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Abstract

In a (k, n) threshold secret image sharing scheme, a secret image is encrypted into n image-shadows that satisfy the
following: (1) any less than k image-shadows get no information on the image and (2) any k or more image-shadows
can reconstruct the entire image. Cheating problem is an important issue in traditional secret sharing scheme.
However, this issue has not been discussed sufficiently in the field of secret image sharing. In this paper, we consider
the scenario of cheating behavior in secret image sharing scheme and construct a (k, n) threshold secret image
sharing scheme which is capable of cheating detection. Our proposed scheme is able to detect the cheating behavior
from up to k − 1 cheaters, and the size of image-shadow is almost same as the image-shadow in the original secret
image sharing scheme.
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1 Introduction
(k, n) threshold secret sharing scheme was first proposed
by Shamir [1] in 1979 for safeguarding secret informa-
tion among a group of participants. In [1], a secret s is
encrypted into n shares v1, v2, ..., vn using a k − 1-th
degree polynomial in such a way that less than k shares get
no information on the secret s; any k or more shares can
recover the secret s efficiently. Secret sharing scheme is a
fundamental tool for other cryptographic protocols [2]. In
2002, Thien and Lin extended Shamir’s secret sharing and
proposed a (k, n) threshold secret image sharing scheme
[3] by regarding an image as secret information. The
(k, n) secret image sharing schemes can be mainly divided
into two categories: polynomial-based schemes [4–6]
and visual cryptography schemes [7–9]. Polynomial-based
secret image sharing schemes can reconstruct a lossless
image with reduced shadow size; the image reconstruction
in visual cryptography schemes can be simply accom-
plished by human visual system without any computation.
However, a reconstructed image is lossy and the size of
shadow is greatly expanded from the original image.
The cheating scenario in secret sharing scheme was

first proposed in 1989 by Tompa and Woll [7]. They
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considered the scenario that some dishonest partici-
pants (cheaters) pool fake shares when reconstructing the
secret. In this way, the cheaters could recover a secret
exclusively, and the honest participants can only recover
a forged secret. Many works have focused on solving
the cheating problem in secret sharing schemes. Some
[10–12] were interested in detecting the cheating behav-
ior, and someworks [13–15] focused on not only detecting
the cheating behavior, but also identifying the cheaters.
The cheating identifiable schemes have stronger capability
to resist cheating; it results that the shares are larger and
the schemes are more complicated than those cheating
detectable schemes. Polynomial-based secret image shar-
ing scheme was extended from Shamir’s scheme [1]. As a
result, the problem of cheating is also an important topic
in polynomial-based secret image sharing. However, this
issue has not been discussed sufficiently so far. In [16–19],
some secret image sharing schemes with authentication
and steganography were capable of detecting the cheat-
ing. However, these secret image sharing schemes were
not extensions of Shamir’s scheme and the capabilities
of cheating detection were not strong enough to prevent
cheating.
In this work, we consider the problem of cheating in

the fundamental polynomial-based secret image sharing
scheme [3]. Since cheating identifiable scheme requires
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large size expansion on shadows and much more com-
plicated identification algorithm, we consider the cheat-
ing detection to prevent cheating behavior in this work.
A (k, n) threshold secret image sharing scheme capa-
ble of detecting k − 1 cheaters is constructed. In
addition, the size of image-shadow in our scheme is
almost same as the shadow size in the scheme [3]. The
computational complexity of cheating detection is effi-
cient. The rest of this paper is organized as follows:
Some preliminaries which include Shamir’s (k, n) secret
sharing scheme, polynomial-based secret image shar-
ing scheme, and the model of cheating detection in
secret sharing scheme are introduced in Section 2. In
the next section, a (k, n) threshold secret image shar-
ing scheme with cheating detection is proposed. The
properties of proposed scheme and experimental results
will be shown in Section 4, and we make a conclusion
in Section 5.

2 Preliminaries
2.1 Shamir’s (k, n) secret sharing scheme
A (k, n) threshold secret sharing scheme is a protocol
where a secret is divided into n shares. The n shares sat-
isfy that (1) k or more shares can recover the secret and
less than k shares get nothing on the secret. More for-
mally, there exists n participants P = {P1,P2, . . . ,Pn}
and a mutually trusted dealer D. A secret sharing scheme
is made up of the following two phases:

1 Sharing phase: The dealerD encrypts secret s into n
shares v1, v2, . . . , vn and sends each share vi to a
participant Pi.

2 Reconstruction phase: k or more participants
submit their shares to recover secret.

The n shares generated by the dealer should satisfy the
following two conditions:

1 Correctness: Any group of at least k shares can
recover the valid secret s.

2 Secrecy: Fewer than k shares get no information on
the secret s.

Shamir’s scheme was based on interpolation polynomial
which is shown in Scheme 1.
Scheme 1: Shamir’s (k, n) secret sharing scheme

Sharing phase:

1 The dealer D chooses a k − 1-th degree
polynomial f (x) ∈ GF(q)[X] which satisfies
s = f (0) ∈ GF(q).

2 The dealer D generates n shares
vi = f (i), i = 1, 2, . . . , n and sends each vi
to a participant Pi.

Reconstruction phase:

1 m(≥ k) participants (say P1,P2, . . . ,Pm)
submit their shares v1, v2, ..., vm together.

2 Computing the interpolated polynomial f (x)
on v1, v2, . . . , vm by the equation
f (x) = ∑m

i = 1

(
vi

∏
u �=i

x − u
i − u

)
. Then the

secret s = f (0).

2.2 Cheating detection in secret sharing scheme
The cheating scenario in secret sharing was first intro-
duced by Tompa and Woll [20] such that some malicious
participants disclose fake shares in Reconstruction phase,
which makes the honest participants reconstruct a forged
secret and the cheaters can get the real secret exclusively.
In [20], they also introduced the model of secret sharing
with cheating detection, which also consists of two phases
as follows:

1 Sharing phase: The dealer D divides the secret s into
n shares v1, v2, . . . ., vn and sends each share vi to a
participant Pi.

2 Reconstruction phase: A group of m participants
(m ≥ k) submit their shares.

(1) A public cheating detection algorithm is
applied on these shares to detect cheating.

(2) − If cheating is detected, stop the
Reconstruction phase and output ⊥.

− Else, reconstruct the secret s from
these shares and output s.

2.3 Polynomial-based secret image sharing scheme
In [3], a remarkable (k, n) secret image sharing scheme
was proposed by Thien and Lin which was based on
Shamir’s scheme. An image I is made up of multiple pix-
els (p1, p2, . . . , pw), where each pixel pi can be presented
as its gray value in GF(251). If all the pixels in an image
are treated as secrets, a secret image sharing scheme can
be extended from original secret sharing scheme. The
scheme [3] consists of two phases: shadow generation
phase and image reconstruction phase. In the first phase,
a dealer encrypts I into n image-shadows S1, S2, . . . , Sn;
in the second phase, any set of m image-shadows
k ≤ m ≤ n reconstructs the secret image I.
Scheme 2: Thien-Lin’s secret image sharing
Shadow generation phase:
Input secret image I, outputs n image-shadows

S1, S2, . . . , Sn

1 The dealer divides I into l -non-overlapping k-pixels
blocks, B1,B2, . . . ,Bl.

2 For k pixels aj,0, aj,1, . . . , aj,k−1 ∈ GF(251) in each
block Bj, j ∈ [1, l], the dealer generates a k − 1-th
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degree polynomial fj(x) ∈ GF(251)[X], such that
fj(x) = aj,0 + aj,1x + aj,2x2 + . . . ,+aj,k − 1xk − 1,
and computes n shares
vj,1 = fj(1), vj,2 = fj(2), . . . , vj,n = fj(n), j ∈ [1, l]
as Shamir’s scheme.

3 Outputs n shadows
Si = v1,i ‖ v2,i ‖, . . . , ‖ vl,i, i = 1, 2, . . . , n.

Image reconstruction phase:
On inputm shadows S1, S2, . . . , Sm.(m ≥ k).

1 Extract v1,j, v2,j, . . . , vm,j, j ∈ [1, l] from S1, S2, . . . , Sm.
2 Using the approach of Shamir’s scheme, reconstruct

the polynomial
fj(x) = aj,0 + aj,1x + aj,2x2 + . . . .,+aj,k − xk − 1

from v1,j, v2,j, . . . , vm,j, j ∈ [1, l]. The block
Bj = aj,0 ‖ aj,1 ‖, . . . , ‖ aj,k−1.

3 Outputs I = B1 ‖ B2 ‖, . . . , ‖ Bl.

It is obvious that Scheme 2 satisfies k-threshold prop-
erty that k or more image-shadows are capable of recov-
ering the entire image; fewer than k image-shadows get
noting on the image. The size of image-shadow in Scheme
2 is 1

k times of the image I.

3 (k,n) secret image sharing with cheating
detection

The problem of cheating in secret image sharing is consid-
ered in this part, such that some cheaters submit forged
image-shadows during image reconstruction phase. It
results that these cheaters are able to recover secret image
exclusively, and the honest participants recover only a fake
image. In order to solve this problem, we construct a (k, n)

threshold secret image sharing scheme capable of detect
cheating under the model in Section 2.2. Our scheme
is extended from Thien-Lin’s fundamental scheme which
can be adopted in other polynomial-based secret image
sharing schemes. Our scheme is shown in Scheme 3.
Scheme 3: (k, n) secret image sharing scheme capable

of detect cheating

Shadow Generation Phase: Input a secret image I,
output n image-shadows S1, S2, . . . , Sn

(1) The dealer divides I into t-non-overlapping
2k − 2-pixel blocks, B1,B2, ...,Bt .

(2) For each block Bi, i ∈ [1, t], there are 2k − 2
secret pixels ai,0, ai,1, . . . , ai,k−1 and
bi,2, bi,3, . . . , bi,k−1 ∈ GF(251). The dealer
generates a k − 1-th degree polynomial
fi(x) = ai,0 + ai,1x+, . . . ,+ai,k − 1xk − 1 ∈
GF(251)[X].

(3) The dealer chooses a random integer ri, and
computes two pixels bi,0, bi,1 which satisfy
that: riai,0 + bi,0 = 0, riai,1 + bi,1 = 0 over

GF(251). Then the dealer generates another
k − 1-th degree polynomial
gi(x) = bi,0 + bi,1x + . . . ,+bi,k − 1xk−1.

(4) For each block Bi, i ∈ [1, t], the dealer
computes sub-shadow
vi,j = {mi,j, di,j},mi,j = fi(j), di,j = gi(j), j =
1, 2, . . . , n for each participant Pj. The shadow
Sj for Pj is Sj = v1,j ‖ v2,j ‖, . . . , ‖ vt,j.

Image Reconstruction Phase: Input k shadows,
without loss of generality (S1, S2, . . . , Sk)

(1) Extract
vi,j = (mi,j, di,j), i = 1, 2, . . . , t, j = 1, 2, . . . , k
from S1, S2, . . . , Sk .

(2) For each group of vi,1, vi,2, . . . , vi,k , i ∈ [1, t],
reconstruct fi(x) and gi(x) from
mi,1,mi,2, . . . ,mi,k and di,1, di,2, . . . , di,k using
Lagrange interpolation respectively.

(3) Let ai,0, ai,1, bi,0 and bi,1 be the coefficients of
x0 and x in fi(x) and gi(x) respectively.

- If there exist a common integer ri which
satisfies that riai,0 + bi,0 = 0 and
riai,1 + bi,1 = 0, recover the
2k−2–pixel block Bi=

{
ai,0, ai,1, . . . ,

ai,k−1, bi,2,i,3, . . . ,bi,k−1
}
, the secret

image I is I = B1 ‖ B2 ‖, . . . , ‖ Bt .
- Else, there are fake shadows

participating in image reconstruction;
the cheating is detected, output ⊥.

Notice that in Thien-Lin’s scheme, the size on image-
shadow is 1

k times of the image. In our scheme, the share
vi,j = (mi,j, di,j) are generated from each 2k − 2-pixel
block; therefore, the size on image-shadow in our scheme
is 2

2k−2 = 1
k−1 times of image I.

The features of our scheme will be described in follow-
ing theorems. Theorem 1 proves that our scheme satisfies
the property of (k, n) threshold, such that less than k
image shadows get no information on secret image; k or
more image-shadows are able to recover secret image. In
Scheme 3, the secret image I is cut into 2k − 2-pixels
blocks B1,B2, . . . ,Bt . Each block is encrypted by the same
approach; we only need to prove that the n shares v1,j, j =
1, 2, . . . , n on block B1 satisfy the (k, n) threshold prop-
erty. The property of detect cheating will be analyzed in
Theorem 2.
It seems that the relationship between a0, a1, b0, b1

would leak some information on the secret. How-
ever, the following Theorem 1 will prove that
a0, a1, b0, b1 leak no information about the secret
at all, and the proposed scheme is a perfect (k, n)

threshold secret image sharing scheme that satisfies
the threshold property. The capability of cheating
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detection of proposed scheme is discussed in
Theorem 2.

Theorem 1 The proposed scheme satisfies the property
of (k, n) threshold.

Proof In our scheme, any 2k − 2 pixels in a block Bi are
encrypted into n shares vi,j, j = 1, 2, . . . , n using Shamir’s
scheme; it is easy to prove that k or more shares can
recover all the 2k − 2 pixels in Bi.

In the following, we will prove that k−1 participants are
unable to get any information of the 2k−2 pixels. Since in
the proposed scheme, ai,0, ai,1, bi,0, bi,1 have the relation-
ships that riai,0+bi,0 = 0 and riai,1+bi,1 = 0, it seems that
the method of exhaustion could resolve the 2k − 2 pixels.
We describe the method of exhaustion below.

(1) all k − 1 participants use all possible shares on the
k-th participant and generates p = 251
corresponding interpolation polynomials
f ui (x),u = 1, 2, . . . , 251 and guj (x),u = 1, 2, . . . , 251.

(2) If f u∗
i (x) and gv∗i (x) satisfy ria

′
0 + b′

0 = 0 and
ria

′
1 + b′

1 = 0 where a′
0, b

′
0, a

′
1, b

′
1 are coefficients of

x0, x in f u∗
i (x) and gv∗j (x). Then f u∗

i (x) and gv∗i (x)
would be the original polynomials selected by dealer,
and all the 2k − 2 pixels can be gotten from f u∗

i (x)
and gv∗i (x).

Assume that m∗(k) is the share of k-th participant
that is randomly selected, then the k − 1 partici-
pants generates a k − 1-th degree polynomial fi(x)
from (1,m1), (2,m2), . . . , (k − 1,mk−1),

(
k,m∗

k
)
. Let a′

0, a
′
1

be the corresponding coefficients in fi(x). Accord-
ing to the method of exhaustion described previ-
ously, if there exists a k − 1-th degree polynomial
gj(x) = b′

0+b′
1x+, . . . ,+b′

k−1x
k−1 which is interpolated by

(1, d1), (2, d2), . . . , (k−1, dk−1),
(
k, d∗

k
)
, satisfies that r′a′

0+
b′
0 = 0, r′a′

1 + b′
1 = 0 (r′ could be any value in GF(251)),

then fi(x) and gi(x) are the two polynomials selected
by the dealer. b′

0, b
′
1, . . . , b

′
k−1 and r′ can be regarded as

k + 1 unknowns, then k + 1 linear equations on these
unknowns can be established: g ′

(i) = di, i = 1, 2, . . . , k −
1, r′a′

0 + b′
0 = 0, r′a′

1 + b′
1 = 0. (Here a′

0, a
′
1 are known

to the k − 1 participants.) Therefore, all the unknowns
b′
0, b

′
1, . . . , b

′
k−1 can be obtained from these equations; we

can also get the polynomial gi(x). It means that the k − 1
participants will find that each possible share could be
the valid share of the kth participant. This proves that
the approach of exhaustion cannot work in the proposed
scheme.
An example is used to show the approach of exhaustion

in proposed scheme. Assume k = 4 and two polynomials

f (x) = 1 + 3x + 4x2 + 5x3 and g(x) = 4 + 5x + x2 + 3x3
over GF(7) are chosen by the dealer. It is obvious that
3a0 + b0 = 0, 3a1 + b1 = 0. Let P1.P2,P3,P4 be the four
participants; the shares of them are P1: (m1 = 6, d1 = 6),
P2: (m2 = 0, d2 = 0), P3: (m3 = 6, d3 = 4), and
P4: (m4 = 5, d4 = 1). Suppose P1,P2,P3 try to recover
secret using approach of exhaustion. As described pre-
viously, they can randomly assume the sub-share of P4:
m∗

4 = 0 and generate an interpolation polynomial f ′
(x) =

6 + 2x + 2x2 + 3x3 correspondingly. Then they try each
possible sub-share d∗

4 of P4 and verify whether it is fit. For
instance, when they use d∗

4 = 2, the interpolating polyno-
mial is g ′

(x) = 3 + x + 2x3. The coefficients a′
0, a

′
1, b

′
0, b

′
1

satisfy that 3a′
0 + b′

0 = 0, 3a′
1 + b′

1 = 0. Then they get the
conclusion that f ′

(x), g ′
(x) would be the valid polynomi-

als and s′ = f ′
(0) = 6 is the secret. In fact, they recover a

wrong secret. End of proof.
The capability of cheating detection in our scheme is

analyzed in Theorem 2.
Theorem 2 Our scheme is able to detect cheating from

k − 1 cheaters.

Proof Suppose P1,P2, ...,Pk participate in secret recon-
struction phase and P1,P2, ...,Pk−1 are cheaters. Since
cheating detection algorithm is used in each block Bi, i ∈
[1, t], we only analyze the cheating detection in decod-
ing B1 in this theorem. Suppose the fake shares from
cheaters are v∗

i = (
mi + m∗

i , di + d∗
i
)
, i = 1, 2, . . . , k − 1.

They can get two polynomials f ∗∗(x) = f (x) +
f ∗(x), g∗∗(x) = g(x) + g∗(x) in image reconstruction
phase, where f ∗(x) = a∗

0 + a∗
1x + · · · + a∗

k−1x
k−1 and

g∗(x) = b∗
0+b∗

1x+· · ·+b∗
k−1x

k−1 are interpolated polynomi
als on the k points (1,m∗

1),
(
2,m∗

2
)
, . . . ,

(
k−1,m∗

k−1

)
, (k, 0)

and
(
1, d∗

1
)
,
(
2, d∗

2
)
, . . . ,

(
k − 1, d∗

k−1

)
, (k, 0) respectively.

Since f ∗(x) and g∗(x) can be decided by cheaters exclu-
sively, they can select a random number r∗, and satisfy
that r∗a∗

0 + b∗
0 = 0, r∗a∗

1 + b∗
1 = 0. According to our

algorithm, if there exists a common number r′ , satisfying
r′ (a0 + a∗

0
) + b0 + b∗

0 = 0, r′ (a1 + a∗
1
) + b1 + b∗

1 = 0,
the cheating avoids detection. We can easily observe that
the cheating succeeds only when r∗ = r. As analyzed in
Theorem 1, these k − 1 cheaters have no information on
r; the possibility of r∗ = r is 1

251 . As a result, the success-
ful cheating probability is ε = 1

251 . Since all the pixels are
in GF(251), the successful cheating possibility ε = 1

251
means that our scheme is effective to detect the cheating.
End of proof.

4 Results and discussion
In this part, we use an example to describe the cheating
detection using our scheme. Let (k, n) = (4, 7) and the
secret image I is divided into t blocks where each block
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includes 2k−2 = 6 secret pixels. Assume the first block B1
consists of the following 6 pixels: (57, 68, 90, 231, 42, 89),
the dealer selects an integer r1 = 9, and generates two
k − 1 = 3-th degree polynomials: f1(x) = 57 + 68x +
90x2+231x3 and g1(x) = 161+104x+42x2+89x3, where
57 + 9 ∗ 161 = 0(mod251), 68 + 9 ∗ 104 = 0(mod251).
The n = 7 shares from B1 are v1,1 = (195, 145), v1,2 =
(142, 245), v1,3 = (29, 242), v1,4 = (238, 168), v1,5 =
147, 55, v1,6 = (138, 186), v1,7 = (91, 91).
Suppose P1,P2,P3, and P4 participate in image recon-

struction and P1,P2,P3 are k − 1 = 3 cheaters. They sub-
mit forged shares v∗

1,1 = (105, 87), v∗
1,2 = (162, 31), v∗

1,3 =
(23, 98) in image reconstruction. As a result are two poly-
nomials f ∗

1 (x) = 55 + 188x + 105x2 + 8x3 and g∗(x) =
135 + 167x + 56x2 + 231x3. Since there is no common
integer r1 satisfying that 55r1 + 135 = 0(mod251) and
188r1 + 167 = 0(mod251), the cheating is successfully
detected.
The cheating detection approach in our scheme is also

efficient with other cheating detectable secret sharing
schemes. Table 1 shows the comparisons between our
scheme and other schemes in cheating detection. When
comparing to those cheating detectable secret image shar-
ing schemes [16–19], our scheme achieves much stronger
capability. It can detect cheating from up to k−1 cheaters,
while other schemes work only when there are less than k

2
cheaters.

5 Conclusions
In this paper, we consider the well-known cheating
problem in polynomial-based (k, n) secret image shar-
ing scheme, such that a group of malicious partici-
pants submit fake shadows during image reconstruction.
In order to prevent such cheating behavior, we con-
struct a (k, n) secret image sharing scheme with cheat-
ing detection under the model of cheating detectable
secret sharing scheme. Our scheme is capable of detect-
ing the cheating from up to k − 1 cheaters with
only Lagrange interpolations. In addition, the pro-
posed scheme is based on the landmark Thien-Lin’s
polynomial-based secret image sharing which can be eas-
ily extended into other polynomial-based secret image
sharing schemes. The size of shadow in our scheme is
only 1

k−1 times of the secret image, which is almost

Table 1 Comparisons between cheating detectable secret
sharing schemes

Size of share Capability of detection

Harn’s scheme[10] |V| = |S| Fail

Pieprzyk’s scheme[11] |V| = |S| 1 ε = 1
p

Sergio’s scheme[12] |V| = 2 |S|
ε

k − 1 ε = 2
p

Proposed scheme |V| = |S|
ε

k − 1 ε = 1
p

same as the shadow size in original (k, n) secret image
sharing scheme.

6 Method
In this work, we aim to solve the cheating problem in
polynomial-based secret image sharing scheme. Since
polynomial-based secret image sharing is extended from
traditional secret sharing scheme, we also used a cheat-
ing detection algorithm in traditional secret sharing in the
field of secret image sharing. The experimental results are
generated using Matlab software.
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