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Abstract

Most existing methods only utilize the visual sensors for ground-based cloud classification, which neglects other
important characteristics of cloud. In this paper, we utilize the multimodal information collected from weather station
networks for ground-based cloud classification and propose a novel method named deep multimodal fusion (DMF).
In order to learn the visual features, we train a convolutional neural network (CNN) model to obtain the sum convolutional
map (SCM) by using a pooling operation across all the feature maps in deep layers. Afterwards, we employ a weighted
strategy to integrate the visual features with multimodal features. We validate the effectiveness of the proposed DMF
on the multimodal ground-based cloud (MGC) dataset, and the experimental results demonstrate the proposed DMF
achieves better results than the state-of-the-art methods.
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1 Introduction
Clouds, as one of the major meteorological phenomena,
play a profound role in climate predictions and services
[1, 2]. Cloud classification is a crucial task for cloud
observation, and it is currently undertaken by the pro-
fessional observers [3]. However, manual observation is
time-consuming and labor-intensive. Furthermore, the
observation results are unreliable due to large dependency
on subjective judgements. Hence, there is a high demand
for automatic classification of ground-based cloud.
In recent years, many attempts have been made to clas-

sify the ground-based cloud. One trend is to develop
the ground-based sky imagers such as whole-sky imager
(WSI) [4], total-sky imager (TSI) [5], infrared cloud
imager (ICI) [6], all-sky imager (ASI) [7, 8], whole-sky
infrared cloud measuring system (WSIRCMS) [9], and
day/night whole sky imagers (D/N WSIs) [10]. Benefit-
ing from these devices, a number of ground-based cloud
images are available for developing automatic classifi-
cation algorithms. Calbo et al. [1] extracted statistical
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texture features based on Fourier transform to classify the
cloud images into eight categories. Heinle et al. [11] dis-
tinguished seven sky conditions based on twelve kinds of
features and k-nearest neighbor classifier. Ghonima et al.
[12] treated the pixel red-blue ratio (RBR) between the test
image and clear sky image as the feature. Zhuo et al. [13]
combined texture and structure features for cloud rep-
resentation and obtained a high classification accuracy.
Kazantzidis et al. [14] took into account the statical color,
the solar zenith angle, and the existence of raindrops in
sky images. Cheng et al. [15] divided cloud images into
several blocks and conducted the classification task on
blocks. Xiao et al. [16] fused the texture, structure, and
color features as the multi-view cloud visual features.
It is observed that appearance of clouds can be treated

as a kind of natural texture. Therefore, it is reasonable
to describe cloud appearances using texture and image
descriptors. Sun et al. [17] utilized the local binary pat-
tern (LBP) to classify the cloud images into five predefined
types. Liu et al. [18–20] proposed several algorithms for
extracting texture and image descriptors, such as the
multiple random projections, the salient local binary pat-
tern, and the group pattern learning. Recently, convolu-
tional neural networks (CNNs) have shown remarkable
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performances in several fields, such as visual classifica-
tion [21], object detection [22], and speech recognition
[23]. The success of CNNs is attributed to their abil-
ity to learn rich representations. CNNs could achieve
some degree of shift and deformation invariance by using
local receptive fields, shared weights, and spatial sub-
sampling. In particular, the shared weights are support-
ive for improving the generalization of CNNs, because
they reduce the number of parameters of CNNs. Sev-
eral researchers have resorted to training CNNs using
cloud images for ground-based cloud classification. For
example, Ye et al. [24] utilized cloud visual features
from the convolutional layers of the network. After-
ward, they employed Fisher vector encoding to further
improve the cloud classification results. Shi et al. [25]
extracted visual features from both the shallow and deep
convolutional layers of the network. They also evaluated
the performance of fully connected (FC) layer for cloud
classification.
However, it is difficult to solve the problems of ground-

based cloud classification by using one kind of sensor, i.e.,
image sensors. This is because the cloud type is deter-
mined by many factors, such as temperature, humidity,
pressure, and wind speed. We are inspired by the recent
development in weather station networks which is a kind
of wireless sensor network (WSN) [26–28], and we con-
sider to classify the ground-based cloud by using weather
station networks. The weather station networks consist of
many kinds of sensors [29], for example, image sensors,
thermal sensors, moisture sensors, and wind speed sen-
sors. These sensors have the abilities to obtainmultimodal
information of clouds. The visual, thermal, moisture, and
wind speed information could collect more complete
information for ground-based cloud information with the

help of weather station networks, so the limitation of each
kind of information could be compensated.
In this paper, we propose a novel method named deep

multimodal fusion (DMF) for ground-based cloud clas-
sification in weather station networks. Concretely, we
first fine-tune the pre-trained CNN model to adjust the
parameters for visual cloud information. Then, the visual
features are extracted from convolutional layers. Differ-
ent from the other activation-based features, we apply a
pooling strategy across all the feature maps to reserve the
spatial information of cloud images. Furthermore, we also
evaluate the performance of FC features. After obtaining
the visual information of clouds, we fuse the multimodal
information collected fromweather station networks, e.g.,
temperature, humidity, pressure, and wind speed, into the
final representations. This fusion strategy learns the com-
plementary information between visual and multimodal
features, which could further improve the performance.
Finally, support vector machine (SVM) [30] is selected as
the classifier.
The rest of this paper is organized as follows. Section 2

introduces the proposed approach in details, Section 3
illustrates the experimental results, and Section 4 draws
the conclusion for this paper.

2 Method
In this section, we present the proposed method in detail,
and the flowchart is illustrated in Fig. 1. The cloud images
are first utilized to train a CNN model, and then the sum
pooling is applied to aggregate the feature maps of one
convolutional layer so as to obtain the visual features.
Afterwards, the visual features and multimodal cloud fea-
tures are integrated. Finally, we utilize the SVM to train
the classification model.

Fig. 1 The flowchart of the proposed method. a Input cloud image. b The CNN model. c Convolutional activation-based features. d Sum pooling
strategy for convolutional activation-based features. e Fusing visual features with the multimodal information. f The multimodal information. g The
SVM classifier
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2.1 Deep convolutional neural networks
In recent years, CNNs have achieved great success
in classification task [21] due to large-scale databases
and efficient computational abilities. Simonyan and
Zisserman [31] proposed very deep neural networks
which consist of more convolutional and pooling layers.
The deep CNNs not only obtain outstanding perfor-
mance on imagenet large-scale visual recognition chal-
lenge (ILSVRC), but also show promising performance on
other classification tasks. Hence, we employ a deep CNN
to extract features for cloud images.
Training a CNN model needs a very large number of

annotated images to learn millions of parameters [32, 33].
Thus, it is running the risk of overfitting to train a CNN
model from scratch by only utilizing a few thousand cloud
images. To overcome this drawback, we first fine-tune a
deep CNN model named imagenet-vgg-f [34] to transfer
the cloud information to the deep model. The imagenet-
vgg-f comprises five convolutional layers and three fully
connected layers, and the detail configuration is shown in
Table 1. The last FC layer has 1000 dimensionality, and
we replace it with a new one with N dimensionality to
start the fine-tuning procedure, where N is the number of
cloud classes. Meanwhile, for the bias, all the parameters
in the new FC layer are initialized to zero. For the weight,
the parameters obey a Gaussian distribution. In addition,
three max pooling layers follow the first, second, and fifth
convolutional layer, respectively, with the size of 3 × 3 in
conjunction with a downsampling factor 2. Moreover, two
local response normalization layers are after the first two
convolutional layers, respectively.

Table 1 The configuration of imagenet-vgg-f. convi denotes the
i-th convolutional layer

Config. Receptive fields Stride Padding Filter banks

conv1 11 × 11 4 0 64

Max pooling

conv2 5 × 5 1 2 256

Max pooling

conv3 3 × 3 1 1 256

conv4 3 × 3 1 1 256

conv5 3 × 3 1 1 256

Max pooling

Neurons

fc6 4096

fc7 4096

fc8 1000

2.2 Deep features for cloud images
The appearance of clouds can be treated as a kind of
natural texture, and therefore, it is rational to describe
cloud appearance using texture descriptors. The CNN
models have been applied to capture texture information
and have achieved promising results [35, 36]. The features
extracted from deeper layers possess several desirable
properties such as invariance and discrimination. On the
contrary, the shallower layers tend to be more sensitive
to small transformations, which is challenging for unpre-
dictable and changeful cloud.
Based on the analysis mentioned above, we adopt

deeper layers to extract the cloud features. For the con-
volutional layer, we aggregate the raw activations by sum
pooling and then obtain the sum convolutional map
(SCM). The activation value yij in SCM at position (i, j) is
defined as

yij =
C∑

k=1
xkij, (1)

where xkij is the activation at position (i, j) in the k-th fea-
ture map and C is the number of feature maps in the
convolutional layer. Suppose the size of each feature map
isH ×W and the SCM is also with the size ofH ×W . The
SCM preserves the spatial information because the pool-
ing operation is conducted across all the feature maps,
while the other traditional pooling operations aggregate
one feature map into a feature. As a result, the convo-
lutional activation-based features Vconv for each image is
acquired by transforming the SCM into a vector

Vconv = [
y11, y21, · · · , yH1, y12, y22, · · · , yH2,

· · · , · · · , y1W , y2W , · · · , yHW
]T .

(2)

The dimensionality of the vector is H × W . The above
procedure is summarized in Fig. 2. On the other hand,
we do not use any pooling strategies in FC layers. The
FC layer-based features could be considered as a special
case of convolutional layers. It utilizes rather smaller filter
banks with the size of 1 × 1. The feature vector Vfc for a
FC layer is indicated as

Vfc = [v1, v2, · · · , vk , · · · , vK ]T , (3)

where vk is the output of the k-th neuron and K is the
number of neurons in the FC layer. Finally, Vconv and Vfc
are normalized by L2-norm.

2.3 Multimodal fusion
To capture the complete cloud information, we inte-
grate multimodal cloud information collected from
weather station networks. The integration features can be
formulated as

Q = f (V ,M), (4)
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Fig. 2 The sum pooling strategy for feature maps in a convolutional layer. a Input cloud image. b Feature maps of a certain convolutional layer.
c The SCM feature. d The feature vector for a cloud image

where V is the visual feature vector, i.e., activations-based
or FC-based feature vector, and M = [

m1,m2, · · · ,mp
]T

denotes the multimodal feature vector. For simplicity and
efficiency, we directly catenate the visual feature vector
with multimodal feature vector

f (V ,M) =
[
αVT,βMT

]
(5)

where [·, ·] indicates to concatenate two vectors, and α and
β are the parameters to balance the importance between
visual features and multimodal features. Note that the
multimodal information M should be normalized by L2-
norm before fusion.

3 Experimental results
In this section, we conduct a series of experiments on the
multimodal ground-based cloud (MGC) dataset to evalu-
ate the effectiveness of the proposed DMF. We first intro-
duce the MGC dataset and the implementation details of
experiments. Then, we compare the proposed DMF with
the other methods. Finally, we evaluate the influence of
visual features extracted from different layers.

3.1 Dataset and experimental setup
The MGC dataset collected in China consists of cloud
images and multimodal cloud information. The cloud
images are captured by a sky camera with a fisheye lens
under a variety of conditions. The fisheye lens could scan
the sky with a wide angle. In the interim, we utilize a
weather station to capture the multimodal information of
clouds, that is to say temperature, humidity, pressure, and
wind speed. We should note that the cloud images and
multimodal information are collected at the same time.
Therefore, each cloud image corresponds to a set of mul-
timodal data. The MGC dataset is a challenging dataset,
because it covers a wide range of sky conditions and
possesses large intra-class variations. The MGC dataset
comprises a total number of 1720 cloud data. According to

the International cloud classification system criteria pub-
lished in theWorldMeteorological Organization (WMO),
considering the visual similarity in practice, the sky con-
ditions are divided into seven classes, i.e., cumulus, cirrus,
altocumulus, clear sky, stratus, stratocumulus, and cumu-
lonimbus. Note that the clear sky is the condition that the
cloud accounts for no more than 10% of the total sky. The
number of cloud samples of each class varies from 140 to
350, and the detailed numbers are listed in Table 2. Herein,
cloud classes are labeled using Arabic numerals from 1
to 7. Figure 3 shows some cloud samples from each class
where each cloud image is with the size of 1056 × 1056.
The MGC dataset is randomly partitioned into 120

training samples for each class and the remaining ones
as the test set. The partition process is implemented 10
times independently, and the final classification accuracy
is reported as the average accuracy over these 10 random
splits. For fair comparison, the same experimental setup is
used for all the experiments. In the training stage, we first
resize the original cloud images into 256× 256 pixels with
preserved aspect ratio by bilinear interpolation. Then, in
order to learn more cloud information, we centrally crop
the training images into 224×224 pixels. In addition, each

Table 2 The sample number of each cloud class on the MGC
dataset

Label Cloud type Number of samples

1 Cumulus 160

2 Cirrus 300

3 Altocumulus 340

4 Clear sky 350

5 Stratocumulus 250

6 Stratus 140

7 Cumulonimbus 180

Total number 1720
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Fig. 3 The cloud samples on the MGC dataset

training image subtracts the mean RGB values computed
on training set from each pixel.
We shuffle the training set images to fine-tune the

pre-trained imagenet-vgg-f model. To learn the parame-
ters (weights and bias), we train the network using the
backpropagation gradient-descent procedure [21] with a
mini-batch size of 48. The fine-tuning procedure is termi-
nated at 20 epochs. For the first 10 epochs, the learning
rate is set to 0.001. While for the remaining 10 epochs, it
is reduced by a factor of 10 to 0.0001. The weight decay is
with the value of 0.0005. In the test stage, the images have
the same pre-processing with those in the training stage.
For the multimodal information fusion, we empirically set
α and β in Eq. (5) to 1 and 0.8, respectively. The multi-
modal information vector M is [m1,m2, . . . ,m6]T, where
m1,m2, . . . ,m6 denotes the temperature, humidity, pres-
sure, wind speed, average wind speed, andmaximumwind
speed in one minute, respectively. Finally, we treat SVM
with radial basis function (RBF) kernel as the classifier.

3.2 Baselines
We compare the proposed method with the state-of-the-
art methods which are listed as follows.

(1) BoW [37] model: The bag-of-words (BoW) model
represents cloud images as histograms over a discrete
codebook of local features. We choose SIFT [38]
descriptors as the local features. The codebook size
for each cloud class is set to 200, which results in
1400 dimensionality histogram for each cloud image.

(2) PBoW [39] model: The pyramid BoW (PBoW) model
is that the BoWmodel incorporates with the spatial
pyramid which could learn the spatial information of
cloud images. We divide each cloud image into three
levels, i.e., 1, 2, and 4, which results in 1, 4, and 16
cells, respectively. Thus, for each cloud image, it
contains a total of 21 cells. The PBoWmodel also
represents cloud images as histograms based on each
cell. Herein, the codebook is obtained in the same
way as BoW. Hence, the histogram for each cloud
image is 29400 dimensionality.

(3) LBP [40]: The local binary pattern (LBP) labels each
pixel by computing the sign of the difference
between the intensities of that pixel and its

neighboring pixels. In our experiments, we utilize the
uniform invariant LBP and set the parameter (P,R)

to (8, 1), (16, 2), and (24, 3), respectively. Here, P is
the total number of involved neighbors in a circle
and R is the radius of the circle. Then we combine
the representations from these three different
conditions. Hence, the dimensionality of the
representation for each cloud image is 54.

(4) CLBP [41]: The completed LBP (CLBP) is an
extension of LBP and has shown to perform well in
image analysis and texture classification. In CLBP, a
local region is represented by its center pixel, and the
signs and magnitudes of the local differences. We
combine these three components into joint distribution
s to obtain completed cloud representation. The
parameter (P,R) is also set to (8, 1), (16, 2), and
(24, 3), respectively. We concatenate the three scales
into one feature vector resulting in a 2200
dimensional vector.

For all of the above feature extraction techniques, we use
the same training set and test set as the proposed method.
The only difference is that each cloud image is converted
to gray scale with the size of 300 × 300.

3.3 Comparison with other methods
We first compare the deep visual features (DVF) learned
from CNN with the other state-of-the-art methods, and
the results are shown in Table 3. We extract the DVF
from conv5, and therefore, the dimensionality of DVF is
169. From Table 3, we can see that the DVF obtains the
best result. Especially, the classification accuracy of DVF
is over 15% better than that of PBoW which achieves the

Table 3 Classification accuracy (%) using visual features

Method Accuracy (%)

BoW 63.14

PBoW 69.77

LBP 56.77

CLBP 67.47

VDF 82.52
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Table 4 Classification accuracy (%) with multimodal information

Method Accuracy (%)

BoW+M 65.47

PBoW+M 70.65

LBP+M 58.77

CLBP+M 69.47

DMF 86.30

second best result among all the compared methods. Fur-
thermore, the dimensionality of DVF is much smaller than
PBoW. The improvement of the proposed DVF is because
the CNN model could learn more discriminative features
than other learning-based methods (BoW and PBoW)
and hand-crafted features (LBP and CLBP). Moreover, the
sumpooling strategy ensures that the DVF possessesmore
cloud spatial information.
Then, we compare the proposed DMF with the other

state-of-the-art methods for the multimodal information
fusion, and the results are listed in Table 4. Note that “+M”
indicates concatenating the visual features with multi-
modal information. From Table 4, we can see that the
proposed DMF outperforms the other methods and the
classification accuracy achieves over 86%. A comparison
between Tables 3 and 4 shows that the classification accu-
racies in the latter are all better than those in the former.
This demonstrates that the multimodal cloud information
provides support for the ground-based cloud classification.
This demonstrates that the multimodal cloud informa-
tion is helpful for the ground-based cloud classification.
The visual features and the multimodal cloud informa-
tion are complementary and therefore fusing them could
obtain the completed information of ground-based cloud.
The improvement of DMF exceeds other methods, which
verifies the effectiveness of the fusion algorithm.
In this paper, we focus on the feature representation

of cloud, and any classifiers could be chosen, such as
the 1-nearest neighbor (1NN) classifier. In Table 5, we
summarize the classification accuracy with 1NN clas-
sifier. From the table, we can observe that the pro-
posed method obtains the best results when utilizing
1NN classifier.

Table 5 Classification accuracy (%) with 1NN classifier for
different methods

Method Accuracy (%) Method Accuracy (%)

BoW 61.79 BoW+M 63.77

PBoW 68.25 PBoW+M 67.54

LBP 56.29 LBP+M 58.09

CLBP 64.85 CLBP+M 66.65

DVF 79.33 DMF 81.29

Table 6 The feature dimensionality of different layers

Layers SCM dimensionality Features dimensionality

conv3 13 × 13 169

conv4 13 × 13 169

conv5 13 × 13 169

Layers Neurons number Features dimensionality

fc6 4096 4096

fc7 4096 4096

3.4 Influence of different parameters
In this subsection, we evaluate the performance of differ-
ent layers in CNN for ground-based cloud classification.
For the convolutional layers, the feature dimensionality
is equal to that of SCM. For example, the size of SCM
from conv5 is 13 × 13, and therefore, the dimensionality
of Vcov5 is 169. For the FC layers, the feature dimensional-
ity is equal to the number of neurons. For example, fc6 has
4096 neurons, and therefore, the dimensionality of Vfc6 is
4096. The dimensionality of visual features extracted from
the trained CNN is concluded in Table 6. Then, we directly
concatenate visual features with multimodal features to
obtain the final features.
The classification performance of DVF and DMF are

summarized in Table 7. Several conclusions can be drawn
from the results presented in Table 7. First, the accu-
racy of conv5 achieves the best in both DVF and DMF.
Second, comparing conv5 with other shallower convolu-
tional layers, we can see that deeper convolutional layers
could learn more semantic information. Third, the accu-
racy of conv5 is higher than that of fc6 and fc7, while the
feature dimensionality of conv5 is much less than that of
fc6 and fc7. It is because the sum pooling strategy across
over all feature maps could keep more spatial information.
Forth, the classification accuracies of DMF are all higher
than that of DVF, which validates the effectiveness of the
fusion between the visual features and the multimodal
information.
Additionally, we compare the classification results of

Vcov5 for different α and β settings. Since the ratio of α

to β is important to fusion performance, we fix α and
change β . The comparison results are listed in Table 8.

Table 7 The classification accuracy (%) of DVF and DFM in
different layers

Layers DVF DMF

conv3 69.71 70.10

conv4 80.72 80.77

conv5 82.52 86.30

fc6 76.91 77.91

fc7 74.57 75.68
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Table 8 Classification accuracy (%) of conv5 for different α and β

settings

(α, β) (1, 2) (1, 1.5) (1, 1) (1, 0.9) (1, 0.8) (1, 0.7) (1, 0.6)

59.29 67.02 82.84 83.63 86.30 82.95 62.70

From the table, we can see that when α and β are set to
1 and 0.8, respectively, the best classification accuracy is
obtained. α is larger than β in the optimal situation which
indicates that the visual features are more important than
the multimodal features.

4 Conclusions
In this paper, the integration of the deep visual fea-
tures and the multimodal information has been proposed
for ground-based cloud classification in weather station
networks. We first fine-tune the pre-trained deep CNN
model using the cloud images, followed by extraction of
deep visual features and then fused with the multimodal
information. A series of comparative experiments have
been conducted to test the effectiveness of the proposed
DMF, and the results show that the accuracy of the pro-
posed DMF is higher than the state-of-the-art methods.
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