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Abstract

In this paper, we investigate the cross-layer optimization problem of congestion and power control in cognitive radio
ad hoc networks (CRANETs) under predictable contact constraint. To measure the uncertainty of contact between any
pair of secondary users (SUs), we construct the predictable contact model by attaining the probability distribution of
contact. In particular, we propose a distributed cross-layer optimization framework achieving the joint design of hop-
by-hop congestion control (HHCC) in the transport layer and per-link power control (PLPC) in the physical layer for
upstream SUs. The PLPC and the HHCC problems are further formulated as two noncooperative differential game
models by taking into account the utility function maximization problem and the linear differential equation constraint
with regard to the aggregate power interference to primary users (PUs) and the congestion bid for a bottleneck SU.
In addition, we obtain the optimal transmit power and the optimal data rate of upstream SUs by taking advantage of
dynamic programming and maximum principle, respectively. The proposed framework can balance transmit power
and data rate among upstream SUs while protecting active PUs from excessive interference. Finally, simulation results
are presented to demonstrate the effectiveness of the proposed framework for congestion and power control by jointly

optimizing the PLPC-HHCC problem simultaneously.
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1 Introduction

1.1 Background and motivation

Cognitive radio (CR) [1] has been widely recognized as a
critical technique to mitigate the spectrum scarcity problem
and enhance the overall efficiency of spectrum usage, aim-
ing to accommodate for the evolution of wireless systems
towards 5G [2]. In a CR network (CRN), unlicensed sec-
ondary users (SUs) are allowed to opportunistically access
the spectrum allocated to licensed or primary users (PUs)
without interfering with the coexisting PUs. That is, the
SUs do not violate the quality of service (QoS) require-
ments of the PUs. Most of the existing research efforts in
CRNs mainly focus on the issues of the physical and media
access control (MAC) layers for an infrastructure-based
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single-hop scenario, including spectrum sensing, spectrum
access, and sharing techniques [3-5]. In addition, SUs can
also form a multi-hop decentralized ad hoc network with-
out the support of infrastructure. In a multi-hop cognitive
radio ad hoc network (CRANET) [6], SU can access the
licensed spectrum by seeking to overlay, underlay, or inter-
weave its signal with the existing PUs’ signals [7]. For the
underlay approach, SUs are permitted to concurrently share
the licensed spectrum with PUs while guaranteeing the
power of interference and noise at the PU not beyond the
interference temperature limit. In this context, the inter-
ference caused by the SUs should be controlled and miti-
gated through effective power control strategies. Many
studies on power control for CRNs have been reported
from different perspectives, such as imperfect channel
knowledge [8], arbitrary input distributions [9], and social
utility maximization [10].
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In comparison with the lower layer solutions as
stated before, recent work indicates that there are
many new challenges towards routing problem at the
network layer in multi-hop CRANETS, aiming to give
more insights into the impact of spectrum uncertainty
on routing strategies [11, 12]. However, the con-
straints and challenges with regard to SUs including
random mobility, low deployment density, and limited
resource along with discontinuous spectrum availabil-
ity will give rise to intermittent connectivity of links
among SUs in a decentralized CRANET [13]. Clearly,
stochastic link outage further has a bearing on the
successful transmission of data packets between a pair
of SUs. To describe effective continuous transmission
of SUs, the paradigm contact has been presented from
different types [14], e.g., persistent contact, on-
demand contact, and scheduled contact. Conceptually,
a contact can be defined as a communication oppor-
tunity during which two adjacent SUs can communi-
cate with each other. In a scheduled contact-based
CRANET, multiple contacts or the set of communica-
tion opportunities can be easily derived from the
statistical data of a priori available contact. In this
case, the scheduled contact can be predicted and
calculated accurately.

Similar to a wireline Internet or most other trad-
itional wireless networks, network congestion in
CRNs will also occur when the offered data load ex-
ceeds the available capacity of SU due to buffer over-
flow caused by accumulated data packets injected
from upstream SUs. This therefore leads to aggressive
retransmission, queuing delay, and blocking of new
flows from upstream SUs. Indubitably, congestion
control policy in the transport layer is essential to
balance resource load and to avoid excessive conges-
tion. However, the conventional Transmission Control
Protocol (TCP) as a congestion control mechanism
via window-based or acknowledgement-triggered
methods is initially designed and optimized to per-
form in reliable wired links with constrained bit error
rates (BERs) and round trip times (RTTs) [15]. Recent
study by [16] has reported that the performance of
HTTP download deteriorates as much as 40% under
the TCP window control in an IEEE P1900.4-based
cognitive wireless system using User Datagram Proto-
col (UDP) and TCP transport protocols. Alternatively,
to accommodate for the challenging multi-hop wire-
less environments, some other research efforts about
congestion control techniques have been conducted
from the perspective of finding methods to modify
TCP protocol [17]. Unfortunately, it has been also
shown that these schemes of TCP modifications and
extensions cannot be applied into CRANETSs because
of sudden large-scale bandwidth fluctuation and
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periodic interruption caused by spectrum sensing and
channel switching [18, 19].

It is also noted that the TCP congestion control is
targeted to regulate the data rate of upstream SUs so
that the total accumulated data load does not exceed
the available capacity of SU. In principle, the link
capacity between a pair of SUs depend strongly on
transmit power of SU coupled with wireless channel
conditions [20]. By leveraging the congestion control
technique, on the one hand, the attainable data rate
on a wireless link between a pair of SUs depends on
the interference level, which in turn rests on power
control policy. On the other hand, each SU is
expected to increase its transmit power in order to
obtain as much link capacity that each flow requires
[21]. However, increasing the link capacity on one link
may reduce the link capacities on other links owing to
mutual interference of SUs. From the above discus-
sions, we can see that jointly optimizing transmit
power in the physical layer and data rate in the trans-
port layer for attaining the optimal link capacity
becomes highly valuable. With a joint cross-layer
design, the physical layer is able to share its informa-
tion and configuration about optimal transmit power
with the transport layer without breaking the hierarch-
ical structure of the traditional layered architecture
[22]. This motivates us to reinvestigate the cross-layer
coupling between capacity supply by power control
and rate demand by rate control.

1.2 Related works

Congestion control in wireless multi-hop networks
has been widely discussed via the NUM optimization
problem maximizing the total utility, subject to some
different constraints including the efficiency and fair-
ness of resource allocation [22], heterogeneous traffic
[22], lossy link [23], and multipath transmission [24].
Under the condition of outage probability caused by
lossy links, another work [25] investigates the rate-
effective network utility maximization problem to
meet with delay-constrained data traffic requirement.
However, although all of the aforementioned studies
consider some realistic constraints, they apply to the
traditional wireless multi-hop networks only and do
not consider the spectrum uncertainty in CRNs. To
the best of our knowledge, some studies on conges-
tion control for CRNs have been reported recently,
although the mainstream research effort is aimed at
the problems of the physical and MAC layers. In [26],
Xiao et al. developed a robust active queue manage-
ment scheme to stabilize the TCP queue length at
base station in an infrastructure-based CRN. By using
the multiple model predictive control, the proposed
scheme absorbed the disturbances caused by busty
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background traffic and capacity variation. It is found that
[26] is not suitable for decentralized CRANET scenario
due to a lack of centralized control and global informa-
tion. Unlike the condition of infrastructure-based CRN,
other studies in [18, 27, 28] have been undertaken in
multi-hop CRN scenarios. In [27], Song et al. proposed an
end-to-end congestion control framework without the aid
of common control channel by taking into account the
non-uniform channel availability. The explicit feedback
mechanism without timeouts and the timeout mechanism
were also investigated. In [28], Zhong et al. presented a
TCP network coding dynamic generation size adjust
scheme by jointly considering network coding gain and
delay. The proposed scheme can significantly reduce the
retransmissions and guarantee the QoS and enhance the
TCP performance. In [18], Al-Ali et al. proposed an end-
to-end equation-based TCP friendly rate control mechan-
ism, which achieves rate adjustment by identifying
network congestion. However, the end-to-end control
policy in [18, 27] is ill suited for operation over wireless
transmission links characterized by higher RTTs, particu-
larly if the links present the feature of intermittent
connectivity in CRANET under predictable contact. On
the contrary, the hop-by-hop control reacts to congestion
faster where the rates are adjusted at upstream nodes by
feedback information about the congestion state of inter-
mediate nodes.

Other recent schemes that exploit the cross-layer
interaction information try to deal with congestion
control problem in decentralized CRNs from a cross-
layer design perspective. The objective of these
schemes is to improve the overall network utility while
protecting active PUs’ communications from excessive
interference introduced by SUs. In [29], Cammarano
et al. presented a distributed cross-layer framework
for joint optimization of MAC, scheduling, routing,
and congestion control in CRAHNSs, by maximizing
the throughput of a set of multi-hop end-to-end
packet flows. However, similar to [18, 27], it is not
clear how good the performance of the end-to-end
rate control is compared under a wireless transmission
environment with higher RTTs. In [30], Nguyen et al.
proposed a cross-layer framework to jointly attain
both congestion and power control in OFDM-based
CRNs through nonconvex optimization method. By
means of the adaptation of dual decomposition tech-
nique also used by [20], the distributed algorithm was
developed to obtain the global optimization. In [31],
Nguyen et al. further devised an optimization frame-
work achieving trade-off between energy efficiency
and network utility maximization for CRAHNs. By
adjusting transmit power, persistence probability, and
data rate simultaneously via the interaction between
MAC and other layers, the proposed framework can
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jointly balance interference, collision, and conges-
tion among SUs However, both of the frameworks
in [30, 31] fail to take into account the impact of
predictable contact or priori available contact
between any pair of SUs on overall cross-layer
performance.

1.3 Our approach and contributions

Our work in this paper mainly focuses on a decentra-
lized CRANET under predictable contact in that it is
easy to obtain the set of communication opportunities
derived from the statistical available contacts among
SUs. Owing to a lack of global information to achieve
the centralized schedule, the cross-layer coupling
between capacity supply by power control and rate
demand by rate control needs to be carried out distribu-
tively by each SU via local information. Distributed
implementation for power control and rate control
depends on interactive processes among competitive
SUs to figure out the cross-layer coupling relationships.
Moreover, the objectives of SUs to maximize their utility
functions are conflicting and their decisions are inter-
active. Apparently, it will be far more realistic to
dynamically adjust transmit power and data rate accord-
ing to the current instant time in the practical dynamic
environment. The reason for adopting a differential game
model rather than other decentralized optimization
approaches is that the differential game is a continuous
time dynamic game to investigate interactive decision
making over time. In a differential game, the interactions
among individual players are characterized by time
dependency. This is in line with the nature of dynamic
spectrum environment in practical CRANET scenario.
Therefore, motivated by cross-layer coupling between
capacity supply by power control and rate demand by
rate control, we present a cross-layer optimization
framework for CRANET under predictable contact by
achieving the joint congestion and power control
using a differential game theoretic approach. The main
contributions of this paper are summarized as follows:

e To measure the uncertainty of contact between
a pair of SUs, a predictable contact model is
presented by deriving the probability distribution
of contact via a mathematical statistics theory.
By using Shannon entropy theory, we further
devise an entropy paradigm to characterize
quantitatively the probability distribution
of contact.

e We propose a distributed cross-layer
optimization framework for hop-by-hop
congestion control (HHCC) and per-link power
control (PLPC) for upstream SUs. The HHCC
and the PLPC problems are formulated as two
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noncooperative differential game models,

by taking into account the utility function
maximization and linear differential equation
constraint with regard to the aggregate power
interference to PUs and congestion bid for
bottleneck SU.

e We convert the noncooperative differential
game models for the PLPC and the HHCC
problems into two dynamic optimization
problems. By adopting dynamic programming
and maximum principle, we obtain the optimal
transmit power and the optimal data rate of
upstream SUs, respectively. The cross-layer
optimization framework is implemented in
a distributed manner through the cross-layer
coordination mechanism between capacity
supply by power controller and rate demand
by rate controller.

1.4 Organization and notation

The rest of this paper is organized as follows. We
firstly describe the system model in Section 2. Then,
the problem formulation is presented in Section 3. In
Section 4, we derive the optimal solutions to the pro-
posed noncooperative differential game models and
propose the distributed implementation approach to
construct the cross-layer optimization framework.
Simulation results are provided in Section 5, followed
by the conclusions in Section 6.

Notation: A denotes a set, and |.A| denotes the cardin-
ality for any set .A. We use a boldface capital to denote
vector A to discriminate vectors from scalar quantities.
| - | and [I-ll represent the absolute value of a polynomial
function and the Euclidean distance between the pair of
variables, respectively. E[-] stands for the statistical
expectation operator.
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2 System model

2.1 Network model

Consider an underlay multi-hop CRANET coexisting
with a cellular primary network as depicted in Fig. 1,
wherein PUs can send their data traffic to a primary
base station (PBS) via the licensed uplink channels.
We denote the set of uplink channels by #={ch,
chy, -+, chyt where ¢ is the number of uplink chan-
nels. The uplink channel is either occupied by PUs or
unoccupied. We employ the independent and identi-
cally distributed alternating ON-OFF process to
model the occupation time length of PUs in uplink
channels. Specifically, the OFF state indicates the idle
state where the uplink channels can be freely occu-
pied by SUs. By performing spectrum sensing on all
the uplink channels periodically, S SUs leverage the
OFF state to access the unoccupied uplink channels
by PUs. Let V = {v,vy, -, vs} refer to the set of S
SUs. Each SU is equipped with two radio transceivers.
One with a cognitive radio is used to opportunistic-
ally access the uplink channels for transmissions of
data packets. The other is used for exchange of con-
trol signaling. Due to the randomness of data traffic
and the dynamic behavior of PUs, we assume that the
licensed uplink channels are available for usage by SU
v; with a probability of §;, for v;€). Based on the
aforementioned ON-OFF process, the occupancy
probability of uplink channel che by PUs is defined as
agl(ag + Be) [32], where a¢ is a probability that uplink
channel ¢ transits from OFF to ON state, and f5¢ is prob-
ability that uplink channel ¢ transits from ON to OFF
state, for £=1, 2, -+, ¢. It is assumed that SUs can deter-
mine the occupancy probability of uplink channels by PUs
through a priori knowledge of PUs’ activities and local
spectrum sensing. Owing to the mutually independent oc-
cupancy probability of uplink channel c/g, the probability
6; of uplink channels used by SU v; can be expressed as:

Fig. 1 Network model of the underlay multi-hop CRANET where SUs share uplink channels with PUs
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Different from the assumption that time is divided into
fixed time slots in a discrete way, we exploit the continuous
time model to represent the operation duration of the
CRANET. The continuous-time operation is confined to a
predefined time interval (£, 7]. Use 94¢) and z(¢) to denote
the positions of SU v;, PU z at time t € [t,, T], respectively.
Let Ry and R; stand for the maximum transmission range
of SU and the interference range of PU, respectively. With-
out interference with PUs, a pair of SU v; and SU v; can
successfully communicate with each other on channel ck;¢
at time ¢ only if the Euclidean distance between SU v; and
SU v; satisfies 19,(£) - 9{(®)ll < Ry and when there is no any
PU z on channel chg ie., 194f) -zl >R, and 19,2 -
z(Ol > Ry, for v;,v;eV and =1, 2, ---, ¢. In this context,
there exists a successful transmission link denoted by /; ;
from SU v; to SU v; on channel c/g at time ¢. For the sake
of conciseness, instant time ¢ will be restricted to the time
interval [£o, T] henceforth.

Under the constraint of successful transmission links,
we assume that there are multiple different sessions from
source SUs to destination SUs. Each session is associated
with a route from a source SU to a destination SU. Figure 2
illustrates an example of logical topology of the underlay
multi-hop CRANET, where a series of red solid line
denote a session along a route from source SU1 to destin-
ation SU5, which is one of the different routes. It is
assumed that a session consists of several per-link flows
with elastic traffic. We use the term per-link flow to
describe a sequence of data packets with elastic traffic
transmitted along a successful transmission link. With

ag
ag+ P )
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regard to the route from source SU1 to destination SUS5,
data packets of a flow enter upstream SU2, travel via sin-
gle hop, then converge at bottleneck SU3 and, finally,
move to downstream SU4. We focus on a scenario that
multiple different sessions converge at bottleneck SU,
aiming to reinvestigate the cross-layer coupling between
capacity supply by power control and rate demand by rate
control at upstream SUs. From Fig. 2, the convergence of
multiple flows from upstream SU2, SU6, and SUS8 via
single hop may result in a possible congestion at bottle-
neck SU3 when the offered data load exceeds the available
capacity of SU3 due to a buffer overflow, although the
amount of data packets has been delivered to downstream
SU4, SU7, and SU9. We assume that there are N flows of
elastic traffic along the successful transmission links from
N upstream SUs to bottleneck SU v, via single hop, for v,
€V and N<S. Let Vyp and N ={1,2,---,N} represent
the set of N upstream SUs and the set of flows of elastic
traffic from N upstream SUs to bottleneck SU v, for
VupcV . For notational simplicity, the flow of elastic
traffic along link [ ,) from upstream SU v; to bottle-
neck SU v, is described by flow i, for ieN and v;€Vyp.
Assuming that flow i of elastic traffic along link /; »
arrives as a Poisson process of flow arrival intensity A;
with a size drawn independently from a common distri-
bution of mean E[);] [33]. When ¥(; ;) <1, the trans-
mission link load, denoted by ¥; ;, induced by elastic
traffic along link /;; ;) is equal to [33]:

/1[ X E[/l,]

Cun(P)’ @)

¥ip) =

where C;, ,)(P) denotes the capacity of link /; ), and P
= {p1(2), po(2), -, palt)} corresponds to the transmit
power vector of N upstream SUs at time ¢ Here, we use

Inactive PU Upstream SU

{sU6ig. B,
¢ /€« Bac
@ N °, kg’.GSS

Upstream SU

Flow
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@ ‘su s)k
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Fig. 2 Logical topology of the underlay multi-hop CRANET
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pi(t) to represent the instant transmit power of upstream
SU v; at time ¢. Noticing that the transmit power p;(t) of
upstream SU v; can be adjusted in a continuous way but
is also limited by a maximum transmit power threshold
denoted by p,, ie., p;(t)€[0,p;). Based on elastic traffic
model for each flow, the expected duration D; of flow i
with size E[1;] is given by [33]:

E[A]
Ciin)(P) X (1-¥ (i) |

Under spectrum underlay scenario, SUs can simultan-
eously transmit with PUs but have to strictly control their
transmit power to avoid interfering with coexisting PUs.
Note that the simultaneous transmissions among SUs along
a successful transmission link must be undertaken on the
same channel, which will further incur the co-channel
multiple access interference. We assume that the simultan-
eous transmissions among N SUs along a successful trans-
mission link on channel ch¢ can be undertaken under the
CDMA-based medium access in the physical layer [34].
The reason for adopting the CDMA-based medium access
model is that transmit power of upstream SU can be
controlled to induce a different signal-to-interference-plus-
noise ratio (SINR) of successful transmission link due to a
co-channel multiple-access interference [20, 35, 36]. In
principle, link capacity under this scenario cannot remain
fixed but depends on SINR of successful transmission link
between a pair of SUs. Let SINR(; ;)(P) be the received
SINR of bottleneck SU v, along link /; 5, on channel c/;.
Therefore, the capacity of link /; ,) from upstream SU v; to
bottleneck SU v;, can be characterized by a global and non-
linear nonconvex function of the transmit power vector
and channel conditions as follows [20]:

D; = (3)

1
Ciip)(P) = 7 logy (1 +x - SINR;)(P)), (4)
S

where T is a symbol period and y= - ¢:/logx(¢- -
BER) is a constant processing gain factor with ¢;
and ¢, depending upon an acceptable BER along
with the specific modulation and coding scheme. We
assume that a large-scale slow-fading channel model
is adopted to describe the line-of-sight wireless
transmission environment. In this case, channel gain
is subject to distance-dependent power attenuation
or log-normal shadowing. As for the practical non-
line-of-sight scenario, we use a Rayleigh fading
model, in which the channel gain is assumed to be
independent exponentially distributed random vari-
ables with unit mean [37]. Let G, and F( ; de-
note the large-scale slow-fading and the Rayleigh
fading channel gain of link /; ;) from upstream SU
v; to bottleneck SU v,, respectively. Thus, we have
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the normalized Rayleigh fading channel gain E[F; ]
=1 . By using the certainty-equivalent transmit
power and interference power [34, 37], the received
SINR of link [;, at bottleneck SU v, can be
expressed as:

pi(t)Gip)

SINR) (P) = Li+1,+n’

(5)

where #n, is the thermal noise power at bottleneck
SU vy, I, is the interference caused by the PBS, and
I; is the aggregate power interference introduced by
other upstream SUs except upstream SU v;. The ag-
gregate power interference is given by I; =3 ;.\ p,(
t)G(jp). In what follows, we are targeted at the line-
of-sight wireless transmission environment with the
large-scale slow-fading channel gain. How to apply
the dynamic fast-fading or Rayleigh fading model
under the non-line-of-sight scenario into the cross-
layer optimization framework for CRANET will be
our further work in the future. Under spectrum
underlay scenario, the interference power constraint
shall be imposed to protect active PUs’ communica-
tions from harmful interference caused by all the
upstream SUs. We assume that the interference
measurement point is located at bottleneck SU v,
for convenience. Hence, the total interference caused
by all the upstream SUs should be kept below the
interference temperature limit wpgs at the interfer-
ence measurement point of PBS:

> pil8)Gip) < woss. (6)
ieN

2.2 Predictable contact model

Considering that a contact is viewed as a communi-
cation opportunity during which two adjacent SUs
can communicate with each other, we move on to
model the predictable contact between a pair of SUs
from a priori available contact perspective. Based on
the insight into successful transmission link [ ; as
noticed earlier, an encounter e/ is defined as an ef-
fective continuous transmission between SU v; and
SU v; with a certain duration, for v;,v;eV. It is worth
pointing out that an encounter rests on the time of
incidence and the duration of an effective continu-
ous transmission between a pair of SUs [38]. Let t*
@) and At"” represent the time of incidence and
the duration of an encounter e””, respectively, for 0
<At%) < T—t,. Therefore, an encounter e’ be-
tween SU v; and SU v; can be formulated as:
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eli) — {vi, v, (0400 At(w)}_ (7)

Suppose that there exist K encounters between SU v; and
SU v; within a predefined time interval [y, T]. In particular,

the £th encounter egi’j) between SU v; and SU v; with a
duration Atéi‘i ) for€=1,2, - K, is given as:

eéi’j> _ {Vi,v,»7t2’(i’j),At£i’j>}. (8)

where tg’(l” )' refers to the time of incidence of the fth
encounter eél”’ ). For mathematical tractability, we use the
duration ‘A’tél” ) in (8) to characterize the £th encounter, i.e.,
egl” )éAtE"" ) Thus, within time interval [¢,, T], contact C(/)
between SU v; and SU v; can be ri%orously regarded as the
set of all encounters, ie., C"/) = {ell”),e(zl’]) e e%")} and |
C<i’j)\ = K. Note that the £th encounter ezl”) in contact
C"/) can be referred to a random variable due to the uncer-
tainty of communication opportunity between SU v; and
SU v;. In this way, we turn to employ a mathematical statis-
tics theory to attain the probability distribution 1"+ = {
pY"”,pS’”, ~-,p£\i4’j)} of contact C'"/, which has been
derived from Algorithm 1. In Algorithm 1, we introduce a
coefficient M to denote the number of the subintervals,
which is obtained by dividing interval [a,b] equally.
According to the approximate derivation of the sample dis-
tribution in mathematical statistics, coefficient M should be
reasonably assigned, depending on the number of encoun-
ters of K. That is, when K< 100, coefficient M can range
from 5 to 12. Obviously, it will be possible to measure the
uncertainty of contact C*/) between SU v; and SU v; by the
aid of the probability distribution ¥*”. Thus, by analyzing
the statistical data of a priori available contact or all en-
counters between a pair of SUs, it is implicitly understood
that the contact can be in a sense predicted very accurately.
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Table 1 summarizes the constrained relationship
between the number of encounters within subinterval

(d;_1,d)] and contact probability p[w) in Algorithm 1,
for [=1, 2, -+, M. It is important to emphasize that the
probability distribution Y*” belongs to a complete
probability distribution, i.e., Z?ilpl(i’j) = 1. Technically,
the entropy paradigm is widely used for a measure of
the uncertainty or randomness associated with a random
variable in information theory ([39]. In order to
characterize quantitatively the probability distribution
%), we put forward an entropy paradigm by using
Shannon entropy theory to measure the uncertainty of
contact C'"/) . Specifically, the entropy H(Y”) of the
probability distribution Y**” can be given as:

H(Y(i,/)) —_ ;PEW) lognglﬁl)' (9)

Based on Algorithm 1, it is obvious to find that co-
efficient M impacts the structure of the probability
distribution Y**”. Thereby, the entropy H(Y“”) will
depend on the selection of coefficient M. Recall that
the probability §; of uplink channels used by SU v;
determines the stability of successful transmission link
l4,j or even the contact C%) between SU v; and SU
v; due to the impact of PUs’ activities on the licensed
uplink channels. As such, we formally devise a
contact affinity metric to describe the stability of the
contact between a pair of SUs. Without losing gener-
ality, the contact affinity metric A ; between SU v;
and SU v; within time interval [ty,7] is formally
expressed as:

Algorithm 1 Probability Distribution Generation Procedure of Contact ¢t

1: Input: The K encounters ), .- eli).

2: Output: The probability distribution 1) = { pl(i‘f ), P pf‘;’" )} of contact €™/,

3 Sort ") &) ... ") in ascending order with the minimum value labeled by ¢/ and
" maximum value labeled by ¢, ie., ¢, &) ... el

4: Va,b>0, for a<e]*“‘/) and b>e§i’/).

Divide interval [a,b] into M equal subintervals, i.e.,

Calculate the number of the K encounters within subinterval (d,,l,d,] ,lLe., q,(i'j ).

% acdy<d,<dy<d,, <dy =b.

6: for /=1—-M do

7: d,—d_ =(b-a)/M.

8:

9: Generate the contact probability pl("’j )= q,(” ) / K.

10: end for
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Table 1 Constrained relationship from algorithm 1

Subinterval Number of encounters Contact probability

(do, dh] qg"/) pgl-,/) _ qg/',j)/K

(dy, do) g\ D — g s

(Am— 1, dw] qﬁ'/) p;;/) — qfwf,/’)/K
Ayj = H(r(i,/)) X 8 X 8. (10)

3 Problem formulation

In this section, we intend to employ the differential
game theoretic approach to formulate the PLPC
problem in the physical layer and the HHCC prob-
lem in the transport layer. Clearly, the distributed
strategy needs to be used to design the cross-layer
optimization framework for congestion and power
control due to the lack of centralized control and
global information under an underlay CRANET sce-
nario. As depicted in Fig. 3, each upstream SU will
serve as power and rate controller in charge of joint
optimized allocation of transmit power in the phys-
ical layer and data rate in the transport layer. Note
that the change of power and rate will be continu-
ous in time due to the fact that dynamic congestion
and power control will be more realistic in a prac-
tical environment.

3.1 Per-link power control in the physical layer

Given the channel conditions, the capacity of suc-
cessful transmission link between a pair of SUs is a
nonconvex function of transmit power vector P. In
fact, increasing the link capacity on one link may
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reduce the link capacities on other links because of
the mutual interference caused by SUs [20]. Instead,
each SU is expected to increase its transmit power
to provide as much link capacity that per-link flow
requires [21]. However, this adjustment of power will
generate extra interference to other SUs. It is neces-
sary to achieve an optimal per-link power allocation
in the physical layer for upstream SUs to meet link
capacity supply for all the flows. By letting the trans-
mit power of upstream SU v; equals the maximum
transmit power threshold, we can easily obtain the
maximum transmit power vector P = {p,,p,, -, Py}
The transmission loss along link /; ;) from upstream
SU v; to bottleneck SU v, on channel ch¢ is denoted
by % ». Due to the line-of-sight wireless transmis-
sion environment with slow-fading channel model,
the transmission loss along link [; ) is represented
by 714, ») = [c/(47fe - 19,(2) - 9,(®)IN]% where fe is the
carrier frequency operating on channel che and ¢ is
the speed of light. Therefore, the maximum transmit
power threshold p; of upstream SU v; along link [;
from upstream SU v; to bottleneck SU v, can be for-
mulated as:

P

p = (11)
ib)

where p‘fg is the received reference power at bottle-

neck SU 1);, along link /(; ). Given the maximum trans-
mit power threshold p;, the capacity of link [ ) from
upstream SU v; to bottleneck SU v, can be denoted by

(i) (P). Owing to maximum transmit power thresh-
old, the value of power reduction for upstream SU v;
is equal to p,—p;(¢). Recall that bits-per-Joule capacity
usually serves as a metric to measure the energy

Shadow Price &,

Rate Demand r'(r)

2, (1)> L,

|[«—Buffer —|

Interference
Power Controller

Backpressure Signal

Bandwidth-to-Bid Rati

F— o) —i

A

7(t)

|

f——— Buffer x, ——

Congestion Detection

2 0) i

I,= Z,P/(t)G(/,h) T

Capacity Supply C,,(P")

Shadow Price A

Energy-Per-Capacity

Upstream SU

Bottleneck SU

Fig. 3 lllustration of cross-layer optimization framework for hop-by-hop congestion control and per-link power control
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efficiency of a communication system [40]. Consider-
ing the impact of power reduction on energy efficiency
with a link capacity constraint, energy efficiency for
power reduction is formally defined as the power
reduction achieved per capacity obtained under the
maximum transmit power threshold. Thus, we plan to
use the energy efficiency for power reduction to
characterize a pricing factor of energy-per-capacity,
aiming to design the revenue function of power reduc-
tion for upstream SU. Given the maximum transmit
power vector P, the pricing factor @,(t) of energy-per-
capacity of upstream SU v; at time ¢ can be formally
defined as:

pi—p;i(t)
we
pi—pi(t)
1 D:Gip)
— log, | 1+x- '
Ts 2 Z ﬁ]Gbe) + nb + n()
jeN\i

(12)

Revisiting the pricing factor of energy-per-capacity of
upstream SU v;, we define the revenue function of power
reduction for upstream SU v; at time ¢ by attaining the
product of the pricing factor together with power reduc-
tion value, ie., @;(¢)(p;-p;(t)). Let & denote the pricing
factor announced by upstream SU v; to measure the cost
of the amount of aggregate power interference to PUs.
The amount of aggregate power interference to PUs is
denoted by I(f). The cost function of aggregate power
interference to PUs for upstream SU v; at time ¢ is given
by wI(¢). Note that I(¢) is a dynamic variable influenced
by transmit power pit) of upstream SU v; and instant
level I(¢) within time interval [y, 7]. Thus, the aggregate
power interference I(f) can be characterized as a linear
differential equation given as:

di(z)

el ;Pi(t)_ﬂ(t) , (13)
](to) =1

where y>0 is a penalty factor of the amount of
aggregate power interference and I; is an initial
aggregate power interference to PUs at time ¢,.
Therefore, based on both revenue and cost func-
tions as mentioned, the utility function U’ (¢) of up-
stream SU v; at time ¢ is given as:

i _ Picpi(t) _ o
ui(6) = 255 Grpi0)-ol ()

Note that utility function U(¢) is a continuously
differentiable function of p;(¢) and I(t). We can find

(14)
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that utility function in (14) mainly relies on pricing
factor of energy-per-capacity in that the marginal
effect on utility function stems from aggregate
power interference. As shown in Fig. 3, we figura-
tively define pricing factor @;(¢) as a shadow price
N; which is a function of transmit power of up-
streeam SU v, Our optimization objective is to
maximize utility function U'(¢) by choosing optimal
transmit power p?(t) of upstream SU v; according
to @,(t) and w:

T pi—p;(t) = o e~a(t-t)
/to (—ab)(ﬁ) B-pi(t)) 1(t>> dr,

Maximize :
Pi (2)

(15)

where a is a discount factor, for 0 <a < 1. Note that
discount factor a is an exponential factor between 0
and 1 by which the future utility must be multi-
plied in order to obtain the present value under the
underlying structure of differential game. Hence,
utility function Ui(¢) has to be discounted by the
factor e @(tt) Formally, the PLPC problem in the
physical layer is formulated as a differential game
model FPchi

Trive = (N PO b 10 {0} o} (16)

where

e Player set N: N ={1,2,---,N} is the set of all
the upstream SUs in the PLPC problem as power
controllers playing the game. Note that upstream
SU v; stands for the ith player which is a rational
policy maker and acts throughout time interval [Z,, T].

o Set of strategies {p;(£)},.: The strategy of the
ith player refers to its instant transmit power
limited by the maximum transmit power
threshold, i.e., p;(£)€[0,p;).

o State variable I(£): The state variable of the ith
player corresponds to the amount of aggregate
power interference to PUs.

e Set of utility functions {1 (¢)},.,: UL (t) is the
utility function of the ith player. The objective
of the ith player is to maximize its utility function
by rationally selecting optimal strategy pl#(t) and
optimal state Fo.

3.2 Hop-by-hop congestion control in the transport layer
Under the scenario that multiple flows from
upstream SU2, SU6, and SUS8 via single hop con-
verge at bottleneck SU3 in Fig. 2, bottleneck SU3 is
a little more inclined to be a congested SU when
offered data load exceeds available capacity of SU3



Zhang et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:57

due to buffer overflow. The amount of data packets
with elastic traffic in the buffer of bottleneck SU v,
at time ¢ is denoted by ¢,(f). Given time ¢, t €[ty
T] and t<t, the amount of data packets ¢,(£) of
bottleneck SU v, within the time interval [¢,¢]
satisfies the following iterative equation:

@,(¢') = max{ min{g,(6) + ¢}~ (). 10 -5 (¢),0},
(17)

where «; is the buffer size of bottleneck SU v, and
¢t (¢) and ALY(f) are the amount of data
packets accumulated in the buffer of bottleneck SU
v, and the amount of data packets that could be
delivered successfully to downstream SUs, respect-
ively. Considering the constraint of the saturation
value ib of the buffer of bottleneck SU v;, we have
the buffer constraint ¢,(t)<L, to guarantee that
bottleneck SU v, will not become the real con-
gested SU.

In the end-to-end congestion control, the conges-
tion detection information is piggybacked over data
packets to the destination and then sent to the
source through the acknowledgement packet from
the destination. However, to feed the congestion
detection information back to the upstream SU2,
SU6, and SUS8, bottleneck SU3 will generate a back-
pressure signal to notify that the congestion occurs
as shown in Fig. 2. Compared with the end-to-end
mechanism, the backpressure signal is directly sent
back to the corresponding upstream SUs from the
bottleneck SU3 via single hop. Instead of passing
the congestion detection information sent to the
source in an end-to-end approach, the idea of hop-
by-hop congestion control policy in this paper is
that upstream SU v; directly adjusts the data rate
ri(t) according to the backpressure signal of bottle-
neck SU v, when ¢,(¢) > L,. Based on the radio
transceiver equipped by each SU, the backpressure
signal is assumed to be transmitted through a com-
mon control channel.

Given the received SINR of link /(; ), we proceed
to derive the required bandwidth of upstream SU v;
for transmissions of data packets with elastic traffic.
According to Shannon’s capacity formula, the
required bandwidth of upstream SU v; can be
expressed by r;(t)/loga(1 + y - SINR(; ,)(P)). We fur-
ther assume that bottleneck SU v, acts as a bidder
and pays for upstream SU v; to accommodate the
consumption of its network resources while regulat-
ing the data rate r;(¢). We use x(¢) to represent the
congestion bid that bottleneck SU v, is willing to
pay. We then characterize a bandwidth-to-bid ratio
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aiming to describe the efficiency of bid with regard
to the required bandwidth, i.e., [ri(£)/log,(1+y-
SINR(; 5)(P))]/x(£). Hence, the cost function C,(f) of
upstream SU v; at time ¢ can be defined as:

r,‘(t)/ 10g2<1 +X . SINR(,[,) (P))

Ci(t) = Vi(t) X x(t)

x D;. (18)

We also use the bandwidth-to-bid ratio to figuratively
express the shadow price N; which is a function of the
data rate of upstream SU v;. Note that the shadow price N;
depends on an optimal per-link power allocation in the
PLPC problem due to the constraint of the received SINR
of link /; 5 in bandwidth-to-bid ratio. In this way, we turn
our attention to the cross-layer coordination mechanism
between capacity supply by power controller and rate de-
mand by rate controller based on shadow prices N; and N;
as shown in Fig. 3. By taking into account the stability of
the contact between a pair of SUs, we conclude that A;
»¥(?) is the accumulated revenue obtained by upstream
SU v; that bottleneck SU v, needs to pay. We also remark
that the congestion bid x(f) is a dynamic variable influ-
enced by rate r{t) as well as by instant level of x(f) within
time interval [£y, T]. Accordingly, the congestion bid x()
can be formulated as a linear differential equation:

dx(z) _
—3 = *(0)- ; ory(t) ’ (19)
x(to) = Xty

where x;, is an initial congestion bid that bottleneck
SU v, needs to pay at time £, and v is an average
bid per rate, which is assumed to be a unit value for
all the upstream SUs, i.e., v=1. Formally, based on
both revenue and cost functions as stated before, the
utility function U'(t) of upstream SU v, at time t
can be expressed as:
Uy(t) = Aipyx(t)-Ci(2). (20)
Noticing that utility function Uj(¢) is also a con-
tinuously differentiable function of ri(t) and x(t).
Our optimization objective is to maximize utility

function Uj(t) by choosing optimal data rate rft(t)

of upstream SU v; while satisfying the buffer con-
straint at the same time:

T
Maximize : /(A(i,b)x(t)—Ci(t))e’r<t’t°)dt, (21)

ri(t) to

where 7 is a discount factor, for 0 < r< 1. Similarly,
Ui(t) will also be discounted by the factor e "¢,
Correspondingly, the HHCC problem in the trans-
port layer can be also defined as a differential game
model I'yycc:
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Trice = {N . r(6) iy x(6), {50} o b

(22)
where

e Player set N: N = {1,2,---, N} is the set of
all the upstream SUs in the HHCC problem
as rate controllers playing the game. Upstream SU v;
is also known as the ith player which
is a rational policy maker and act throughout
time interval [z, T].

o Set of strategies {r;(t)},.»: The strategy of
the ith player corresponds to its instant data
rate 7).

o State variable x(#): The state variable of the
ith player refers to the congestion bid that bottleneck
SU v, is willing to pay.

o Set of utility functions {U5(¢)},.,: Ub(2) is
the utility function of the ith player. The
objective of the ith player is to maximize its
utility functlon by rationally choosmg optimal
strategy r’ (t) and optimal state x”(¢).

4 Optimal solution and distributed
implementation

Conventionally, upstream SUs as players of the game are
expected to act cooperatively and maximize their joint util-
ity functions with fairness for players by constituting the
collaborative coalition. As a result, the global optimization
of transmit power and data rate will be attained through
cooperation among players with group rationality, which
has been recently reported in a cooperative bargaining
game [41]. However, each upstream SU is unwilling to
jointly adjust the power and rate because of the selfish be-
havior in forwarding data packets. This is a natural idea due
to the fact that the transmissions lead to the consumption
of network resources of upstream SUs, such as energy and
spectrum. Therefore, the cross-layer optimization frame-
work for congestion and power control will be restricted to
noncooperation scenario. In the noncooperative differential
game models I'prpc and [yycc, the ith player competes to
maximize the present value of its utility function derived
over time interval [ty, 7]. For mathematical tractability, we
define the starting time of the differential game models
I'prpc and Typec as ty = 0 hereinafter, but the results can be
easily extended to more general cases.

4.1 Optimal solution to I'p;pc

For the noncooperation scenario, we formulate a
dynamic optimization problem P1 to derive the optimal
solution to the noncooperative differential game model I'p;pc
by taking into account the utility function maximization
problem coupled with the linear differential equation con-
straint in (13):
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P1 Maximize :

pi=pi(t) »
(1) /0 (Cﬁb)( )(Pl -pi(t))-e ()>e dt

Subject to : d{i(tt) = Zpi(t)—yl(t)a

ieN

I(to = 0) = Iy.
(23)

We aim at deriving an optimal solution to P1 by
employing the theory of dynamic programming devel-
oped by Bellman [42]. Remark that the optimal solution
is also viewed as a Nash equilibrium solution to P1 if all
the players play noncooperatively. Here, we relax the
terminal time of I'p;pc to explore when T approaches o
(i.e., T— oo) as an infinite time horizon. It is more realis-
tic to obtain the long-term optimal power allocation for
upstream SUs due to spectrum underlay strategy with

cellular primary network. We use p; (t) to represent the
optimal solution to P1 and assume that there exists a
continuously differentiable function V'(p;I) satisfying
the following partial differential equation:

i _ PENPE (ﬁx‘Pi(t )2 3‘/ (P‘
aV'(p;,I) = Mz;)‘((ltr)mze : {76'?1_,,) ®) -oI(t) (Z Pi(t) +pi(t)- (t)) }

(24)

4.1.0.1 Theorem 1 A vector of optimal transmit power p?
= {p’f(t),pf(t), ~~,pf,(t)} of upstream SUs constitutes a
Nash equilibrium solution to P1 if and only if the optimal

transmit power p}#(t) of the ith player and the continuously
differentiable function V'(p;, I) can be formulated as follows:

oCy (P
vl () =7 %(ﬂ) (25)
: 0 [©C{,(P)(1+2N)
V(pl#’[) “alaty) < (b(aer el ;p,) (26)

Proof: See Appendix 1. m.

From Theorem 1, we can observe that the exist-
ence and uniqueness of the Nash equilibrium point
to P1 are guaranteed under the constraint of analyt-
ical solution in (25) and (26). It is also revealed that

the optimal transmit power p?‘(t) has been character-
ized by a fixed and unique value in (25). Evidently,
Theorem 1 mathematically ensures the convergence

of pi (t) to a Nash equilibrium point. The key point
to derive the optimal solution to the differential
game model I'p;pc is illustrated with a block diagram
shown in Fig. 4a.

4.1.0.2 Proposition 1 For the given large-scale slow-
fading channel model, by letting G, = wpps/(10 go) the
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Algorithm 2 Distributed Optimal Transmit Power Update Algorithm

l: Input: P, P, P".

o}

Output: Updated instant transmit power vector P© = { (1), p5 (1), oy (t)} )

2:
3: Initialization: C;, (P), y=-¢/log,(p,-BER), a, o, 7.
4: Update shadow price &, using (28).
5: for i=1-> N do
6: P (1)« p(t) using (25).
7:  end for
8 if D p/(1)G,, >@p then
9: repeat
10: for i=1->N do
11: if 0<i) <1 then
12: P2 (1)< |p? () -5 < 5.
13: else
14: p?@)«-ﬁ?@)-@%JJXﬁm
15: end if
16: end for
17: until > p,(¢)G,) < @y
18: end if

optimal transmit power p?(t) of the ith player should
follow the interference power constraint:

12 0y <G T l19:6)-0s (o)1

ieN ieN

(27)

Proof: See Appendix 2. m.

Note that the optimal transmit power p}#(t) of the ith
player is fully constrained by the Euclidean distance
between upstream SU v; and bottleneck SU v, under the

given channel model. Substituting for p? (t) with its expres-
sion from Theorem 1 and taking into account the previous
expression of shadow price ;, we can easily rewrite ; as:

®
Y 2a+y) (28)

Apparently, shadow price N; tends to be a constant value
for all the upstream SUs. Although (25) and (26) offer an
analytical solution to P1, it still remains to design an algo-
rithm to ensure fast convergence of the update of optimal
transmit power. Therefore, we devise a distributed optimal
transmit power update (OTPU) strategy given in Algo-
rithm 2 to update the optimal transmit power vector P* for
upstream SUs. Similar to [43], shadow price &; in Algo-
rithm 2 needs to carefully be chosen to ensure fast conver-
gence of the update of instant transmit power p{(¢). It is

also noted that the update of instant transmit power p{(¢)
for upstream SU v; can be made locally according to its opti-

mal transmit power p?(t) along with interference power
constraint.

4.2 Optimal solution to Iyycc

For notational simplicity, we begin by defining a notation
B, » = — Di/logy(1 + x - SINR(;, (P)). For the noncoopera-
tion scenario, we formulate a dynamic optimization
problem P2 to derive the optimal solution to the nonco-
operative differential game model [cc by taking into
account both the utility function maximization problem
and the linear differential equation constraint in (19):

P2 Maximize :

T r3(¢)
Aipx(t) + By~ e "dt
i [ (4ua0)+ 200 375

dx(t
Subject to : =

(29)

We turn to take advantage of the theory of maximum
principle developed by Pontryagin [42] to derive an optimal

solution or a Nash equilibrium solution to P2. We further

use r;#(t) to represent the optimal solution to P2 and as-

sume that there exists a continuously differentiable function
W'(r;, x) satistying the partial differential equation as follows:
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Fig. 4 The block diagram of the dynamic optimization problems P1
and P2 coupled with their optimal solutions: a optimal solution to

Ip1pc and b optimal solution to [jcc
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oW (r;
—M = Maximize
ds ri(t)

: { <A<,v.b)x(t) +B(z’.b) 2((;))) e
BW r,,x ( (6)- Z

jeN\i
For tractability, we introduce two extra introduced aux-
iliary variables Y;(¢) and Ji(¢) to characterize W(r; x). Spe-
cifically, we define W'(r;, x) 2 (Yy(£)x(t) + J(£))e ™.

4.2.0.1 Theorem 2 A vector of optimal data rate R = {

r’f(t), rf(t), ST rf[(t)} of upstream SUs constitutes a Nash
equilibrl’um solution to P2 if and only if the optimal data

rate r} ( ) of the ith player can be expressed as:

oy i)

, , 31
; 2B, (31)

where Y{(t) and J{t) satisfy the following differential
equations:

dvi(r) 1
E_4B(i,b)y"2(t)+(r 1)Yi(t)- ; /m,
dri(e)

G 7 Ji(2). (33)

Proof: See Appendix 3. m.
For notational simplicity, we set Q(; ;) = 1/(4B;p)) + 0.
52/.@[\[,1/3(,‘,@) and ¢ = \/(r—l)2 +4Q ;i p)A(ip), for 4Q;

wAep + (T- 1)%> 0. We also denote G, as a constant num-
ber. Substituting €2; ) into &, we can rewrite € as follows:

Zi

jeN\i (/’b>

A,
e= |(r-1)*+222

34
B(l b) (34)
4.2.0.2 Proposition 2 The auxiliary variable Y,(t) in the

Nash equilibrium solution r; (t) to P2 can be further
given as:

((r-1) + e)et-®) 4 g—7 +1
20 p) (1-elt-G)e)

Yi(t) = (35)
Proof: See Appendix 4. m.
Combining Y;(¢) in (35) and € in (34) yields the
expression for Y(¢) as:

jeN\i Y

(r 1+\/(r 1)
Yi(t) =

Alib)

(th)\/(rl)z+B
1
+2A(,b) Z 3 ’b))e

1

m +2A(; )

“ SR Biis A 1
jeni = Uib) + (T71)2 + 2(5b) + 2A(i.b) Z —T+1
Biip) i Bob)

(@) i Bun

(t-Ga) |, | (r— 1) +K—+2A
1 1 )
2\ g 05 S| 1-e

jgv'\/’\i B(/vb)
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Substituting By, ») = — D;/loga(1 + x - SINR; ,)(P)) into
(36), we can rewrite Y;(£) as follows:
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Z log, (1 + x - SINR; ;, (P))
.

JjeN\i D;

Agip) L 1+
<1—1+, (r-1)2- (ib) logy( g

jeN\i

-SINR(;(P)) iy T log, (1+x - SINR(,_,,)(P)))

A ) logy (1HxSINR ;4 (P)
(tG2)$ (712260 2( n (i) ) D)
e

D

Yit) =

4D; D

jeN\i J

2( log, (1+.x - SINRy (B) - > logy (1+x - ‘INRW)(P))

(6 |y A logz(l}l;\;SINR(Lh)(P‘,) 2400 Z 10g2 (1 +X-DS.INR(,'71,)(P))
jeN\i J 21

(r-1 2

Auy log, (1+x - SINR; 5 (P) log, (1 + x - SINR 5 (P)
A logy( (ib) )‘ZA(i-h)Z A () (P))

T+1
jeN\i D;

+

4D; jeN\i D;

(t-Gy)
2(logz(l+x-SlNRu,w(P))+O'5 > logy (1 +x - vINR(/‘,b)(P))> e \J

Let G; be a constant number. Based on (31) and
(29), the optimal data rate r#(t) and the optimal

i
state variable x"(f) associated with r}#(t) can be de-
scribed as:

N
Yi(t <10A52 Y"f”)t
A= 10 [ R0 g,

2B;p) ’

(38)

N
1-05% lfm)t
£ (t) = e< =) 4 Gs.

From (38), we can see that the optimal data rate

r?(t) is determined by both By, and auxiliary vari-

able Y;(f) under the received SINR SINR; ;) (P) of
link /(; 5. Unfortunately, it is difficult to directly ob-

tain the relationship between SINR(; ,)(P) and r?‘(t)
through an analytical derivation because Y;() cannot
be further simplified into a concise structure.
Thereby, given the channel gain G, of link [
under the large-scale slow-fading channel model, we

use the numerical simulations to validate the effect-

iveness of the optimal data rate r;#(t) of upstream

SU v,. We further remark that Theorem 2 and Prop-
osition 2 characterize the existence of the Nash
equilibrium point to P2. It should be also admitted

that the optimal data rate rf(t) has been formulated
as a fixed and unique value in (38) by using auxiliary

variable Y;(¢) in (37). Correspondingly, Theorem 2

(39)

mathematically ensures the convergence of r?(t) to a
Nash equilibrium point. The key point to derive the
optimal solution to the differential game model

I'yec is  also illustrated with a block diagram

o ' log, (1 + x - SINR; ;) (P)
(-1 Afip) Ez(l‘;:smnlb)l"/) MU Z 2( Dl (j.b) )

JeNNi 1

(37)

depicted in Fig. 4b. With the help of vectors R* and
P”, shadow price N; can be calculated as:

1 o)

Ni= 10g2(1 +X-SINR(,,b)<P#)) ()

(40)

4.2.0.3 Proposition 3 For the given vector R” and vector
P’, a strict lower bound of shadow price N; can be ap-
proximately calculated as follows:

-1

R pi () (@)
iz | o X IWAGIEEEEG) e
jeN\i

Proof: See Appendix 5. m.

Let rt’li‘jzg represent the baseline rate along link /; )
from upstream SU v; to bottleneck SU v,. To guarantee
the constraint of the saturation value of the buffer of
bottleneck SU v, we design a distributed algorithm to
obtain the optimal data rate update (ODRU) for up-
stream SUs as summarized in Algorithm 3, where R
={ry(8), r5(t), ---, rn(t)} denotes the data rate vector of N
upstream SUs at time ¢. A simple yet effective way to lo-
cally adjust the instant data rate rP(¢) of upstream SU v;
is to employ the optimal data rate r?(t) under the condi-
tion of buffer constraint ¢,(¢)<L;. Also, baseline rate
rt’li‘jzg in Algorithm 3 should be carefully chosen to ensure

the effectiveness of instant data rate.
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Algorithm 3 Distributed Optimal Data Rate Update Algorithm

1: Imput: R, R*, P*, x*(r).

Output: Updated instant data rate vector R® = {rIO (), (2), 1y (t)} .
Initialization: SINR, (P#) . x=-¢,/log,(9,-BER), D,, G,, G;, 7, .

Update shadow price &, using (40) for given R”, P* and x"(¢).

2

3

4

5: for i=1—>N do
6: (1)« (t) using (38).
7

8

end for
if ¢,(t)>L, then
9: repeat
10: for i=1->N do
11 r? () = n® (6) = Nxagy.
12: end for
13:  until ¢, (1)<L,
14: endif

4.3 Distributed implementation

So far, we have devised Algorithms 2 and 3 to sat-
isfy the interference power constraint along with
buffer constraint by locally adjusting the optimal
transmit power and the optimal data rate, respect-
ively. In what follows, we would like to describe the
distributed implementation strategy to realize the
cross-layer optimization framework for congestion
and power control by jointly optimizing PLPC-
HHCC simultaneously. In conclusion, the cross-
layer optimization scheme for joint PLPC-HHCC
design is implemented in a distributed manner as
follows:

4.3.1 Shadow price
Update shadow price N; using (28) and shadow price &;
using (40), respectively.

4.3.2 Power controller in the physical layer

For each upstream SU, we initially assign optimal
transmit power p;#(t) using (25) to update instant
transmit power p®(¢) at power controller. Due to the
interference power constraint in (6) to protect PUs,
pP(t) should satisfy the following distributed power-

update function when 7, \p;(t)G(ip) > @wpss via
OTPU algorithm:
pe(t) — }p?(t)_xl X,lﬁi‘7 for 0 < Ni <1
' }P?(t)—(‘vi) Xﬁi‘, for N;>1
(42)

4.3.3 Rate controller in the transport layer

For each upstream SU, we also initially assign optimal
#

data rate r7 (¢) using (38) to update instant data rate r(

t) at rate controller. Owing to the buffer constraint ¢, (¢

)<L, to guarantee that bottleneck SU v, will not become
congested, rP(¢) should be subject to the following dis-

tributed rate update function when ¢,(¢) > L, via
ODRU algorithm:

r(8)—rP () - N x 1. (43)

4.3.4 Cross-layer coordination mechanism

With the aid of the updated power p?P(t), the link
capacity supply C;, ) (P®) with respect to each up-
stream SU is regulated by power controller by using
(4) as shown in Fig. 3. The rate demand depends on
instant data rate rP(¢) regulated by rate controller,
which is nonlinear function of instant transmit

power vector P® according to (37) and (38).

5 Simulation results

5.1 Simulation settings

The simulation scenario is shown in Fig. 5, which
consists of one bottleneck SU and N=6 randomly
distributed upstream SUs transmitting data packets
with elastic traffic towards bottleneck SU within a
range of 100 m x 100 m. The scenario is easily ex-
tendable to a general case which involves much



Zhang et al. EURASIP Journal on Wireless Communications and Networking (2018) 2018:57

100
"o 0 ®

@)
Inactive PU

80} Q D/ o

Q ] N @
] Flow 12 @)
60r O \_ Fows / d

m L5
Active PU O ,‘),% ©
R [:] \ ~~ Flow 5
AN \ﬁ Other SU
\\ ~~~\

Range (m)

40+ [

R : 4
Flow 2, .

*“ Flow 3i \ ~~
/’% > ‘\flow s ©
o - @ ﬂ\ @)
(O
\\
Q Upstream SU ] @
0 1 1 1 1
0 20 40 60 80 100
Range (m)

. Bottleneck SU (@)

Fig. 5 Simulation scenario: N =6 upstream SUs transmitting data
packets with elastic traffic towards bottleneck SU within a range of
100 m x 100 m. The dotted lines correspond to the successful
transmission links from upstream SUs to bottleneck SU

more randomly distributed upstream SUs. Our sim-
ulations pay more attention to evaluate the effect of
the cross-layer optimization framework for conges-
tion and power control on both optimal data rate
and optimal transmit power of six different per-link
flows. Different from the channel with carrier fre-
quency of 890.4 MHz used by SUs, we assume that
active PUs in simulation scenario occupy other up-
link channels from set S This can make possible
the successful transmissions of data packets from
upstream SUs to bottleneck SU. The probability §;
of uplink channels used by each SU is assumed to
be 0.65. The channel gain of link /; ;) is defined
with large-scale slow-fading model, given by G 5 =
100gol19:(t) = 9,()II"* [34], where the reference chan-
nel gain go is set to 9.7x10™* [44]. We adopt a
processing gain factor y= —1.5/log,(5BER) where
the target bit error rate is BER=10"> for multiple
quadrature amplitude modulation with a symbol
period of T,=52.5 us. The thermal noise power at
bottleneck SU and interference caused by PBS are
assumed to be ng= -50 dBm and Ip=10 dBm, re-
spectively. In addition, the receiving reference power

at bottleneck SU is chosen as pzl.efh) = -37 dBm for

each upstream SU. With regard to the elastic traffic
modeled by Poisson process [32], the flow arrival
intensity is set to a normalized value A;=125 bps
for each upstream SU, and the mean of flow size is
given as [E[l;] =2 Mbits. Under our differential
game models I'p;pc and I'ypcc, we choose the
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pricing factor w =22, the penalty factor y=0.7, two
constant numbers G, =5.5 and G5 = 360.

Due to the lack of empirical data about available
contact or all encounters between a pair of SUs, to

evaluate the uncertainty of contact C** along link
li;,p)y we assume that the minimum and maximum
values of encounter duration for all encounters
within contact C"*?) is offered in Fig. 6. Note that
Flow i in Fig. 6 corresponds to contact C"*) along
link /; ), for i=1, 2, -1, 6. We set the number of
subintervals in Algorithm 1 to M =8 for all up-
stream SUs in that the number of encounters K
seems to be a lower value because of the short time
interval in the simulations. In fact, game time or
time interval is just set to [0,5] s in the following
simulations. Under this setting, the probability distri-
bution Y*® of contact CY derived from Algo-
rithm 1 is assumed to comply with the contact
distribution as provided by Fig. 7.

The proposed OTPU algorithm for the PLPC
problem is compared with the existing classical
distributed constrained power control (DCPC)
algorithm in [45]. The DCPC algorithm is a SINR-
constrained power control algorithm which distribu-
tively and iteratively searches for transmit power
updated from the ¢ th iteration to the (¢+1) th it-
eration. Let SINR!*" denote the target SINR for
upstream SU v; to maintain a certain QoS
requirement. In the simulations, the target SINR can
be set as SINR/” =8 dB. Therefore, the iterative
function of transmit power update in the DCPC al-
gorithm with number of iteration ¢=0, 1, 2, - is
specifically given as [45]:

45| | == Minimum Value
I vaximum Value

Duration of Encounter (s)
N
&)

Flow2 Flow3 Flow4 Flow5 Flow6
Flow

Flow 1

Fig. 6 Comparison between minimum value and maximum value of

encounter duration among different per-link flows
- J
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e[ some

(9
pi minq 7;; :
SINR(S), (P)

i

(44)

6 Results

6.1 Performance of OTPU algorithm

Figure 8 shows the optimal transmit power com-
parison for six per-link flows between the OTPU al-
gorithm with the evolution of discount factor a and
the DCPC algorithm with ¢=300 iterations. This
figure clearly depicts that an increased discount fac-
tor from 0.1 to 0.9 will increase the optimal trans-
mit power of each flow under the OTPU algorithm.
Apparently, this is a direct consequence of discount
factor a on the optimal transmit power according
to (25). However, it is observed that the optimal
transmit power of each flow via the DCPC algo-
rithm presents a fixed constant value. This is due
to the fact that the optimal transmit power of each
flow via the DCPC algorithm converges to an ex-
pected equilibrium point after 300 iterations. It is
worth mentioning that Theorem 1 mathematically
makes the optimal transmit power of each upstream
SU converge to a Nash equilibrium point distribu-
tively. From the results, we can also see that the
optimal transmit power of each flow by the OTPU
algorithm is obviously lower than that of the DCPC
algorithm. This can be explained by the fact that
DCPC algorithm gives rise to more power

consumption for maintaining a certain SINR for
each upstream SU. However, the optimal transmit
power of each flow based on the OTPU algorithm
mainly depends upon the maximum transmit power
threshold of upstream SU. On the other hand, the
instant power level can be further reduced via the
change of discount factor 4.

6.2 The impact of discount factor on optimal transmit
power

Figure 9 illustrates the optimal transmit power com-
parison for six per-link flows via the OTPU algo-
rithm under different discount factors. It is noted
that the total interference caused by six upstream
SUs satisfies the interference temperature limit
wpps = — 10 dBm according to the constraint of (6).
As the discount factor increases, the optimal trans-
mit power of six flows obtained by the OTPU algo-
rithm will raise as well. As expected, the optimal
transmit power of flow 6 can achieve the minimum
transmit power level with approximately 50 mW,
and the optimal transmit power of flow 2 can ob-
tain higher transmit power level with the maximum
value nearly 570 mW. However, the increasing rate
of the optimal transmit power in regard to flows 6,
3, and 1 flattens out after discount factor a=0.6.
The reason is as follows. Firstly, based on (25), the
discount factor effect is in direct proportion to the
optimal transmit power. One the other hand, with
even higher Euclidean distance between upstream
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.

SU and bottleneck SU, the maximum transmit
power threshold will increase as well according to
(11). Under the simulation scenario, the higher Eu-
clidean distance of the successful transmission link
of flow 2 leads to a higher transmit power level
accordingly.

6.3 Optimal data rate performance of ODRU algorithm
Figure 10 exhibits the evolution of the optimal data
rate for six per-link flows obtained by the ODRU al-
gorithm versus game time f€[0,5]s under the con-
dition of discount factor 7=0.2 and saturation value
L, =1 Mbps. From the results, we can see the opti-
mal data rate for six flows gradually increase with
the growth of game time f. Meanwhile, the optimal
data rate levels of six flows are very close from 0 to
4 s. When game time ¢ is more than 4 s, the gaps
among the optimal data rate levels will be enlarged.
This demonstrates that the optimal data rate has
large values during the game time of the end inter-
val of the game. Under discount factor 7=0.2, the
optimal data rate value of flow 2 is much larger
than those of other flows with maximum value of
300 kbps, and the optimal rate of flow 6 has the
lowest level within 50 kbps. It can also be observed
that the optimal data rate of flow 2 yields significant
performance gains than other flows under the condi-
tion of the fixed discount factor. According to satur-
ation value L, =1 Mbps, we can observe that the
total data rate generated by six upstream SUs is
subject to the buffer constraint ¢,(t)<L, such that
the instant data rate levels should not be adjusted
through the ODRU algorithm.
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Figure 11 depicts the optimal data rate update compari-
son for six per-link flows with the aid of the ODRU algo-
rithm on the condition of discount factor r=0.2 and
saturation value Lj = 490 kbps. It is implicitly revealed
that the total data rate caused by six upstream SUs fail to
guarantee the buffer constraint ¢, (¢)<Lj such that the in-
stant data rate levels must be updated according to the
ODRU algorithm. Hence, the evolution of the optimal
data rate levels of six upstream SUs will enter the rate up-
date zone (i.e., shadow area in Fig. 11) when the constraint
¢,(t) > L;,. From the results, we can see that the large
values of the optimal data rate have been considerably
dwindled according to the distributed rate update function
in (41) when instant game time t=4.3 s in order to meet
the buffer constraint of bottleneck SU.

150

—6&— Flow 1, 1=0.2
—B— Flow 2, t=0.2
—— Flow 3, 1=0.2
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—%— Flow 5, 1=0.2
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Updated Optimal Date Rate (kbps)

Game Time (s)
Fig. 11 Optimal data rate comparison among six per-link flows
through our proposed ODRU algorithm under saturation
value [, = 490 kbps
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6.4 The impact of discount factor on optimal data rate
Figure 12 displays the evolution of the optimal data
rate for six per-link flows via the ODRU algorithm
versus discount factor 7 under the condition of two
fixed instant game time point ¢ (i.e, =3 and t=4)
and saturation value ib =950 kbps. From the results,
we can see the total data rate generated by six up-
stream SUs accommodates for the buffer constraint
¢,(t)<Ly. It can be also observed that as the discount
factor increases from 0.1 to 0.9, the optimal data rate
of six flows obtained by the ODRU algorithm will de-
crease accordingly. The reason for this is that the
utility function of each upstream SU must be dis-
counted by the factor e ™ at time ¢ under the differ-
ential game structure I'yycc. As we expected, the
optimal data rate of flow 6 can obtain the minimum
rate level within approximately interval [6,26] kbps,
and the optimal data rate of flow 2 can gain the max-
imum value of data rate with nearly interval [30,
140] kbps. This can be explained by the fact that the
higher Euclidean distance of the successful transmis-
sion link of flow 2 will result in a higher transmit
power level accordingly. This result of higher transmit
power level of flow 2 will lead to the more link cap-
acity supply. It implies that the upstream SU has the
enough link capacity supply to achieve higher data
rate in the proposed cross-layer optimization frame-
work. Essentially, this signifies the importance of
cross-layer coordination mechanism on the coupling
between rate demand regulated by rate controller and
capacity supply regulated by power controller.

7 Conclusions

In this paper, a distributed cross-layer optimization
framework for congestion and power control for
CRANETs under predictable contact has been pro-
posed. Particularly, we introduced a predictable con-
tact model by achieving the probability distribution of
contact between any pair of SUs, aiming to measure
the uncertainty of contact. Also, an entropy paradigm
was presented to characterize quantitatively the prob-
ability distribution of contact. We employed a differ-
ential game theoretic approach to formulate the PLPC
problem and the HHCC problem, and obtained the
optimal transmit power and the optimal data rate of
upstream SUs via dynamic programming and max-
imum principle. To guarantee the interference power
constraint for active PUs and the buffer constraint of
bottleneck SU, we developed two distributed update
algorithms to locally adjust optimal transmit power
and optimal data rate of upstream SUs. Finally, we
presented a distributed implementation strategy to
construct the cross-layer optimization framework for
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Fig. 12 Optimal data rate comparison among six per-link flows through our proposed ODRU algorithm for different discount factors under
saturation value [, = 950 kbps

congestion and power control by jointly optimizing
PLPC-HHCC simultaneously and validated its per-
formance with simulations. What we have discussed
in this paper is the portion of foundation for the
cross-layer optimization framework in CRANETs. In
the future work, a joint objective function to achieve
congestion and power control will be considered.
Moreover, it will be interesting and important to in-
vestigate a trade-off parameter as a whole to reflect
the benefits of the proposed framework.

8 Appendix 1

8.1 Proof of Theorem 1

According to the dynamic optimization problem P1, per-
forming the maximization operation of the right hand
side of (24) with respect to p,(¢) yields the following opti-
mal solution:

S avip.n

# _
" = 4
P =p+ TR (45)
Substituting pf(t) in (45) into (24), we obtain:
< () [Vi(pF I ’
av'(pf.1) :—C“"Z ®) <7(;’ )) (0
avi(pf.1 Clyy (@) Vi (v 1
+¥ <; (pi""%% ,y.](t) .
(46)

Upon solving the differential equation in (46), V' (p’f,[ )
can be easily shown to be equivalent to the following
equation:

(wc;;,b) (P)(1+2N)
)

Vi(p;#,1> :tl(ﬂ(i)/ 4(a+y)

Thus, an optimal transmit power p?(t) which consti-
tutes a Nash equilibrium solution to P1 is given by:

_ wC?i,b) (ﬁ)
2a+y)

#

pi (1) =p; (48)

Then, we can obtain the expression of p?(t) and Vi(p,,
I) as given by Theorem 1.

9 Appendix 2
9.1 Proof of Proposition 1

By substituting the vector of optimal transmit power o

= {pf(t),pf(t), -~,pf,(t)} into the interference power
constraint inequality in (6), we can obtain:

sz#(t)G(i,b) < Wps. (49)
ieN

After taking the logarithm of both sides of (49), we
have:

Z log, (p?(t)G(i,b)) < log, @pgs. (50)
ieN
Through rearranging terms, we have:
log, Hp’f(t) + log, H Gip) < log,mpss. (51)
ieN ieN

By taking into account the large-scale slow-fading
channel model to describe the wireless transmission
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environment, the channel gain of link from upstream SU
v; to bottleneck SU v, can be formulated as [30]:

G — o LAY

100 (52)

where g, is a reference channel gain at a distance of
100 m [34]. We substitute G; 5 in (52) into (51) and
then we have:

wWpBs

log, le#(t) :2) = (53)
e I1e [19:(£)-9 (2)||
e 100
Thus, (53) can be rewritten as follows:
@
17 @ (? wasb (54)
ieN 10

Through defining G, = @pps/(10°g,)", we can easily
have the solution of (27).

10 Appendix 3

10.1 Proof of Theorem 2

According to the dynamic optimization problem P2, by
performing the maximization operation of the right
hand side of (30) with respect to r,(t), we can obtain:

# e oW'(r;, x)
( ZB(M,) ox ’ (55)

Substituting W'(r;, x) 2 (Yi(t)x(t) + J{£))e ™ and rf#(t) in
(55) into (30), we have:

£ ) _ Vi0s(0)
it = 2By (56)
dy;(t) 1 ) |

dt 4B, Yi(6) + (7-1)Yi(t)-Aq)

Y,(¢) Y () )
A7 Bun

dJi(t)

@ T (58)

Hence, this completes the proof.

11 Appendix 4

11.1 Proof of Proposition 2

Owing to the symmetric form of Y() and Yj(¢) in (57),
we can immediately denote (57) by Riccati equation:
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dy;(¢) 11 1

= + — | Y?(¢
dt 4B(z"b) zje.Af\iB(j‘b) l( )

+ (r-1)Yi(t)-Aip)-

(59)

As such, the form of (59) can be rearranged by differ-
ential equation as:

@I(Yi(t)’t)dt_FP2(Yi(t)7t)in(t) :07 (60)
11 1)\,
01(Yi(2),t) = 1B, + Ejg\iB(i-b)) Yi(t)
+ (r-1)Y(t)-Aip),
(61)
$,(Yi(2), 1) = -1. (62)

Recall that we define Q) = 1/(4B(;)) + 0.5 cpn 1
/By » for 4Q¢ nAup + (T -1)*>0. Next, we turn to
present a non-zero integrating factor J(Y(¢), ) that can
make equation in (61) an exact form by multiplying it
on both sides of (61). Here, we can easily obtain:

1
R HORNCS

I(Yi(t),2) (63)

1)Y(t)-Agp)|

So, (63) multiplied by J(Y;(¢),¢) is exact, and then we
obtain:

99(Yi(t),t) 1
aY,'(t) n |~Q(i,b) Y?(t) + (T—I)Yi(t)—A(iﬁb)‘ ’
(64)
03(Y(t),t)
— = 1. (65)

When Q) Y7(t) + (1-1)Y(£) > A5, we can easily

define &= /(r-1)> +4Q(p Ay - By integrating (64)
and (65) with respect to Y;(¢), we have:

1 20 Yi(t) + (1-1)-¢
.0 =3 n’2Q(i,b)Yi(t) F(-1)+e
h(z), (66)
03(Y(t),t) dh(z)

ot Tde (67)

We can easily obtain /(z) = t. Let J(Y(¢), £) = G,, where
G, is a constant number. Upon solving (66) as follows:

Yi(t) + (r-1)-¢
Yi(t)+ (r-1) +¢

1, |29
In | )

t-- = G,.
& 2.0(1"1,) >

(68)

Solving the above equation in (68) with respect to
Y(2), yields the desired result in (35).
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12 Appendix 5

12.1 Proof of Proposition 3

For vector P, it is clear that the received SINR of link
L, ») at bottleneck SU v, satisfies the following inequality
when all the upstream SUs with the equal Euclidean dis-
tance to bottleneck SU vy:

Pl ()G
Yo (G )
240)
> JeN \iP? (t) .

SINR (P# ) <
(69)

We can also approximate logarithmic function log,(-) by:
log, (1 +x - SINR (P¥) ) = log, (i - SINRi (P)). (70)

Thus, shadow price N; should be subject to a strict
lower bound:

X, = 1 ()
log, (i - SINR 5 (P¥) ) ) #* (1)
, - , (71)
> | log, | x- pi (1) ’"i(t)_
IS o] Fo
jeN\i

which coincides with (41).
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