolutional
activation-based features from a certain convolutional
layer to represent images. Suppose that there are N
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feature maps from a certain convolutional layer of the
CNN model. As shown in Fig. 2a, different feature
maps tend to have various activations for the same
image, meaning that these feature maps describe differ-
ent patterns. Hence, in order to obtain completed fea-
tures, all feature maps for a convolutional layer should
be considered for the image representation. Traditional
methods aggregate all convolutional activations from
one feature map into one activation value as shown in
Fig. 2a. The resulting activation value is chosen from
the maximum value or average value of one feature
map. Then, the activation value of each feature map
is concatenated into a N-dim feature vector. However,
the feature vector is insensitive to spatial distribution
variation.
To address this problem, we propose the vertical pool-

ing strategy, which contains the sum operation or the
max operation. As for the sum operation, the deep
convolutional activations at the same position of all
feature maps are added, resulting in the CASM with
the size of H × W . Then the CASM is straight-
ened into a (H × W )-dim TDCAF which thus obtains
completed information and preserves the spatial infor-
mation of images. For describing the sum operation
more clearly, let f n(a, b) be the convolutional activa-
tions at position (a, b) from the n-th feature map f n,
and the sum-operation feature Fs(a, b) at this position is
defined as

Fs(a, b) =
N∑

n=1
f n(a, b) (a ∈ H , b ∈ W ) (10)

Then an image can be represented as
Fs = {Fs(1, 1), Fs(1, 2), . . . , Fs(a, b)}. The process is shown
in Fig. 2b.
Similarly, as for the max operation, we preserve the

maximum convolutional activation at the same position
for all feature maps where the resulting convolutional acti-
vation is salient and more robust to local transformations.
The max-operation feature Fm(a, b) is formulated as

Fm(a, b) = max
1≤n≤N

f n(a, b) (11)

and an image can be represented as Fm =
{Fm(1, 1), Fm(1, 2), . . . , Fm(a, b)}.

3 Experimental results
In this section, we first introduce the databases
and the experimental setup. Then, we validate the
effectiveness of the proposed TDCAF on general-
ized image databases and ground-based cloud image
databases.

3.1 Databases and experimental setup
As for the generalized image classification, we utilize three
generalized image databases, i.e., Amazon (images down-
loaded from online merchants), Webcam (low-resolution

Fig. 2 The flowcharts of feature extraction of a traditional methods and b the TDCAF method
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Fig. 3 Example images from the “laptop_computer” class in a Amazon, bWebcam, and c DSLR

images by a web camera), and DSLR (high-resolution
images by a digital SLR camera). Each of them contains
31 classes, and the total number of the three databases is
2818, 498, and 795, respectively. The sizes of the images
are 300 × 300, 445 × 445, and 1000 × 1000, respectively.
Figure 3 shows example images of the “laptop_computer”
class from the three domains. We can see that these
images possess significant differences in many aspects,
such as captured conditions, resolutions, and viewpoints.
Hence, the three databases belong to different domains.
As for the ground-based cloud classification, there are

three cloud databases collected by different weather sta-
tions. According to the international cloud classification
system published in World Meteorological Organization
(WMO), the cloud images are separated into seven
classes. Figure 4 shows the differences among these
domains with example cloud images of each class. The

first cloud database is the IAP_e database, which is pro-
vided by the Institute of Atmospheric Physics, Chinese
Academy of Sciences. The cloud images in this database
are captured in Yangjiang, Guangdong Province, China,
and have 2272 × 1704 pixels with strong illuminations
and some occlusions. The second cloud database is
the CAMS_e database, which is provided by Chinese
Academy of Meteorological Sciences. The cloud images
in this database are captured in the same location as the
IAP_e database, but the acquisition device is different
from that of the IAP_e database. The size of cloud image in
this database is 1392×1040 pixels with weak illuminations
and no occlusion. The third cloud database is the MOC_e
database, which is provided by Meteorological Observa-
tion Centre, ChinaMeteorological Administration. Differ-
ent from the first two cloud databases, the cloud images in
this database are taken in Wuxi, Jiangsu Province, China.

Fig. 4 Cloud samples from a the CAMS_e database, b the IAP_e database, and c the MOC_e database
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Table 1 Configurations of the ResNet-50

Config. ResNet-50 Padding

conv_1
[
7 × 7, 64

]
× 1, stride 2 3

3 × 3, max pooling, stride 2 0

conv_2

⎡

⎢
⎢
⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤

⎥
⎥
⎦ × 3, stride 2

⎡

⎢
⎢
⎣

0

1

0

⎤

⎥
⎥
⎦

conv_3

⎡

⎢
⎢
⎣

1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤

⎥
⎥
⎦ × 4, stride 2

⎡

⎢
⎢
⎣

0

1

0

⎤

⎥
⎥
⎦

conv_4

⎡

⎢
⎢
⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤

⎥
⎥
⎦ × 6, stride 2

⎡

⎢
⎢
⎣

0

1

0

⎤

⎥
⎥
⎦

conv_5

⎡

⎢
⎢
⎣

1 × 1, 512

3 × 3, 512

1 × 1, 2048

⎤

⎥
⎥
⎦ × 3, stride 2

⎡

⎢
⎢
⎣

0

1

0

⎤

⎥
⎥
⎦

fc Average pooling, 1000-d, softmax

The left part in “[ ]” indicates the size of receipt fields and the right part indicates the
number of filter banks. Max pooling is implemented by a 3 × 3 pixel window. Both
the convolution stride and max pooling stride are set to two pixels. The fully
connected (FC) layer has 1000 channels

Moreover, the cloud images have 2828 × 4288 pixels with
strong illuminations and some occlusion. It is obvious that
cloud images from the three cloud databases vary in loca-
tions, illuminations, occlusions, and resolutions. Hence,
they belong to different domains. The total number of the
three databases is 3533, 2491, and 2107, respectively.
We adopt ResNet-50 [28] as the CNN model in the fol-

lowing experiments, and the configurations of the ResNet-
50 are outlined in Table 1. We resize all images to 224 ×
224. When we train the siamese network, the training
images consist of two parts, namely, all source domain
images and half of images in each class from the target
domain. The remaining images of the target domain are
used for test. We implement experiments independently
for 10 times and the final results represent the average
accuracy over these 10 times. As the inputs of the siamese

network, the ratio between similar pairs and dissimilar
pairs is 1:1. The number of training epochs is set to 75. The
learning rate is initialized as 0.001 and then set to 0.0001
for the final five epochs. We adopt the SGD [29] to update
the parameters of the siamese network. We use NVIDIA
TITAN XP GPU to implement the algorithm.
After obtaining the trained siamese network, we feed

forward a 224 × 224 test image to any ResNet-50 in our
network. Since the shallower convolutional layer contains
more texture information, we extract the activations of
conv_3 (see Table 1) which results in the feature map with
the size of 32 × 32. Therefore, the dimensionality of the
proposed TDCAF is 1024. In other words, each test image
is represented as an 1024-dim vector. It should be noted
that we test the sum operation or the max operation for
feature representation. Finally, the feature vectors of all
test images from the target domain are fed into a SVM
classifier with the radial basis function (RBF) kernel for
classification.

3.2 Generalized image classification
We compare the proposed TDCAF with two excellent
methods [11, 14]. As for the two methods, we follow the
abovementioned experimental settings. The recognition
results are listed in Table 2. The proposed TDCAF sig-
nificantly improves the performances over the two com-
peting methods. It is because we simultaneously learn the
domain-invariant information from the source and target
domains by using a sharing weight strategy. Furthermore,
the deep learning model could learn highly nonlinear fea-
tures which are beneficial to the domain adaptation prob-
lem. The proposed TDCAF achieves the highest accuracy
of 73.4% in the situation of DSLR −→ Webcam. This is
reasonable as these two domains are similar. As for the
proposed TDCAF, in most of cases, the max operation
outperforms the sum operation, possibly because there
are more discriminative information contained by using
the max operation.

3.3 Ground-based cloud classification
We compare the proposed TDCAF with two state-of-
the-art methods, i.e., the bag-of-words model (BoW) [32]

Table 2 Classification accuracies (%) for the generalized image classification

Source Target Kate et al. [11] Gong et al. [14]
TDCAF

Sum operation Max operation

Amazon Webcam 43.5 35.7 69.6 70.1

Amazon DSLR 29.4 35.8 67.6 66.5

DSLR Amazon 28.2 36.1 68.7 69.3

DSLR Webcam 31.8 49.6 73.4 73.2

Webcam Amazon 42.9 35.5 71.8 72.4

Webcam DSLR 27.6 49.7 70.3 71.5
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Table 3 Classification accuracies (%) for the ground-based cloud
classification

Source Target BoW CLBP
TDCAF

Sum operation Max operation

IAP_e CAMS_e 39.2 41.4 70.5 70.9

IAP_e MOC_e 41.6 43.5 73.6 74.8

CAMS_e IAP_e 36.1 37.6 68.5 79.4

CAMS_e MOC_e 35.4 38.5 68.3 67.6

MOC_e IAP_e 37.5 40.9 69.2 70.5

MOC_e CAMS_e 38.6 41.3 68.4 69.7

and the completed local binary patterns (CLBP) [33]. For
the BoW, we first extract patch features for each cloud
image. Each patch feature is an 81-dim vector, which
is formed by stretching a 9 × 9 neighborhood around
each pixel. Then, we learn a dictionary with K-means
clustering [34] over patch vectors. The size of dictio-
nary for each class is set to be 200, which results in an
1400-dim vector for each cloud image. For the CLBP,
there are three operators, i.e., CLBP C, CLBP S, and
CLBP M, and we combine them hybridly. Specifically, we
calculate a joint 2D histogram of CLBP S and CLBP C,
and then the histogram is converted to a 1D histogram,
which is then concatenated with CLBP M to generate
a joint histogram. The dimensionality of the CLBP for
each cloud image is (10 × 2 + 10) + (18 × 2 + 18) +
(26 × 2 + 26) = 162. Finally, feature vectors of all cloud

images are fed into a SVM classifier with RBF kernel for
classification.
The experimental results are listed in Table 3. It is

obvious that the BoW and the CLBP do not deal with
such the domain adaptation task well, while the pro-
posed TDCAF can obtain better performances. The rea-
son is that the siamese network is trained by sample
pairs and weight sharing, and the proposed TDCAF could
learn domain-invariant information. Moreover, the verti-
cal pooling could obtain the completed and spatial infor-
mation by aggregating features across all the feature maps.
The proposed TDCAF contains two operations, i.e., the
sum operation and the max operation. From Table 3, we
can see that the max operation achieves better perfor-
mance than the sum operation in most situations. It is
because there are generally some interferences and noises
in the cloud images, and the max operation could select
the salient and discriminative features. It should be noted
that when we take the CAMS_e database as the source
domain, and the MOC_e database as the target domain,
we obtain the poorest performance of 67.6%. The reason
is that the CAMS_e database is greatly different from the
MOC_e database in illuminations, capturing locations,
occlusions, and image resolutions.

3.4 Influence of parameter variances
We take the CAMS_e to IAP_e shift as an example to
analyze the proposed TDCAF in the aspect of the selec-
tion of the convolutional layers for extracting features. In

Fig. 5 Classification accuracies (%) of the proposed TDCAF in different convolutional layers on the CAMS_e to IAP_e shift
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a CNN, the shallow convolutional layers usually contain
structural and textural local features while the deep
convolutional layers usually contain high-level semantic
information. Since the appearance of clouds can be treated
as a kind of natural texture, we select the shallow con-
volutional layers for feature representation. We evaluate
the performance of the proposed TDCAF when using dif-
ferent convolutional layers. The index of convolutional
layers varies from 1 to 15, as shown in Fig. 5. From
Fig. 5, the experimental results indicate that the high-
est result of the proposed method is obtained when we
utilize the 11th convolutional layer in conv_3 for feature
representation.

4 Conclusion
In this paper, we have introduced an effective domain
adaptation method TDCAF for the generalized classifica-
tion and the ground-based cloud classification in sensor
networks. We utilize sample pairs to train a siamese net-
work with weight sharing, and therefore, the siamese net-
work could learn the domain-invariant information from
the source and target domains. We employ the vertical
pooling to obtain the TDCAF from all feature maps of one
convolutional layer, which includes completed and spatial
information.We have conducted experiments to verify the
proposed TDCAF on three generalized image databases,
i.e., Amazon, Webcam, and DSLR, and three cloud
databases, i.e., IAP_e, CAMS_e, and MOC_e. Compar-
ing with the state-of-the-art methods, the classification
accuracies demonstrate the effectiveness of the proposed
TDCAF.
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