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Abstract

Self-healing is one of the most important parts in self-organizing mobile communication network. It focuses on
detecting the decline of service quality and finding out the cause of network anomalies and repairing it with high
automation. Diagnosis is a particularly important task which identifies the fault cause of problematic cells or regions. To
perform the diagnosis, this paper presents two modified ensemble classifiers by using Support Vector Machine (SVM)
with different kernels, i.e., SVM with the radial basis function (RBF) kernel (RBFSVM in short) and SVM with the linear
kernel (LSVM in short), as component classifier in Adaptive Boosting (AdaBoost), and we call the two ensemble
classifiers as Adaptive Boosting based on RBFSVM (AdaBoostRBFSVM in short) and Adaptive Boosting based on
linear kernel (AdaBoostLSVM in short). Different with previous AdaBoostSVM classifiers using weak component
classifiers, in this paper, the performance of the classifiers is adaptively improved by using moderately accurate
SVM classifiers (the training error is less than 50%). To solve the accuracy/diversity dilemma in AdaBoost and get
good classification performance, the training error threshold is regulated to adjust the diversity of classifier, and
the parameters of SVM (regularization parameter C and Gaussian width σ) are changed to control the accuracy
of classifier. The accuracy and diversity will be well balanced through reasonable parameter adjustment strategy.
Results show that the proposed approaches outperform individual SVM approaches and show good generalization
performance. The AdaBoostLSVM classifier has higher accuracy and stability than LSVM classifier. Compared with RBFSVM,
the undetected rate and diagnosis error rate of AdaBoostRBFSVM decrease slightly, but the false positive rate does reduce
a lot. It means that the AdaBoostRBFSVM classifier is indeed available and can greatly reduce the number of normal class
samples that have been wrongly classified. Therefore, the two ensemble classifiers based on the SVM component
classifier can improve the generalization performance by reasonably adjusting the parameters. To set the parameter
values of component classifiers in a more reasonable and effective way, genetic algorithm is introduced to find the
set of parameter values for the best classification accuracy of AdaBoostSVM, and the new ensemble classifier is called
AdaboostSVM based on genetic algorithm (GA-AdaboostSVM in short) (including AdaboostLSVM based on genetic
algorithm and AdaboostRBFSVM based on genetic algorithm). Results show that GA-AdaboostSVM classifiers have a
lower overall error than AdaboostSVM classifiers. Genetic algorithm could help to achieve a more optimal performance
of the ensemble classifiers.
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1 Introduction
Over the past few years, the wireless network has
undergone great changes. The coexistence of 2G, 3G,
LTE/LTE-A, and HetNet architecture makes the wire-
less network more and more complex. A sharp in-
crease in the traffic demand has forced the operator
to increase CAPital EXpenditures (CAPEX) and
OPerational EXpenditures (OPEX). In order to reduce
operating and maintenance costs, the self-organizing
network (SON) [1] has been introduced by 3GPP.
Self-organizing networks (SONs), a set of principles
and concepts for increasing the automation of mobile
networks, automatically choose the network
parameters to improve the key performance indicators
(KPIs). Three categories, self-configuration, self-
optimization, and self-healing [2], have been involved
in SONs. Self-configuration includes automatic plan-
ning and deployment of the network, such as self-
establishing base stations and automatic management
during the operation of the base station. Self-
optimization refers to adaptively adjusting the param-
eters of network equipment according to its own op-
erating conditions in order to achieve the goal of
optimizing network performance. Self-healing, the
ability to automatically recover from failures, includes
detection, diagnosis, and recovery. This work is cen-
tered in diagnosis which identifies the fault cause of
problematic cells or regions.
Recently, some research on network diagnosis has

been published [3–6]. However, the number of papers
on self-healing is limited due to two major reasons. One
of the reasons is that the fault causes and the corre-
sponding KPIs are not recorded when fault occurs. The
other reason is that historical data of faults in mobile
networks is usually in the hands of operators, and it is
usually hard for the scientific community to get. In view
of the above problems, some scholars use simulators to
simulate faults and corresponding network KPIs, but
there is a big difference from the real network settings
[7]. In spite of this, many significant projects have been
developed, such as the UniverSelf Project [8], the
COMMUNE Project [9], and the SELFNET Project [10].
There have been quite a few researches on network diag-
nosis, most of which apply new concepts and tech-
niques, such as data mining [3, 11], self-organizing maps
[4], genetic algorithms [5], fuzzy logic [6], and Bayesian
networks [12, 13], to diagnose faults in communication
network. But there is little research based on Machine
Learning [14–20] for network diagnosis. In this paper, sev-
eral supervised Machine Learning (ML) techniques, i.e.,
Support Vector Machine (SVM), Adaptive Boosting based
on SVM (AdaBoostSVM), and AdaboostSVM based on
genetic algorithm (GA-AdaBoostSVM), have been used
for diagnosis in network.

Support Vector Machine (SVM) evolves from the
optimal classification of linearly separable cases. The
optimal classification surface requires that the classifi-
cation surface not only correctly separates the two
classes (the training error rate is 0), but also makes
the classification interval the largest. In order to get a
good classification effect, kernel functions were usu-
ally used to map the training samples to a high-
dimensional feature space. There are many kernel
functions, such as linear kernel, radial basis function
(RBF) kernel, and polynomial kernel, which were
commonly used in the SVM. Among them, two popu-
lar kernels used in SVM are the RBF and linear ker-
nels, which respectively have a parameter known as
regularization parameter C and Gaussian width σ.
The parameters are used to control the model com-
plexity and training error.
Adaptive Boosting (AdaBoost) [21] is one of the en-

semble learning algorithms, which improves the per-
formance of the ensemble classifier by improving the
accuracy of the weak classifier. The weight coeffi-
cients of each classifier are set to be the same before
starting the iteration. After each iteration, the weight
coefficients of each classifier will be adaptively ad-
justed according to the classification results. The
weights of misclassified samples will be increased; on
the contrary, the weights of correctly classified sam-
ples will be decreased. Many researches that use
Decision Trees [22], Neural Networks [23], or
RBFSVM [17] as component classifiers in AdaBoost
have been investigated. To the best of our knowledge,
there are few researches using linear kernel as com-
ponent classifiers in AdaBoostSVM. It is well known
that there is a dilemma of accuracy/diversity in
AdaBoost, which means that the more accurate the
two component classifiers, the less disagreement
between them. AdaBoost can demonstrate excellent
generalization performance only if accuracy and
diversity are well balanced. Therefore, how could we
balance the accuracy/diversity dilemma in
AdaBoostSVM?
In this paper, we try our best to find solutions to

the following problems: Can we use the component
classifiers based on linear kernel or RBF kernel to get
better generalization performance in AdaBoostSVM?
If we can, which classifier based on the different
kernels could get better performance and why? How
could we balance the accuracy/diversity dilemma in
AdaBoostSVM? How could we set the parameter
values of component classifier in a reasonable and ef-
fective way?
As mentioned above, there are two parameters σ

and C in Adaptive Boosting based on RBFSVM
(AdaBoostRBFSVM) and one parameter C in Adaptive
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Boosting based on linear kernel (AdaBoostLSVM)
which have to be set beforehand. According to the
performance analysis of RBFSVM [17], we know that
σ is a more important parameter than C: the per-
formance of RBFSVM mainly depends on the value of
σ in the proper range of C. As known in [17], if all
RBFSVM component classifiers are set to a single σ,
it will result in an unsuccessful AdaBoost process due
to the reason that over-weak or over-strong compo-
nent classifiers may appear. So, in this paper, the pro-
posed AdaBoostRBFSVM method adaptively adjusts
the value of σ in the RBFSVM component classifier
to obtain a set of moderately accurate RBFSVMs for
AdaBoost. Similarly, the C values in LSVM compo-
nent classifiers are also adaptively adjusted. It means we
adjust the accuracy of the classifier by changing the values
of the parameters C and σ. Furthermore, as mentioned
above, there is a dilemma of accuracy/diversity in
AdaBoost. Therefore, we increase the diversity of the classi-
fier by increasing the training error threshold. The greater
the training error threshold, the more the weak classifiers
satisfying the condition will be obtained, so that the diver-
sity of the classifier will be better.
The performance of the ensemble classifier depends on

the parameters value of each component classifier. How
to set the parameter value of the component classifier in a
reasonable and effective way is a very important issue.
Genetic algorithm is a method of searching for the opti-
mal solution, which is largely used in search and
optimization problems. In this paper, genetic algorithm is
proposed to find the set of parameter values for the opti-
mal performance of the ensemble classifiers.
In this paper, two modified ensemble classifiers, i.e.,

AdaBoostRBFSVM and AdaBoostLSVM, were
employed for root cause analysis in network by using
the cases from [6]. The cases for training and valid-
ation were generated by the real LTE network. Each
case includes the information on Cause-KPI (key per-
formance indicators) relations, which will be used for
training and validating the model generated by Ada-
BoostSVM with different kernels. By using genetic al-
gorithm to optimize parameters and control training
error threshold, a good balance on accuracy/diversity
will be achieved. Since SVM and AdaBoost were ori-
ginally designed for binary classifier, in this paper,
OAO (One Against one) approach was used for clas-
sifiers to generate a multi-classifier to train the
model. The results show that the two proposed algo-
rithms based on AdaBoostRBFSVM and Ada-
BoostLSVM can automatically diagnose different
classes of network anomalies with high accuracy, low
diagnosis error rate, low false positive rate, and low
undetected rate. Genetic algorithm is used to find the
set of parameter values for the optimal accuracy of

the ensemble classifier. GA-AdaboostSVM classifiers
outperform AdaboostSVM classifiers with a lower
overall error. Therefore, the genetic algorithm could
help the AdaBoostLSVM classifier to obtain the opti-
mal performance.
The main contributions of this paper are as follows:

1. Proposed two modified ensemble learning
algorithms using LSVM and RBFSVM as component
classifier, i.e., AdaBoostLSVM and
AdaBoostRBFSVM, to improve wireless network
troubleshooting performance.

2. Proposed a new method to solve the accuracy/
diversity dilemma in AdaBoost to obtain the optimal
performance of the AdaBoostSVM.

3. Genetic algorithm is used to get the best
classification accuracy of AdaBoostSVM.

4. The diversity of the AdaBoostSVM is regulated by
changing the training error threshold.

2 Problem formulation
There are three main tasks in the process of trouble-
shooting: detection, diagnosis, and recovery. This work
is centered in diagnosis with the cases provided in [6].
The following sections provide the knowledge necessary
to understand the diagnosis system, such as performance
metrics, fault causes, and related KPIs.

2.1 KPIs
KPI is an indicator that reflects network performance.
The statistics and calculations of abnormal KPI value
which is lower or higher than a certain threshold can re-
flect the network performance of a cell or part of region.
In this paper, seven common KPIs including Retainabil-
ity, Handover Success Rate (HOSR), Reference Signal
Received Power (RSRP), Reference Signal Received
Quality (RSRQ), Signal to Interference Noise Ratio
(SINR), Distance, and Average throughput were calcu-
lated for later diagnosis.

2.2 Fault causes
A network failure can cause an abnormality in the
KPI indicator. The causes of mobile network failure
can generally be divided into three categories, includ-
ing coverage, mobility, and interference. In this paper,
the data set is provided in [6], which is generated by
the real LTE network. Six fault causes were selected,
such as excessive uptilt (EU), excessive downtilt (ED),
reduction in cell power (RP), coverage hole (CH), mo-
bility, and intersystem interference (II). For more ex-
planations about KPIs and fault causes in this paper,
please refer to reference [6].
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2.3 Performance metrics
The accuracy of the case diagnosis is utilized to assess
the diagnostic performance of the system. The higher
the correct rate is, the better the system performance
will be. Seven metrics were calculated to evaluate the
performance of the diagnosis system.

(a)Diagnosis error rate (Ed): The proportion of
misdiagnosed cases in the total number of cases.
It shows the accuracy of the classifier.

(b)Undetected rate (Eu): The proportion of fault cases
diagnosed as normal cases in the total number of
fault cases. It shows the reliability of the classifier.

(c)False positive rate (Efp): The ratio of normal cases
diagnosed as fault cases to the total number of normal
cases. It shows the availability of the classifier.

(d)Total error rate (Ep): The sum of diagnosis error
rate (DER) and Undetected rate (UDR). It is given
by Ep = Ed + Eu.

(e)Overall error (E): The probability that misdiagnosis
occurs. It is given by E = Pn · Efp + Pp · Ep, where Pn
and Pp are the percentage of normal and fault cases
in the validation set, respectively.

(f ) Complementary of the Positive Predictive Value
(Pfp): The probability that a given positive diagnosis
is a false positive, which indicates the importance of
a low false positive rate. High Pfp makes the system
unreliable because too many of the fault cases that
are diagnosed are not real. It is given by Pfp

¼ Pn�Efp

Pn�EfpþPp�ð1−EuÞ.
(g)Confusion matrix: The confusion matrix is used to

compare the mapping probabilities between the
classification result and the true value. Each column
of the confusion matrix represents a prediction
category of data, and each row represents the true
category of data.

3 Fault management based on Machine Learning
3.1 Support Vector Machine
SVM is a dichotomous model whose main idea is to find
the separating hyper-plane that can correctly classify
the training set and maximize the geometric interval.
The decision function of SVM can be expressed as
ƒ(x) = <w, ϕ (x) > + b, where ϕ(x) represents the
mapping of the input sample x to a high-dimensional
space [20]. <·, ·> denotes the dot product in the feature
space. The optimal w and b can be solved by solving the
following formula:

minimize : ɡ w; ξð Þ ¼ 1
2

wk k2 þ C
XN

i¼1

ξi ð1Þ

subject to : yi w;ϕ xið Þh i þ bð Þ≥1−ξi; ξi≥0; ð2Þ

where ξi is the ith slack variable and C is the
regularization parameter. According to the Wolfe dual
form, the above minimization problem can be written as:

minimize : W αð Þ ¼ −
XN

i¼1

αi þ 1
2

XN

i¼1

XN

j¼1

yiy jαiα jk xi; x j
� � ð3Þ

subject to :
XN

i¼1

yiαi ¼ 0; ∀i : 0≤αi≤C; ð4Þ

where αi is a Lagrange multiplier which corresponds to
the sample xi and k〈⋅, ⋅〉 and k(·,·) are kernel functions
mapping all input vectors into an appropriate feature
space k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉. The linear kernel function
is expressed as kðxi; x jÞ ¼ xTi x j , and the RBF kernel
function is expressed as k(xi, xj) = exp(−‖xi − xj‖

2/2σ2). By
applying the kernel function, the sample is mapped
linearly to the high-dimensional feature space. In this
space, the optimal separating the hyper-plane is con-
structed via SVM. Platt’s sequential minimal optimization
(SMO) [19] has been widely used for solving the SVM
problem. SMO is a fast iterative algorithm, which decom-
poses a large QP (quadratic programming) problem into
several QP sub-problems of the minimum size. Each QP
sub-problem has only two variables. For this small QP
sub-problem, the analytic solution can be found, so that
the training speed gets faster.

3.2 AdaBoost
AdaBoost is one of the ensemble learning algorithms,
which improves the performance of the ensemble
classifier by boosting the accuracy of the weak classi-
fication classifier. After each iteration, the weight of
classifier will be changed according to the classifica-
tion results. If the classification result is wrong, the
weight will be increased; otherwise, the weight will be
reduced. The bigger the training error is, the smaller
the weight will be. Finally, all the classifiers will be
linearly combined to compose the final classifier.

3.3 Genetic algorithm
Genetic algorithm (GA) is a computational model that
simulates the biological evolutionary process of natural
selection and genetics of Darwin’s biological evolution
[24, 25]. It is a method of searching for the optimal solution
by simulating the natural evolutionary process. According to
the principle of survival of the fittest, the genetic algorithm
first generated an initial population of potential solution sets
and then evolved generation after generation to get better
and better approximate solution. At each generation, individ-
uals were selected based on the fitness of individuals in the
problem domain. Crossover and mutation were used to gen-
erate individuals that represented new potential solutions.
The flow chart of GA is shown in Fig. 1.
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3.4 Proposed algorithm: AdaBoostRBFSVM
In this part, RBFSVM classifier was employed as com-
ponent classifier in AdaBoost. Before the AdaBoost iter-
ations, it is the most important problem on setting the
σ and C values for these RBFSVM component classi-
fiers. According to RBFSVM performance analysis in
[26], we know that σ is a more important parameter
that affects the performance of a classifier than C. If a
roughly suitable C is given, the performance of
RBFSVM classifier is largely determined by the σ. It is
known that setting a too large σ will get a too weak
RBFSVM component classifier. On the contrary, a too
small σ will make the RBFSVM component classifier
too strong to boost it. As known in [17], giving all
RBFSVM component classifiers a single σ value, the
boosting process will be unsuccessful. Therefore, in this
paper, the σ value will be adaptively adjusted to obtain
a set of moderately accurate RBFSVM component clas-
sifiers. AdaBoostRBFSVM can be described as follows
(Algorithm 1):
Firstly, weak RBFSVM classifiers are generated by set-

ting a large σ value, and the weights of training samples
are initialized to the same value.
Then, the weak RBFSVM classifiers with an initial σ

value are trained on the weighted training set. The
training error of RBFSVM is calculated, on which
based different operations are performed. If the

training error is more than the threshold εth, the σ
value will be decreased slightly by σstep and go back
to step 3. Otherwise, the weights of RBFSVM classi-
fiers will be set, and the weights of training samples
will also be updated to calculate the training error for
the next iteration. Slightly decreasing the σ value, we
can prevent the new RBFSVM from being too strong
for the current weighted training samples. Different
from the AdaBoostSVM in [17] with the fixed train-
ing error value (εth = 0.5), in this paper, we adjust the
diversity of the classifier by changing the training
error threshold. The greater the training error thresh-
old, the more the weak classifiers satisfying the condi-
tion will be obtained, so that the diversity of the
classifier will be better. Therefore, by reasonably
adjusting the values of σ and εth, the accuracy/diver-
sity dilemma can be balanced and the optimal param-
eter configuration of the classifier is obtained.
Furthermore, the weights of training samples will be

adaptively adjusted by the classified results, i.e.,
component classifiers with lower training errors will
gain greater weights, and component classifiers with
higher training errors will get smaller weights. This
process will finish when the σ is less than the given
minimal value.
Finally, AdaBoost makes a linear combination of all

component classifiers into a single final hypothesis f.

Fig. 1 Flowchart of the genetic algorithm
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3.5 Proposed algorithm: AdaBoostLSVM
This section aims at employing LSVM as component
classifier in AdaBoost. Similar to the Ada-
BoostRBFSVM, it is important to set the C value for
these LSVM component classifiers during the
AdaBoost iterations. It is known that the value of C
represents the importance of outliers to the classifier.
The larger C represents more attention will be paid to
the outliers, which means that they cannot be easily
ignored. Increasing the value of C can always achieve
the correct classification of the training samples, but
this will lead to over-fitting and bad generalization
performance. On the contrary, continuously

decreasing the value of C will result in under-fitting.
Obviously, if all LSVM component classifiers were set
to a single C value, the boosting process will be
unsuccessful. Therefore, in this paper, a set of
moderately accurate LSVM component classifiers will
be obtained by adaptively adjusting the C value.
AdaBoostLSVM can be described as follows
(Algorithm 2):
Firstly, weak LSVM classifiers are generated by

setting a small C value, which means that the LSVM
classifiers have weak learning ability, and the
weights of training samples are initialized to the
same value.
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Then, LSVM with this C is trained in as many cy-
cles as it can get in less than a training error
threshold εth. Otherwise, this C value is increased
slightly to enhance the learning capability of LSVM
to help it achieve less than the training error
threshold εth. Similar to AdaBoostRBFSVM, we ad-
just the diversity of the classifier by changing the
training error threshold. Through regulating the
values of C and εth reasonably, we can balance the
accuracy/diversity dilemma and get the optimal par-
ameter configurations of classifier.
Furthermore, the weights of training samples will

be adaptively adjusted by the classified results. This
process continues until the C is increased to the
given maximal value.
Finally, AdaBoost makes a linear combination of

all component classifiers into a single final hypoth-
esis f.

3.6 Proposed algorithm: GA-AdaBoostSVM
The principle of AdaBoost is to linearly combine multiple
component classifiers into ensemble classifier. The value of
parameters (C and σ) plays a big role in the performance of
the component classifier during the AdaBoost iterations. Dif-
ferent values of parameters will get different component clas-
sifiers, resulting in different performance of the ensemble
classifier. Therefore, the performance of the ensemble classi-
fier depends on the parameter value of each component clas-
sifier. Although the AdaBoostSVM algorithm can achieve
good classification performance, it needs to set the value of
Cini, Cstep, σini, and σstep in advance. Therefore, how to set the
parameter values of component classifier in a reasonable and
effective way is a very important issue. Genetic algorithm is a
method of searching for the optimal solution, which is largely
used in search and optimization problems. In this paper, gen-
etic algorithm is used to find the optimal set of parameter
values of the ensemble classifier. The GA-AdaBoostSVM
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algorithm is showed in Algorithm 3. With different kernel
functions, the GA-AdaboostSVM is abbreviated as
GA-AdaboostLSVM and GA-AdaboostRBFSVM.

3.7 Multi-classifier based on binary classification
Since SVM and AdaBoost were originally designed
for binary problems, several methods were proposed
to extend binary classifier to solve multi-
classification problems. One approach is to decom-
pose the multi-classification problem into multiple
binary classification problems, and then, the classifi-
cation result of each binary classifier is combined to
obtain the final classification result. There are sev-
eral commonly used multi-classification methods
based on binary classifier, such as OAA (One
Against All), OAO (One Against one), and DAG
(directed acyclic graph) [27–29].
The OAA method is to classify the samples of one

category into one class, and the rest of the samples
are classified as another one. In this way, samples
of k categories construct k classifiers. The classifica-
tion result is to classify the unknown sample into

the class with the maximum value of the classifica-
tion function. The advantage of this method is that
for the k classification problem, only k binary classi-
fiers need to be trained, so the number of the clas-
sification functions (k) obtained is less, and the
classification speed is relatively fast. The disadvan-
tage is that it will cause imbalances in the categor-
ies, which greatly affect classification accuracy.
Therefore, it is not very practical.
The OAO method is to design a classifier between

any two classes of samples, so k(k − 1)/2 classifiers
need to be designed for samples of k classes. The
classification result is to classify the unknown sam-
ple into the class with the maximum value of the
classification function. The advantage of this
method is that the training accuracy is relatively
high, but the classification speed is slow and it takes
high cost.
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Similar to the OAO method, the DAG method also
needs to construct k(k − 1)/2 binary classifiers and ob-
tain the corresponding decision functions of these classi-
fiers. However, in classification, the DAG method is
classified by constructing a “binary directed acyclic
graph” with a root node. The “binary directed acyclic
graph” has k(k − 1)/2 internal nodes and k leaf nodes.
Each internal node corresponds to a binary classifier,
and each leaf node corresponds to a class.
For OAO and DAG methods, OAO is generally con-

sidered to be slightly more accurate than DAG for the
same training time, but the testing time of DAG is
slightly lower or the same. The most commonly used
multi-classification methods are the OAO and OAA
methods, but the OAO method is more suitable for
practical applications. Therefore, in this paper, OAO ap-
proach was used for each binary classifier to train the
multi-classification model. The algorithm of multi-
classifier based on binary classification is showed in
Algorithm 4.

4 Evaluation
4.1 Case study
In this work, the training and validation cases are pro-
vided in [6]. The training data is a set of cases following
the format described in Fig. 2. A case is a vector consist-
ing of multiple KPIs and corresponding fault cause.

4.2 Experimental design
There are 550 cases in the training set and 4009 cases in
the validation set. The distribution of fault causes in the
training set is showed in Fig. 3, and the sample distribu-
tion of the validation set is comparable to that of the
training set. All the algorithms were firstly trained with
the training cases, and afterward, these were tested with
the validation cases, and five performance metrics (Ed,
Eu, Efp, E, and Pfp) were calculated. To compare the ad-
vantages of the proposed algorithms with other algo-
rithms in generalization performance, the same
performance metrics were calculated by other algorithms
in the same training and validating set. In order to
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improve the accuracy of the classification results, this
paper tests the validation set 100 times and takes the
average. The main parameters of the algorithm for test-
ing and evaluation are shown in Table 8 (Appendix).

4.3 Results and discussion
4.3.1 Evaluation based on LSVM
The parameter C has a great influence on the performance
of the LSVM classifier. If C is small, the classifier will be
under-fitting. On the contrary, the classifier will be over-
fitting. So, we tested the performance of the classifier with
different C values and got the optimal C values. The diag-
nosis error rate (DER), undetected rate (UDR), false posi-
tive rate (FPR), Overall error (OE), and Complementary of
the Positive Predictive Value (PFP) with different C values
were shown in Fig. 4. It can be seen that as the C value in-
creases, the five metrics are reduced firstly and then in-
creased and maintained in a relatively stable range. It
obtains the minimum OE and PFP value at C = 0.5.

4.3.2 Evaluation based on RBFSVM
We know that the parameter C and σ have a great influ-
ence on the performance of the RBFSVM classifier. Given
a roughly suitable C, the performance of the RBFSVM
classifier is largely determined by the σ value which also
influences the complexity of classifier. With a larger σ, the
complexity of classifier often decreases and it gets bad
classification performance. Conversely, the complexity of
classifier increases and good classification performance
will achieve a small σ value. Several performance metrics
with different σ values are shown in Fig. 5 where C is set
to be 1. It can be seen that the minimum OE will be ob-
tained when σ = 3. Compared with LSVM, the UDR of
RBFSVM was significantly higher. It means that the
LSVM classifier can decrease the number of minority class
samples that are misclassified.

4.3.3 Evaluation based on AdaBoostLSVM
It is known that the good generalization performance can-
not be gotten by using a too large or too small value of C.
Simply applying a single C to all LSVM component classi-
fiers cannot lead to successful AdaBoost due to the over-
fitting or under-fitting situations encountered in the
Boosting process. So, in this section, the proposed Ada-
BoostLSVM approach adaptively adjusts the C value in
LSVM component classifiers to obtain a set of moderately
accurate LSVMs for AdaBoost. In order to increase the di-
versity of the classifier, we change the training error
threshold from 0.01 to 0.5 and several performance met-
rics with different εth and C were calculated. Table 1
shows several performance metrics with different εth on
the optimal C values. It can be seen that we could get the
optimal parameter configurations of classifier through
regulating the values of C and εth reasonably. Figure 6
shows the best performance metrics with optimal C values
and training error threshold εth. Compared with LSVM,
all performance metrics of AdaBoostLSVM have a signifi-
cant improvement. The overall error is reduced to 6.8%
and the complementary of the Positive Predictive Value is
reduced to 4.1%. It means that the AdaBoostLSVM classi-
fier has higher accuracy and stability than LSVM. There-
fore, the ensemble classifier based on LSVM component
classifier could boost the generalization performance
through regulating the values of C and εth reasonably.
Table 2 shows the normalized confusion matrix of Ada-

BoostLSVM method with optimal parameter values. The
diagonal of the matrix represents the diagnosis success rate
of each problem in the system. It can be seen that more
than half accuracy can be obtained for each problem, which
illustrates the diagnosis system is indeed available. The nor-
mal cases have the highest diagnosis success rate, which
demonstrates the diagnostic system has high availability
with a lower FPR. However, the diagnostic accuracy of II,
CH, and TLHO is relatively low, and the probability that
each fault is misdiagnosed as normal is higher than the
probability of being misdiagnosed as another fault, which
respectively corresponds to a high DER and UDR.

4.3.4 Evaluation based on AdaBoostRBFSVM
According to the previous analysis, we know that σ is a
more important parameter compared to C: the

Fig. 2 Format of data

Fig. 3 Distribution of the collected faults in training set
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performance of classifier is largely determined by σ. For
comparison with RBFSVM, we tested several performance
metrics with different σ values when C was set to be 1. In
order to increase the diversity of the classifier, we changed
the training error threshold from 0.01 to 0.5 and several
performance metrics with different εth and σ were calcu-
lated. Table 3 shows several performance metrics with dif-
ferent εth on the optimal σ values. It can be seen that we
could get the optimal parameter configurations of classi-
fier through regulating the values of σ and εth reasonably.
Figure 7 shows the best performance metrics with optimal
σ values and training error threshold εth.
False positive rate (FPR) suggests the ability to filter

out normal cases. High FPR indicates that the

diagnostic systems are not available because of the high
probability of false positives. Compared with RBFSVM,
although the UDR and DER are only slightly reduced,
the FPR does reduce a lot. It means the Ada-
BoostRBFSVM classifier is indeed usable and could
largely reduce the number of normal cases being mis-
classified. Furthermore, the OE and PFP also decrease,
indicating that the AdaBoostRBFSVM classifier has
higher accuracy and reliability compared to RBFSVM.
Compared with AdaBoostLSVM, AdaBoostRBFSVM
shows a significantly higher UDR. It means that the
AdaBoostLSVM classifier, which is the same as LSVM,
also can decrease the number of minority class samples
that are misclassified.

Fig. 4 The performance metrics of LSVM with different C values

Fig. 5 The performance metrics of RBFSVM with different σ values
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Table 4 illustrates the normalized confusion matrix of
AdaBoostRBFSVM method with optimal parameter
values. Compared with Table 2, the diagnosis success
rate of normal cases is increased, but the diagnostic ac-
curacy of other problems is decreased a lot. The diag-
nostic accuracy of CH is reduced to 35.92%, which
shows bad diagnosis performance. Furthermore, with a
high UDR and DER, a significant increase appears in the
probability that each fault is misdiagnosed as normal or
other faults. Generally, the performance of Ada-
BoostRBFSVM is worse than that of AdaBoostLSVM.

4.3.5 Evaluation based on GA-AdaBoostSVM
The difference between this algorithm and the traditional
genetic algorithm is that the best parameter we find in this
paper is a set of numerical values rather than a single nu-
merical value. Therefore, in the initial population stage,
different individuals in multiple populations are randomly
assigned different numerical sizes. The individual sets in
each population represent a set of potential optimal

solutions. At each generation, the fitness value of each
population was calculated and used to select the popula-
tion for the next generation by roulette wheel selection
method. In order to prevent the solution set from falling
into local optimal, crossover and mutation were used to
generate populations that represented new sets of solu-
tions. The basic process of genetic algorithm is summa-
rized as follows:

1. Initial population: Each population is a possible
solution to the problem. Each individual of the
population is randomly selected and coded as binary
bits. For the GA-AdaBoostRBFSVM classifier, C and σ
values are both coded as binary bits. Only C value is
coded as binary bits in GA-AdaBoostLSVM. In this
paper, multiple populations were introduced to obtain
sets of parameter values that optimize the objective
function. Each population contains the same number
of individuals representing different parameter values.
In this paper, 100 populations are initially generated,

Table 1 Several performance metrics of AdaBoostLSVM classifier with different εth on the optimal C values

εth DER UDR FPR C_optimal OE PFP

0.01 0.419 0.19 0.407 0.3 0.459 0.587

0.05 0.0645 0.16 0.0129 3 0.068 0.041

0.1 0.0713 0.196 0.0105 1 0.077 0.035

0.2 0.072 0.137 0.03 1 0.076 0.089

0.3 0.0998 0.186 0.0444 0.5 0.107 0.133

0.4 0.106 0.178 0.057 0.5 0.116 0.166

0.5 0.0997 0.144 0.0645 3 0.111 0.176

Fig. 6 The performance metrics of AdaBoostLSVM with optimal εth value (εth = 0.05)
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and each population includes 15 randomly generated
individuals.

2. Evaluation: The fitness value of each population
determines whether the population will survive and
reproduce in future generations, which is decided by
fitness function. In this paper, the overall error (OE) is
used as fitness function.

3. Selection: Population with better fitness has greater
probability to be selected to compose the population
sets for the next generation. A selection by roulette
wheel is used to choose the population sets for the
next generation in this paper.

4. Crossover: Crossover refers to the operation of
generating a new individual by replacing and
reorganizing parts of two parental individuals. By
crossing, the search power of genetic algorithms is
dramatically increased. Single-point crossover
operator is implemented to perform the crossover in
this paper. The crossover rate is set to be 0.8.

5. Mutation: Mutation refers to the variation of certain
gene values of individual strings to increase the
population diversity. The mutation rate is set to be 0.1.

The parameters of genetic algorithm can be seen in
Table 5. Figures 8 and 9 show the overall error variation
of the GA-AdaboostLSVM and GA-AdaboostRBFSVM
classifiers at different training error thresholds, respect-
ively. As can be seen, when the number of iterations is
greater than 120, the overall error no longer changes.

Figure 10 shows the minimum overall error rate of
different classifiers at different training error thresh-
olds. From this figure, we can find that, compared
with AdaboostSVM, GA-AdaboostSVM has better
classification performance, which can make the classi-
fier get a lower overall error, no matter what the
threshold is set to be. It can be seen that the GA-
AdaboostLSVM and GA-AdaboostRBFSVM classifier
will get the minimum OE separately when εth is set
to be 0.05 and 0.3, which more illustrates the validity
of our previous point of view: the accuracy/diversity
dilemma can be solved through reasonable parameter
adjustment strategy which will be more reasonable
and effective by using genetic algorithm.
Tables 6 and 7 respectively illustrate the normalized

confusion matrix of GA-AdaBoostLSVM and GA-
AdaBoostRBFSVM method with optimal parameter
values. Compared with Tables 2 and 4, the diagnosis
success rate of each fault cause in Tables 6 and 7 is
increased significantly at the expense of a slight drop
in FPR. What is more, a significant decrease appears
in the probability that each fault is misdiagnosed as
normal or other faults and low DER and UDR are
obtained. In comparison with Tables 6 and 7, we can
see that the diagnosis success rate of each fault cause
in Table 6 is higher than that of Table 7 with a slight
decreasing on FPR. It demonstrates that the GA-
AdaBoostLSVM classifier, with low UDR and DER
and almost the same FPR, has better classification

Table 2 Normalized confusion matrix of AdaBoostLSVM method with optimal parameter values

Predicted cause

Real cause ED CH II TLHO EU RP Normal

ED 0.9009 0.0047 0.0094 0.0849

CH 0.6213 0.0679 0.0194 0.2912

II 0.0377 0.6698 0.0566 0.2358

TLHO 0.0245 0.0196 0.7009 0.0343 0.2205

EU 0.0424 0.8396 0.0141 0.1037

RP 0.0048 0.0144 0.8509 0.1298

Normal 0.0006 0.0020 0.0010 0.0087 0.0003 0.9871

Table 3 Several performance metrics of AdaBoostRBFSVM classifier with different εth on the optimal σ values

εth DER UDR FPR σ_optimal_optimal OE PFP

0.01 0.124 0.334 0.0107 10 0.127 0.043

0.05 0.124 0.364 0.006 5 0.132 0.029

0.1 0.126 0.348 0.0119 30 0.132 0.049

0.2 0.122 0.348 0.0082 50 0.128 0.034

0.3 0.121 0.344 0.00686 7 0.1265 0.028

0.4 0.131 0.369 0.0073 30 0.1359 0.0318

0.5 0.1207 0.346 0.00832 5 0.128 0.0348
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performance than the GA-AdaBoostRBFSVM classifier
in this sample set.

5 Conclusions
In conclusion, two multi-classification diagnosis systems
based on AdaBoostRBFSVM and AdaBoostLSVM have
been presented for mobile network self-diagnosis. Both
of the two diagnosis systems can automatically detect
and diagnose different classes of network anomalies with
good performance. Before testing the performance of
proposed approaches, the performance of individual
LSVM and RBFSVM was tested firstly to find the suit-
able range of parameters. Then, the AdaBoostRBFSVM
and AdaBoostLSVM approaches were employed to perform
the diagnosis. The result shows that the two proposed ap-
proaches outperform individual SVM approaches and show
good generalization performance. The AdaBoostLSVM
classifier has higher accuracy and stability than LSVM clas-
sifier. Compared with RBFSVM, the UDR and DER of

AdaBoostRBFSVM are only slightly reduced, but the FPR
does reduce a lot. It means the AdaBoostRBFSVM classi-
fier is indeed usable and could largely reduce the number
of normal class samples being misclassified. Through
some parameter-adjusting strategies, we can tune the dis-
tributions of accuracy and diversity over these component
classifiers to achieve a good balance. Therefore, the en-
semble classifier based on SVM component classifier
could boost the generalization performance through regu-
lating the parameters reasonably. In order to get a more
accurate and effective classifier, genetic algorithm is used
to make more reasonable adjustments to the classifier
parameters.
In this paper, we did not consider the effect of imbal-

anced data on the classifier performance. So, in the next
step, we will consider some data balancing methods [22],
such as random oversampling, under-sampling, and
synthetic minority oversampling technique (SMOTE),
to reduce the impact of data imbalance on diagnostic
performance.

Fig. 7 The performance metrics of AdaBoostRBFSVM with optimal εth value (εth = 0.3)

Table 4 Normalized confusion matrix of AdaBoostRBFSVM method with optimal parameter values

Predicted cause

Real cause ED CH II TLHO EU RP Normal

ED 0.5707 0.0471 0.0188 0.0707 0.2924

CH 0.3592 0.0582 0.0388 0.0097 0.5339

II 0.0471 0.0660 0.4245 0.0754 0.3867

TLHO 0.0392 0.0539 0.4362 0.0441 0.4264

EU 0.0189 0.0189 0.6839 0.0141 0.2641

RP 0.0144 0.0192 0.7019 0.2788

Normal 0.0013 0.0010 0.0016 0.0023 0.0003 0.9932
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Fig. 9 The overall error variation of the GA-AdaboostRBFSVM classifier at different training error thresholds

Table 5 The parameters of genetic algorithm

Population size (psize) Population number (pnum) Mutation rate (pm) Crossover rate (pc) Maximum iterations (nmax)

100 15 0.1 0.8 200

Fig. 8 The overall error variation of the GA-AdaboostLSVM classifier at different training error thresholds
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Table 7 Normalized confusion matrix of GA-AdaBoostRBFSVM method with optimal parameter values

Predicted cause

Real cause ED CH II TLHO EU RP Normal

ED 0.7311 0.0801 0.0094 0.0141 0.0660 0.0991

CH 0.5922 0.0776 0.1456 0.0097 0.1747

II 0.0283 0.0566 0.6415 0.0754 0.1981

TLHO 0.0686 0.0294 0.6715 0.0833 0.1471

EU 0.0377 0.0283 0.0330 0.7924 0.1084

RP 0.0144 0.0192 0.0288 0.0144 0.8076 0.1153

Normal 0.0027 0.0003 0.0030 0.0020 0.0010 0.9908

Table 6 Normalized confusion matrix of GA-AdaBoostLSVM method with optimal parameter values

Predicted cause

Real cause ED CH II TLHO EU RP Normal

ED 0.9245 0.0047 0.0707

CH 0.8155 0.0291 0.0097 0.1456

II 0.0283 0.8301 0.0188 0.1226

TLHO 0.0098 0.0098 0.8774 0.0049 0.0980

EU 0.0047 0.9481 0.0471

RP 0.0144 0.9326 0.0528

Normal 0.0010 0.0026 0.0033 0.0053 0.0006 0.0006 0.9861

Fig. 10 The minimum overall error rate of different classifiers at different training error thresholds
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6 Appendix

Abbreviations
3GPP: Third Generation Partnership Project; AdaBoost: Adaptive Boosting;
AdaBoostLSVM: Adaptive Boosting based on linear kernel;
AdaBoostRBFSVM: Adaptive Boosting based on RBFSVM; AdaBoostSVM: Adaptive
Boosting based on SVM; CAPEX: Capital Expenditures; CH: Coverage hole;
DAG: Directed acyclic graph; DER: Diagnosis error rate; ED: Excessive downtilt;
EU: Excessive uptilt; FPR: False positive rate; GA: Genetic algorithm; GA-
AdaboostLSVM: AdaboostLSVM based on genetic algorithm; GA-
AdaboostRBFSVM: AdaboostRBFSVM based on genetic algorithm; GA-
AdaboostSVM: AdaboostSVM based on genetic algorithm; HetNet: Heterogeneous
network; HOSR: Handover Success Rate; II: Intersystem interference; KPIs: Key
performance indicators; LSVM: SVM with the linear kernel; LTE: Long Term
Evolution; LTE-A: LTE-Advanced; ML: Machine Learning; OAA: One Against All;
OAO: One Against one; OE: Overall error; OPEX: Operational Expenditures;
PFP: Complementary of the Positive Predictive Value; RBF: Radial basis function;
RBFSVM: SVM with the RBF kernel; RP: Reduction in cell power; RSRP: Reference
Signal Received Power; RSRQ: Reference Signal Received Quality; SINR: Signal to
Interference Noise Ratio; SMOTE: Synthetic minority oversampling technique;
SONs: Self-organizing networks; SVM: Support Vector Machine; UDR: Undetected
rate
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