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Abstract

In this paper, we propose to learn deep features from body and parts (DFBP) in camera networks which combine the
advantages of part-based and body-based features. Specifically, we utilize subregion pairs to train the part-based
feature learning model and predict whether they belong to positive subregion pairs. Meanwhile, we utilize holistic
pedestrian images to train body-based feature learning model and predict the identities of the input images. In order
to further improve the discrimination of features, we concatenate the part-based and body-based features to form the
final pedestrian representation. We evaluate the proposed DFBP on two large-scale databases, i.e., Market1501
database and CUHK03 database. The results demonstrate that the proposed DFBP outperforms the state-of-the-art
methods.
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1 Introduction
The camera networks, as a kind of wireless sensor net-
works, have received considerable attention due to the
potential value for the practical applications [1–4]. One
of the most important applications of camera networks
is person re-identification (re-ID) which is an issue of
searching the same person from one camera sensor across
different camera sensors with a probe image. Although
substantial works have been made in this field, it remains
some unsolved problems. This is because the appearances
of pedestrians from different cameras are easily affected
by many environmental factors, such as views, body pose,
and lighting.
The existing approaches focus on two fundamental

problems, i.e., feature representation and metric learning.
On one hand, a lot of efforts expect to develop discrimina-
tive feature representations that are robust to the changes
in views, pose, and illumination. Gray and Tao [5] pro-
posed the Ensemble of Localized Features (ELF), each of
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which consisting of a feature channel, location, and bin-
ning information, to overcome the viewpoint changes.
Bazzani et al. [6] presented the Symmetry-Driven Accu-
mulation of Local Features (SDALFs) which considers
symmetry and asymmetry perceptual principles to handle
the environmental variances. Liao et al. [7] introduced the
Local Maximal Occurrence (LOMO) features to analyze
the horizontal occurrence of local features and maximize
the occurrence in order to obtain a stable representation.
On the other hand, some methods learn effective metrics.
For example, Zheng et al. [8] proposed the Probabilistic
Relative Distance Comparison (PRDC) to maximize the
matching probability of positive pairs so that the distance
between the positive pair is smaller than that of negative
pair. Koestinger et al. [9] proposed the KISSME to learn
an effective metric using equivalence constraints and had
a good effect on the generalization performance. Liao
et al. [7] introduced the Cross-view Quadratic Discrimi-
nant Analysis (XQDA) to simultaneously learn a discrim-
inant low-dimensional subspace and a metric function on
the derived subspace.
Recently, the convolutional neural network (CNN) is

applied to person re-ID and achieves attractive perfor-
mance on the large-scale databases. There are mainly two
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kinds of CNN models, i.e., verification models and iden-
tification models. The verification models [10–12] take
pairs of images as the input and determine whether they
belong to the same person or not, and the structure is
shown in Fig. 1a. The verification models treat the per-
son re-ID as a binary-class classification task and map two
images of the same person into the nearby points; oth-
erwise, the points are far apart. However, the verification
models are not explicitly utilize re-ID labels. To make full
use of the re-ID labels, the identification models [13, 14],
which treat the person re-ID as a multi-class recognition
task, are proposed, and the structure is shown in Fig. 1b.
The identification models usually take holistic images as
the input and determine whether images belong to their
own labels. The identification models have shown great
potentials on current large-scale person re-ID databases.
Xiao et al. [15] jointly trained a identification model using
multiple datasets and proposed a new dropout function to
deal with a large number of classes. Furthermore, Zheng
et al. [16] combined the verification and identification
models by jointly learning three loss functions.
The above methods utilize the holistic pedestrian

images as the input and learn the body-based features,
which discards the local characteristics of pedestrians. To
overcome this drawback, Yi et al. [17] splited a pedestrian
image into three horizontal parts and trained three part-
CNNs. Cheng et al. [18] used the multi-channel CNN to
learn local part features andmodified the triplet loss func-
tion that requires the intra-class feature distances to be
less than the inter-class ones. These existing part-based
CNNmethods learn the local features which are gradually
ignored with the increase of neural network layers.
In this paper, we propose to learn deep features from

body and parts (DFBP), which combines the advantages of
part-based and body-based features. In the learning pro-
cess, we simultaneously utilize two kinds of models, i.e.,

Fig. 1 The structures of a verification models and b identification
models. a Verification models take pairs of pedestrian images as the
input and predict whether they are the same person or not. b
Identification models take pedestrian images as the input and predict
their identity

verificationmodels and identificationmodels, to learn and
extract features. For learning part-based features, we split
each pedestrian image into several horizontal subregions.
We define the corresponding subregions from the same
person as the positive subregion pairs and correspond-
ing subregions from different persons as the negative
subregion pairs. We train the verification models using
the positive and negative subregion pairs and extract the
subregion features from fully connected layer. Then, we
utilize the weighted adding to aggregate all the subregion
features from one pedestrian image and obtain the part-
based feature. Meanwhile, we utilize the holistic images to
train an identification model for the body-based features.
Since we utilize two kinds of CNNs where they are also
feed into different kinds of training samples, the learned
part-based and body-based features are complementary.
In order to further improve the discrimination of features,
we concatenate the part-based and body-based features to
form the final pedestrian representation.
The rest of this paper is organized as follows. In

Section 2, we introduce the proposed method and the
implementation process in detail. In Section 3, we ver-
ify the proposed DFBP on two large-scale databases, i.e.,
Market 1501 [19] and CUHK03 [20], and the experimental
results demonstrate that the proposed DFBP outperforms
the state-of-the-art methods. Finally, we conclude this
paper in Section 4.

2 Method
The proposed DFBP is to learn powerful features by com-
bining the part-based and body-based features in camera
networks. The flowchart of the proposed DFBP is shown
in Fig. 2. In this section, we introduce our model from
three aspects, i.e., the part-based feature learning model,
the body-based feature learning model, and the final rep-
resentation for pedestrian images.

2.1 Part-based feature learning model
Part-based features could provide the effective local infor-
mation which plays an important role in person re-ID. In
order to learn part-based features, we apply the verifica-
tion model and split each image into several horizontal
subregions. We define the subregion pairs from the same
person as positive subregion pairs as shown in Fig. 3a,
and the subregion pairs from different person as negative
subregion pairs as shown in Fig. 3b.
There are two CNN models in the part-based feature

learning model as shown in Fig. 2a. The two networks
share the same weights which can map subregion pairs
into the same feature subspace. Here, we utilize the widely
used ResNet-50 [21] pretrained on ImageNet [22] as the
CNN model. In the training stage, we resize all the subre-
gions divided from pedestrian images into 256 × 256 and
subtract the mean values computed from all the training



Zhang and Si EURASIP Journal onWireless Communications and Networking  (2018) 2018:52 Page 3 of 8

Fig. 2 The structures of a part-based and b body-based feature learning models

subregions. Then, each subregion is randomly cropped to
224 × 224. Given subregion pairs as the input, we obtain
two feature vectors f1 and f2 which are generated by aver-
age pooling at the end of ResNet-50 models as shown in
Fig. 2a. In order to connect the two networks, we employ a
non-parametric layer called square layer [16] to compare
the features f1, f2. The input of square layer is f1 and f2, and
the output is formulated as:

fs = (f1 − f2)2 (1)

where f1, f2, and fs are the 2048 dimensional vectors for the
ResNet-50 model.
After this layer, we utilize the dropout strategy [23],

which introduces zero values at special locations, to reg-
ularize the model. Then, we utilize a convolutional layer
to turn the resulting vector fs to a 2-dimensional vector
(p1, p2) which represents the prediction probability of the
input subregion pair belonging to the same person. The
convolutional layer takes fs as the input and has two ker-
nels with the size of 1×1×2048. We do not add Rectified

Linear Unit (ReLU) after this layer and utilize the softmax
to predict the probability:

yi = eai
∑2

k=1 eak
,∀ i ∈ 1, 2 (2)

where ai is the activation value of the i-th neuron in the
last convolutional layer.
We utilize the cross-entropy as the cost function of part-

based feature learning model which is formulated as:

LV = −
2∑

i=1
pi log yi (3)

where yi ∈ [0,1] is the prediction probability and pi is the
true probability. If the input is the positive subregion pair,
then p1=1 and p2=0; otherwise, p1=0 and p2=1.
Since the two CNN models share the same weights, we

can extract subregion features from any ResNet-50 model.
We treat f1 or f2 as the feature for each subregion.

2.2 Body-based feature learning model
Body-based features could provide holistic information
of pedestrian, and they are complementary to part-based

a b
Fig. 3 Illustration of the a positive and b negative subregion pairs
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Fig. 4 The flowchart of the proposed DFBP extraction

features. We adopt the identification model for learning
body-based features as shown in Fig. 2b and also utilize
the ResNet-50 [21] as the CNN model. We take the holis-
tic pedestrian images as the input of ResNet-50 model and
utilize the same preprocessing for each pedestrian image
as mentioned in Section 2.1. Then, we obtain the feature
f ∈ R

2048∗1 for each pedestrian image which are gener-
ated by the average pooling at the end of ResNet-50model.
Similarly, we employ the dropout strategy to prevent over-
fitting. Then, we utilize the convolutional layer to turn the
resulting vector f into a C dimensional vector where each
element represents the prediction probability of the input
pedestrian image belonging to one label. The class num-
ber of pedestrian is C, so the convolutional layer has C
kernels with the size of 1 × 1 × 2048. For example, since
the Market1501 database has 751 pedestrian classes, C is
set to 751. We do not add ReLU after this layer. We also
use the softmax unit to normalize the output and obtain
the prediction probability. It is formulated as:

yj = eaj
∑C

k=1 eak
,∀ j ∈ 1, 2, . . . ,C (4)

where aj is the activation value of the j-th neuron in the
last convolutional layer.
We utilize the cross-entropy loss for body-based feature

learning model:

LI = −
K∑

j=1
qj log yj (5)

where yj ∈ [0,1] is the prediction probability of the input
belonging to the j-th class and qj is the true probability. If
n is the true class, then qn=1; otherwise, qj=0 for all j.
After training the body-based feature learning model,

we extract f as the body-based feature for each pedestrian
image.

2.3 Final representation
In order to obtain a powerful feature representation, we
combine the part-based features and the body-based fea-
tures to form DFBP. The flowchart of the combination
strategy is shown in Fig. 4.
We split each pedestrian image into several subregions,

and the number of subregions is the same as mentioned in
Section 2.1. Then, we extract the feature for each subre-
gion and aggregate them by weighted adding to obtain the
part-based feature:

P = α1p1 + α2p2 + · · · + αnpn (6)

Table 1 The rank-1 precious (%) and mAP (%) on the
Market-1501 database

Method Single Query Multi Query

rank-1 mAP rank-1 mAP

DADM [26] 39.40 19.6 49.00 25.8

BoW+KISSME [19] 44.42 20.26 – –

MST-CNN [27] 45.1 – 55.40 –

MR-CNN [28] 45.58 26.11 56.59 32.26

FisherNet [29] 48.15 29.94 – –

CAN [30] 48.24 24.43 – –

SL [31] 51.90 26.11 56.59 32.26

SCSP [31] 51.90 26.35 – –

DNS [32] 55.43 29.87 71.56 46.03

S-LSTM [33] – – 61.60 35.3

Gate Reid [34] 65.88 39.55 76.04 48.45

SOMAnet [35] 73.87 47.89 81.29 56.98

MSCAN [36] 75.45 52.41 83.43 62.03

PIE [37] 78.65 53.87 – –

Verif.-Identif [16] 79.51 59.87 85.84 70.33

Part-based features 36.25 14.47 37.86 13.51

Body-based features 80.29 59.34 86.81 71.18

DFBP 81.71 60.86 87.02 72.21

The data in italics are the best result in each evaluation protocol
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Fig. 5 Re-ID performance between camera pairs on Market1501 database. a Rank-1 accuracy. bmAP accuracy

where pi (i = 1, 2, . . . , n) represents the feature of the i-th
subregion in a pedestrian image, αi (i = 1, 2, . . . , n) is the
corresponding coefficient to control the weight of the i-
th subregion, and n is the total number of subregions in a
pedestrian image.
Finally, we concatenate the part-based feature and body-

based feature to form the final DFBP representation:

F =[ ηP,ϕB] (7)

where [. , .] indicates directly concatenating the two vec-
tors, B represents the body-based feature, η and ϕ are the
corresponding coefficients to control the weights of P and
B respectively, and F∈ R

4096∗1 represents the final feature
DFBP. We simply use η = 1 and ϕ = 1. This may not be the
best choice for a particular database. But if we do not fore-
know the distribution of the database, it is a simple and
straight-forward choice.

3 Experiments
In this section, we verify the effectiveness of the proposed
DFBP on two large-scale databases. We first introduce
the experimental setup in Section 3.1 and then show the

Table 2 Comparison with the state-of-the-art methods on the
CUHK03 dataset under the single-shot setting

Method Rank-1 Rank-5 Rank-10 mAP

KISSME [38] 11.7 33.3 48.0 –

DeepReID [39] 19.9 49.3 64.7 –

BoW+HS [19] 24.3 – – –

LOMO+XQDA [7] 46.3 78.9 88.6 –

SI-CI [40] 52.2 84.3 94.8 –

DNS [32] 54.7 80.1 88.3 –

SOMAnet [35] 72.4 92.1 95.8 –

Part-based features 17.8 46.7 64.3 24.8

Body-based features 74.2 92.5 96.8 78.3

DFBP 75.9 93.8 97.9 79.9

The data in italics are the best result in each evaluation protocol

results on theMarket1501 database [19] and the CUHK03
database [20] in Sections 3.2 and 3.3 respectively.

3.1 Experimental setup
We implement the proposed model using the MatCon-
vNet package [24]. In the training phase, in order to fine-
tune the pre-trained ResNet-50 [21], we modify the last
convolution layer to have 751 kernels for the Market1501
database and 1367 kernels for the CUHK03 database. We
set the maximum number of training epochs to 75. The
learning rate is initialized as 0.1 and decreased to 0.01
after 70 epochs. We utilize stochastic gradient descent
(SGD) to update the parameters and set the weight decay
to 0.0005. The batch size for training part-based and body-
based feature models is 24. In the dropout layer, we set
the dropout rate to 0.5. For the part-based feature learning
model, we split each pedestrian image into three horizon-
tal subregions and empirically set α1 = 0.5, α2 = 0.3, and
α3 = 0.2. As the input of part-based feature learning
model, the ratio between positive subregion pairs and
nagative subregion pairs is 1:1.

3.2 Market1501 database
Market1501 database [19] is a newly released large-scale
person re-ID database which is collected in a university
campus. The database contains 32,669 annotated bound-
ing boxes of 1501 identities. According to the database
setting, it includes 12,936 training images of 751 identities
and 19,732 test images of 750 identities. In addition, there

Table 3 Comparison with the state-of-the-art methods on the
CUHK03 dataset using the multi-shot setting

Method Rank-1 Rank-5 Rank-10 mAP

S-LSTM [33] 57.3 80.1 88.3 46.3

Gate-SCNN [34] 68.1 88.1 94.6 58.8

Part-based features 20.6 42.8 55.5 19.8

Body-based features 81.0 90.3 95.0 76.2

DFBP 81.8 91.8 95.7 78.0

The data in italics are the best result in each evaluation protocol
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are 3368 query images about the same 750 identities as the
test set. Images of each identity are captured by at most
six manually set cameras, and each person has 3.6 images
on average at each viewpoint. All images are automatically
detected by the Deformable Part basedModel (DPM) [25].
So the database is close to realistic setting.
In the experiments, we select a pedestrian from the

query set and retrieve the truth images in the test set.
We utilize the mean average precision (mAP) and rank-1
accuracy to evaluate the performance. Here, rank-i accu-
racy denotes the probability whether one or more cor-
rectly matched images appear in top-i. The evaluation
results of the single query setting and multiple query set-
ting are shown in Table 1. From the results, we can see
that the proposed DFBP achieves the highest classifica-
tion accuracy of 81.71% (rank-1) and 60.86% (mAP) in

the single query setting, and 87.01% (rank-1) and 72.21%
(mAP) in the multiple query setting. The performance
of the proposed DFBP is better than the part-based fea-
tures and body-based features, because we make full
use of the complementarity between the part-based fea-
tures and body-based features. The proposed DFBP and
Verif.-Identif [16] utilize the verification and identification
models. Noticeably, the proposed DFBP outperforms the
Verif.-Identif in all situations due to considering the struc-
tural information of pedestrian by learning part-based
features.
We further evaluate the performance of the proposed

DFBP between all camera pairs, and the results are shown
in Fig. 5. The two matrices are confusion matrices in the
single query setting. In the two matrices, the accuracy
qij (1 � i � 6 , 1 � j � 6) indicates the pedestrian in

Fig. 6 Samples of pedestrian retrieval on CUHK03 database in the multi-shot setting. The first column indicates query images, and remaining
columns are gallery images which are sorted according to the scores from left to right
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the i-th camera as the query image and the pedestrian
in the j-th camera as the gallery image with the same
labels. The camera 6 is a 720 ×576 low-resolution camera
and captures distinct background with the other high-
resolution cameras. From the results, we can see that the
re-ID accuracies between camera 6 and the others are rel-
atively high. We also compute the average cross-camera
accuracy to obtain 50.17% mAP and 56.93% rank-1 accu-
racy, respectively. The average cross-camera indicates the
average of all accuracies in the matrix except the accura-
cies on the diagonal of the matrix in Fig. 5. The proposed
DFBP largely improves the performance compared with
the previous reported results, such as 10.51%mAP, 13.72%
rank-1 accuracy in [19] and 48.42% mAP, 54.42% rank-1
accuracy in [16]. These results indicate that the proposed
DFBP could also learn the discriminative features under
different viewpoints.

3.3 CUHK03 database
CUHK03 database [20] includes 14,097 images of 1467
identities which is captured by six cameras over months
in the Chinese University of Hong Kong (CUHK) cam-
pus. Each pedestrian is observed by two disjoint camera
views and has an average of 4.8 images in each view.
The database provides two kinds of bounding boxes, i.e.,
manually annotated bounding boxes and bounding boxes
detected by DPM [25]. Since DPM is closer to the realistic
setting, we evaluate the proposed DFBP on the bounding
box detected by DMP.We separate the database into train-
ing data including 1367 pedestrians and test data includ-
ing 100 pedestrians. This partitioning is independently
implemented 10 times, and the average is reported. We
evaluate the proposed DFBP by the single-query setting
and multiple-query setting.
We utilize the rank-i and mAP to evaluate the pro-

posed DFBP, and the results in the single-shot setting
are shown in Table 2. There is only a correct image in
the gallery set from the other camera. From the Table 2,
we can see that the proposed DFBP achieves the high-
est classification accuracy of 75.9% rank-1 accuracy, 93.8%
rank-5 accuracy, 97.9% rank-10 accuracy, and 79.9% mAP.
This demonstrates the effectiveness of the proposedDFBP
once again.
In addition, we evaluate the proposed DFBP in the

multi-shot setting as shown in Table 3. We use all the
images from the other camera as gallery images, and
the number of the images is about 500. From Table 3, we
can see that the proposed DFBP also achieves the high-
est accuracy owing to combining the part-based features
and body-based features. Furthermore, we represent some
re-ID samples in Fig. 6. The first column shows query
images and the remaining columns are retrieved images
which are sorted according to the similarity scores from
left to right. Most retrieved images are correct. Although

there are several incorrect images, such as the last eight
images in the sixth row, we think it is a reasonable pre-
diction because the pedestrians are similar to the query in
appearance and color.

4 Conclusions
In this paper, we have proposed a novel feature learning
method named DFBP in sensor networks, which simulta-
neously considers the part-based features and body-based
features. We utilize subregion pairs and holistic pedes-
trian images to train part-based and body-based feature
learning models respectively. By integrating the two kinds
of features, we obtain a discriminative feature. We have
proved the effectiveness of the proposed DFBP on two
databases which are realistic and challenging, and the pro-
posed DFBP have achieved better performance than the
state-of-the-art methods.
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