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Abstract

The accurate reconstruction of a signal within a reasonable period is the key process that enables the application
of compressive sensing in large-scale image transmission. The sparsity adaptive matching pursuit (SAMP) algorithm
does not need prior knowledge on signal sparsity and has high reconstruction accuracy but has low reconstruction
efficiency. To overcome the low reconstruction efficiency, we propose the use of the fast sparsity adaptive matching
pursuit (FSAMP) algorithm, where the number of atoms selected in each iteration increases in a nonlinear manner
instead of undergoing linear growth. This form of increase reduces the number of iterations. Furthermore, we use
an adaptive reselection strategy in the proposed algorithm to prevent the excessive selection of atom. Experimental
results demonstrated that the FSAMP algorithm has more stable reconstruction performance and higher
reconstruction accuracy than the SAMP algorithm.

1 Introduction
The explosive growth of information has brought a great
burden for signal processing and storage. In some
application scenarios with resource strain on computing
and bandwidth, the sampling frequency required in the
tradition Nyquist sampling theorem makes signal acqui-
sition, processing, storage, and transmission under the
pressure of massive data. Particularly, the Nyquist
sampling theorem increases the cost and lowers the ef-
fectiveness of data acquisition and processing equipment
in the transmission and processing of large-scale image
data [1, 2].
The emergence of the compressed sensing (CS) theory

solves the problems caused by the limitation of sampling
frequency and drives the signal processing into a new
stage. Signal processing, data collection, and data com-
pression are simultaneously performed through CS
(synchronize) [3, 4]. That is, the methodology of signal
processing in CS reduces the number of measurements
during the sampling process but still retains sufficient
information. Therefore, it has a great application pro-
spect in large-scale image processing owing to its low

measurement frequency and high reconstruction preci-
sion [5–7].
CS involves a three-part process, namely, signal sparse

representation, signal compression under measurement
matrix, and signal reconstruction. CS mainly addresses
the issues regarding the improvement of reconstruction
algorithm design. The performance of reconstruction
algorithm is mainly reflected in the two aspects of re-
construction efficiency and reconstruction accuracy.
Although the performance of signal acquisition process
in CS is better, but the signal reconstruction accuracy or
the signal reconstruction efficiency is low, CS is not
practical. Therefore, the key in the application of CS is
to design a good reconstruction algorithm that can
balance the reconstruction efficiency and the reconstruc-
tion accuracy.
Presently, matching pursuit (MP) algorithms demon-

strate excellent reconstruction performance in CS,
although some of them require prior knowledge of signal
sparsity and are thus less practical. Some MP algorithms,
such as the sparsity adaptive matching pursuit (SAMP)
algorithm, do not need this knowledge. The SAMP
algorithm does not have constraints with atom selection
threshold and has high reconstruction accuracy.* Correspondence: guanqf@cug.edu.cn
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However, its reconstruction time is extremely long be-
cause of repeated iteration when it approximates sparse
signals.
To extend the application of the CS theory to large-

scale image signal processes, we focus on improving the
reconstruction efficiency of the SAMP algorithm. In the
SAMP algorithm, a high reconstruction accuracy is ob-
tained by using a small initial step-size. Unfortunately,
this setting causes the SAMP algorithm to run massive
iteration in order to adjust the number of selected atoms
for the adaptive approximation of signal sparsity. There-
fore we propose a fast sparsity adaptive matching pursuit
(FSAMP) algorithm where the number of selected atoms
is changed from an original linear to a nonlinear growth
form. In the FSAMP algorithm, the initial step-size is set
at a large value, and the step-size gradually shrinks in
each iteration until the number of selected atoms is pre-
cisely approximate to the signal sparsity. This method
decreases the number of iterations and shortens recon-
struction time. Meanwhile, to lower the impact on re-
construction accuracy because of the changes in atom
selection method of FSAMP algorithm, we introduce a
reselection strategy which prunes the selected atoms to
ensure reconstruction accuracy.
The rest of the paper is organized as follows. In

Section 2, we review the CS and provide the related
works on image reconstruction algorithms. The detailed
descriptions of the proposed FSAMP algorithm are pro-
vided in Section 3. In Section 4, we discuss some experi-
mental results. Finally, the conclusion and future work
are shown in Section 5.

2 Related work
The CS theory indicates that the high-dimensional
sparse signal after sparse representation can be projected
to a low-dimensional space by using a measurement
matrix uncorrelated with the transform base when a sig-
nal is compressible or can be sparsely represented by a
transform base. Thereafter, the original signal can be
exactly constructed from the very small amount of pro-
jection signals by solving an optimization problem. The
mathematical model of CS can be expressed as

F ¼ ΨY ¼ ΨΦX ¼ ΘX; ð1Þ

The expression Ψ ∈ RS ×M is the measurement
matrix, Φ ∈ RM ×N is the transform or dictionary base,
and Θ =ΨΦ is the sensing matrix. The expression Y
=ΦXshows that the original signal Y can be sparsely
represented in Φ.
Y can be reconstructed by solving the L0-minimization

problem.

X̂ ¼ arg min Xk k0 s:t: ΘX ¼ F ; ð2Þ
then Y ¼ Φ X̂ , where X̂ is N-dimensional reconstructed
sparse signal, F is S-dimensional measurement signal,
and Θ ∈ RS ×N is sensing matrix. When the Y ∈ RM × 1 is
K-sparse signal, the Y do not need to be sparsely
represented, so the dictionary base is an identity matrix.
The Y can be compressed to a smaller signal F ∈ RS × 1 (S
< <M) by measurement matrix Ψ [8] and can be
expressed as follow:

F ¼ ΨY : ð3Þ
The signal projection process on the measurement

matrix is the same as the compression process of signals.
The dimension of measurement signals is far smaller
than the original signal, so Function (2) is an underde-
termined system of equations with numerous solu-
tions. But when Y ∈ RM × 1 is K-sparse signal, Function
(2) can be solved by the l0-norm minimization based
on CS [9, 10]. The Y can be exactly reconstructed by
measurement signal F. Thus,

arg min
Y

Yk k0 s:t: F ¼ ΨY : ð4Þ

However, Donoho [11] indicated that the problem of
the l0-norm minimization is NP-hard; an exhaustive
search on the CK

M combinations of Y is necessary to the
acquisition of a global optimal solution. Therefore, the
algorithms for obtaining suboptimal solution are pro-
vided in succession, and these algorithms are divided
into three kinds, namely, convex optimization algo-
rithms, combination algorithms, and greedy algorithms
[12]. Convex optimization algorithms have fairly high
reconstruction accuracy and less measurement, but the
complicated reconstruction process affects its practic-
ability. Combination algorithms have shorter reconstruc-
tion time than convex optimization algorithms but need
more measurements, which are hardly satisfied in
practice. Greedy algorithms have low complexity and
high reconstruction efficiency, although their recon-
struction accuracy is inferior to the convex optimization
algorithm. Nevertheless, greedy algorithms have better
application prospect, and MP algorithms mostly repre-
sent greedy algorithms. Therefore, we investigated MP
algorithms to increase reconstruction efficiency and re-
construction accuracy.
MP algorithm was first proposed by Mallat and Zhang

[13]. In each iteration, MP algorithm selects a column
vector (atom) from the measurement matrix that is
maximally correlated with the current residual, where
initial residual is the measurement signal, then the
differences between the original sparse signal and recon-
structed sparse signal diminish after the atom selection.
When the residual reaches the preset threshold, the
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sparse signal can be concluded to be accurately recon-
structed by the measurement matrix. The disadvantage
of MP algorithm is that the residuals are only orthogonal
to the current selected atom, and the selected atom has
the possibility of being repeatedly selected during itera-
tions. Such iterations render the MP algorithm difficult
to converge. Pati et al. [14] proposed orthogonal match-
ing pursuit (OMP) algorithm. OMP inherits the atom se-
lection strategy of MP algorithm but makes the selected
atoms to be orthogonal to each other. This improvement
solves the problem of MP being hard to converge.
On the basis of OMP, Needell and Tropp proposed

compressive sampling matching pursuit (CoSaMP) [15]
algorithm. In contrast to the OMP algorithm, CoSaMP
algorithm selects two K optimal-related atoms simultan-
eously then discards K atoms selected before the next it-
eration. The CoSaMP algorithm is robust noise because
of its backtracking strategy for atom selection. A similar
atom selection strategy is available between CoSaMP
algorithm and subspace pursuit (SP) algorithm [16]. For
a better reconstruction result, Needell and Vershynin
introduced the regularization constraint to the atom se-
lection strategy of regularized orthogonal matching pur-
suit (ROMP) algorithm, which selects K optimal-related
atoms, then reselect atoms from the previous selected K
atom based on the regularization constraint [17]. How-
ever, these reconstruction algorithms need to know
signal sparsity in advance, which is extremely hard to
obtain in practice. Therefore, the practical application of
these reconstruction algorithms is not as successful as
the theoretical research.
In order to break the constraint of signal sparsity on MP

algorithms, Dohono et al. [18] proposed a stagewise orthog-
onal matching pursuit (StOMP) algorithm. StOMP algo-
rithm uses a preset threshold to determine the process of
atom selection, and do not need the prior knowledge of sig-
nal sparsity. Then, an improved algorithm of StOMP, a
stagewise weak orthogonal matching pursuit (SWOMP) al-
gorithm [19], was proposed by Blumensath and Davies.
SWOMP algorithm changes the method of threshold set-
ting during atom selection and lowers the requirements on
the measurement matrix compared with StOMP algorithm.
The SAMP algorithm is also an MP algorithm that does
not depend on signal sparsity [20]. The atom selection
process of SAMP algorithm is not constrained by the preset
threshold in contrast to those of the StOMP and SWOMP
algorithms, and the number of selected atoms in SAMP al-
gorithm is determined by a fixed step-size. In case of a
small step-size, the high reconstruction accuracy of SAMP
algorithm corresponds with long reconstruction time. To
shorten the reconstruction time of SAMP algorithm, some
scholars proposed the improvements. Yu found that the
fixed step-size of SAMP algorithm is the reason for the
long reconstruction time, so they introduced a variable

step-size and backtracking strategy to improve SAMP algo-
rithm and decrease the number of iterations [21]. Huang et
al. introduced a regularization constraint to atom selection
and used different step-sizes in each subsection of iterations
to shorten reconstruction time [22].
Based on the above algorithms, we conclude that obtain-

ing good criteria for atom selection is the research priority
for MPs. The SAMP algorithm has high reconstruction ac-
curacy and low reconstruction efficiency. Therefore, further
research must focus on the improvement of reconstruction
efficiency. However, the two improved algorithms only con-
sider one-dimensional signal but not verify their validity on
large-scale image signal, while the improvements on recon-
struction efficiency are limited.
In this paper, we aim to identify a highly efficient and ac-

curate FSAMP algorithm large-scale image reconstruction.
Specifically, the main contributions of this paper are as fol-
lows: (1) reduction of the number of iterations and recon-
struction time of the SAMP algorithm, increase of the
number of atoms selected in each iteration through nonlin-
ear growth instead of linear growth, and gradual reduction
of initial large step-size in the iterations until the number of
selected atoms are precisely approximate to the signal
sparsity; and (2) prevention of the excessive selection of
atom, the introduction of an adaptive reselection strategy
based on the varied residuals, and the deletion of the mis-
matching atoms for high reconstruction accuracy.

3 Fast sparsity adaptive matching pursuit algorithm
FSAMP preserves the atom selection method of SAMP
algorithm. FSAMP still selects L atoms, which have the
largest inner products with the current residual, then
judges whether the number of atoms increase or not
according to the changes between the current residual
and the last residual. Compared with SAMP algorithm, in
FSAMP, the number of atom St increases at each iteration
based on the current number of iterations, rather than the
increase in the fixed step-size in SAMP algorithm, where t
is the number of iterations. Detailed implementation of
the process of FSAMP algorithm is as follows:
Input: the sensing matrixA =ΦΨ (A ∈ RM ×N),

measurement signaly, and the parameter step-size
sequence s.
Output: sparse signal θ∧.
The reconstruction process of sparse signal:

(1) Initialization: the initial residual r0 = y, the index set
of selected atoms Λ0=Ø, the set of selected atoms
Ω0=Ø, St = arctan (s) ×M/4π, En = s, Ds =M/4, ς =
linspace (St, En,Ds), the number of selected atoms
L = ςt, and iteration count t = 1;

(2) Compute the inner product of current residual and
the sensing measurement matrix, ut = | A, rt − 1 |,
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and find the index values ϑt corresponding to L
maximum values from ut;

(3) Add the index values ϑt to index set∧t,∧t =∧t ‐ 1∪

ϑt, and let the set of selected atoms ζt correspond to
the largest L elements of A, Ωt=Ωt− 1∪ ξt;

(4) Solve the least squares solution of y ¼ Ωt θ̂t , θ̂t
¼ ðΩT

t ΩtÞ−1ΩT
t y;

(5) Update residual rt ¼ y−Ωt θ̂t ¼ y−ΩtðΩT
t ΩtÞ−1ΩT

t y;
(6) If ‖rt‖2 < ε, stop iteration and proceed to (8);

otherwise, proceed to (7);
(7) If ‖rt‖2 ≤‖rt ‐ 1‖2 and L <N, update the number

of atom selection L = L + ςt, t = t + 1, and proceed to
(2); if ‖rt‖2 >‖rt ‐ 1‖2 and L <N, update L = L
− γL ,γ =‖rt − 1‖2/‖rt‖2; if none of the above
is satisfied, stop iteration and proceed to (8);

(8) Obtain the reconstructed original signal based on θ̂t
and the dictionary base Ψ.The ς = linspace (St, En,
Ds) is a linear descending sequence which is
determined by three parameters, St, En, and Ds. St
= arctan (s) ×M/4π, which defines the initial value
of the descending sequence ς. En defines the last
value of the descending sequence ς, where the
default value of En is s. Ds is used to determine the
length of the descending sequence ς, where the
default value of Ds is M/4, and M is the
measurement frequency which is equal to the
number of rows of the measurement matrix.

In the reconstruction process, FSAMP algorithm uses St
to determine the initial value of step-size. The arctan (s) in
formula for St is to ensure that the small parameter s corre-
sponds to small initial step-size, and the large parameter s
corresponds to convergence in initial step-size. The arc-
tan (s) in formula for St limits the increase of the step-size
sequence whether the parameter s is large or small, and
make the FSAMP algorithm robust for varying parameter s.
In iterations, when the difference between the signal

sparsity and the number of atom selection adjust to large
step-size sequence, the corresponding residual will sud-
denly increase. To avoid this situation, FSAMP algo-
rithm adjusts the number of atom selection based on the
changes of residuals in step (7). When L2-norm of the
current residual is larger than L2-norm of the last re-
sidual of the iteration, FSAMP algorithm reduces the
number of atoms. The number of deleted atoms depends
on the ratio between L2-norm of the current residual
and L2-norm of the last residual of the iteration. ⌈ ⌉ is
a top integral function and ⌈I − γI⌉ is the smallest integer
greater than or equal to (I − γI).

4 Simulation results and disscussion
Most existing MP algorithms need to know the signal
sparsity in advance, but some algorithms do not, such
as StOMP algorithm, SWOMP algorithm, and SAMP

algorithm which are the mostly the representatives of MP
algorithms. In this section, FSAMP algorithm is compared
with StOMP, SWOMP, SAMP, and OMP algorithms on
the reconstruction performance for two-dimensional
large-scale images. The peak signal-to-noise ratio (PSNR),
the reconstruction time (RT), and the number of itera-
tions are taken as the evaluation criteria of reconstruction
performance, where the PSNR reflects the reconstruction
accuracy, and the RT and number of iterations reflect the
reconstruction efficiency. Experimental simulations are
performed by Intel(R), Xern(R) CPU E3-1226 v3, 3.
30GHz, RAM 32G, MATLAB 2009a. The test images
(downloaded at http://sipi.usc.edu/database/database.
php?volume=misc) in experiments with size 1024 × 1024
are transformed into gray images, and data type are dou-
bled by the MATLAB function “im2double” so as to be
sparsely represented by discrete wavelet transform (Fig. 1)
[22]. In order to acquire the reconstruction performance
of reconstruction algorithms under different measurement
matrices, the measurement signals are obtained by 1000-
fold cross-validations using different measurement matri-
ces, Gaussian random measurement matrix, and Bernoulli
random measurement matrix.
Gaussian random measurement matrix is the most

commonly used measurement matrix, and its elements
have enough randomness to satisfy the design require-
ment of measurement matrix in CS. Bernoulli random
measurement matrix is generated by Eq. (1) and the
elements in Bernoulli random measurement matrix are
Bernoulli distributed independently.
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where Mis measurement frequency. The Φ generated by
Eq. (5) also has a very strong randomness. When the
measurement frequencyM ≥ cK log(N/K), the Bernoulli
random matrix is able to satisfy the RIP criterion with
great probability [23], where c is a small constant, Kis
the sparsity of signal, and Nis the signal dimension, as
well as the number of columns in measurement matrix.
Compared with Gaussian random measurement, the ele-
ments of Bernoulli random measurement matrix are
relatively simple which make Bernoulli random meas-
urement matrix easier to store in practical applications.

4.1 The comparison of reconstruction performance under
Gaussian random measurement matrix
In the following experiments, we used Gaussian random
measurement matrix to compress the sparse signal at
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first and analyze the reconstruction performance of all
the reconstruction algorithms. The sparsity of sparse sig-
nal set as a quarter of the number of rows of the sensing
matrix in OMP algorithm needs special note. Table 1
shows the PSNR averages of all test images under differ-
ent compression ratios when using the Gaussian random
measurement matrix. As Table 1 shows the PSNR aver-
age, the reconstruction accuracy of all the algorithms are
found to be almost low, but as the compression ratio in-
creases, the reconstruction accuracy of all the algorithms
improve gradually except for StOMP algorithm. That is
because the measurement signals have more information
about the original images when the compression ratios
increased, and the reconstructed results are closer to the
original images when the reconstruction accuracy im-
proved significantly. However, the PSNR averages of
StOMP algorithm did not vary with the compression
ratios. The strict criterion of atom selection in StOMP
algorithm allowed only few atoms to satisfy the thresh-
old value of atom selection, even if the measurement sig-
nals obtain more information about the original images.
From the PSNR averages in Table 1, the FSAMP algo-
rithm has the highest construction accuracy, and its

PSNR averages are approximately 3 dB higher than that
of the other algorithms (except SAMP).
Table 2 shows RT averages of all test images under dif-

ferent compression ratios. In experiments, one image is
divided into 1024 one-dimensional signals and recon-
structed simultaneously. As RT averages shown in Table 2,
the RT of StOMP algorithm is the shortest and the RT of
SAMP algorithm is the longest. By the comprehensive
consideration of reconstruction accuracy and reconstruc-
tion time, SAMP algorithm has the longest RT, but its re-
construction accuracy is much better than that of OMP,
StOMP, and SWOMP algorithms. Compared with SAMP
algorithm, FSAMP algorithm still has advantages of the
reconstruction accuracy and the reconstruction time, es-
pecially on the RT, the RT of FSAMP algorithm are just
one-twentieth of SAMP algorithm.
Table 3 shows the average number of iterations needed

for test image reconstruction. OMP algorithm needs to
know the signal sparsity in advance; therefore, we set the
signal sparsity as a quarter of the number of rows of the
measurement signal in experiments. As Table 3 shows, the
average number of iterations of OMP algorithm is equal
to the signal sparsity which we preset in experiments.

Fig. 1 Some examples of test images

Table 1 The PSNR (dB) averages of all test images of all
reconstruction algorithm under different compression ratios
using Gaussian random measurement matrix

PSNR Compression ratio

0.2 0.4 0.6 0.8

OMP 6.08 11.71 16.07 21.39

StOMP 9.27 9.27 9.27 9.27

SWOMP 2.46 5.99 17.51 26.08

SAMP 5.52 11.47 18.54 28.40

FSAMP 5.45 12.13 21.10 29.58

Table 2 The RT (reconstruction time) averages of all test images
of all reconstruction algorithm under different compression
ratios using Gaussian random measurement matrix

PSNR Compression ratio

0.2 0.4 0.6 0.8

OMP 0.01076 0.05755 0.21668 0.64998

StOMP 0.00015 0.00017 0.00023 0.00040

SWOMP 0.00291 0.03464 0.26225 0.55218

SAMP 0.23592 2.20282 10.07340 29.93917

FSAMP 0.06924 0.21072 0.51435 1.05438
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These prove that the signal sparsity determines the recon-
struction performance of OMP algorithm. Under different
compression ratios, the average number of iterations of
StOMP algorithm is equal to 1. That also explains why the
PSNR and RT of StOMP algorithm have lesser changes
under different compression ratios. SWOMP algorithm
relaxed the criterion of atom selection and made the max-
imum inner product of the current residual and the meas-
urement matrix as the threshold of atom selection;
therefore, the reconstruction accuracy of SWOMP algo-
rithm has greatly improved and the reconstruction time
and the number of iterations also increased. SAMP algo-
rithm need frequent iteration to approximate the sparse
signal; therefore, the number of iterations increases and
the reconstruction time is longer than other algorithms.
Although the number of iterations decreases dramatically
in FSAMP algorithm, FSAMP algorithm still has the opti-
mal reconstruction performance by reselection strategy
under the comprehensive results of PSNR, RT, and the
number of iterations.

4.2 Comparison of reconstruction performance under
Bernoulli random measurement matrix
In the following experiments, we used Bernoulli random
measurement matrix to compress the sparse signal and
analyze the reconstruction performance of all the recon-
struction algorithms. The parameter setting of the algo-
rithms is consistent with that in Section 4.1. Table 4
shows the PSNR averages of all test images under differ-
ent compression ratios when using the Bernoulli

measurement matrix. As Table 4 shows, the PSNR aver-
ages of StOMP algorithm have greatly improved under
Bernoulli random measurement matrix. That is because
the atom selection threshold of StOMP algorithm is
closely related to the current measurement matrix, and
the StOMP algorithm has certain design requirements
for the measurement matrix [18]. Compared with the
PSNR averages of Gaussian random measurement
matrix, under Bernoulli random measurement matrix
the PSNR averages of all algorithms (except StOMP) in-
creased at low compression ratios and decreased at high
compression ratios. According to the equivalent condi-
tion of RIP criterion—incoherence, the measurement
matrix of more random elements, correspond to more
uncorrelated column vectors, and the reconstruction
accuracy of the measurement matrix is higher. In the
following Bernoulli random measurement matrix, if the
elements are simple and few elements are generated by
Eq. (1) at low compression ratios; therefore, the ele-
ments have enough randomness. But at high compres-
sion ratios, more elements are generated by Eq. (1) and
the elements are simple; therefore, the column vectors
have higher correlations which lead to the decrease in
reconstruction accuracy.
However, the reconstruction result of Table 4 shows

that the reconstruction accuracy of FSAMP is the high-
est, and its PSNR averages are 2 dB higher than other re-
construction algorithms.
Table 5 shows the RT averages of all test images under

different compression ratios. As Table 5 shows, the RT
averages of all the algorithm (except StOMP) is almost
same to the RT averages under Gaussian random meas-
urement matrix. StOMP algorithm has the shortest
reconstruction time, and SAMP algorithm has the
longest. The reconstruction time of FSAMP is slightly
longer than that of OMP, StOMP and SWOMP algo-
rithms, but the reconstruction accuracy is much higher. In
FSAMP algorithm, the number of atom selection adopted
nonlinear growth model, causing the reconstruction time
of FSAMP algorithm to plummet. The reconstruction
time of FSAMP algorithm is much lesser than that of
SAMP, and the reconstruction accuracy of FSAMP algo-
rithm also slightly improved by reselection strategy.

Table 3 The average number of iterations of all test images
under different compression ratios using Gaussian random
measurement matrix

PSNR Compression ratio

0.2 0.4 0.6 0.8

OMP 51 102 154 205

StOMP 1 1 1 1

SWOMP 3.5 6.7 9.6 10.1

SAMP 205.0 410.0 613.9 818.5

FSAMP 39.4 29.0 25.6 24.1

Table 4 The PSNR (dB) averages of all test images of all
reconstruction algorithm under different compression ratios
using Bernoulli random measurement matrix

PSNR Compression ratio

0.2 0.4 0.6 0.8

OMP 9.05 14.20 17.92 21.06

StOMP 8.89 14.46 18.42 21.97

SWOMP 3.05 15.44 16.38 24.53

SAMP 8.46 13.64 18.50 26.13

FSAMP 8.31 12.77 21.14 27.49

Table 5 The average RT values of all test images of the
reconstruction algorithm under different compression ratios

PSNR Compression ratio

0.2 0.4 0.6 0.8

OMP 0.01177 0.05907 0.23321 0.71140

StOMP 0.00593 0.01115 0.02812 0.06358

SWOMP 0.00351 0.03551 0.26978 0.56118

SAMP 0.23588 2.42514 10.58985 29.67760

FSAMP 0.06889 0.22308 0.53588 1.05328

Yao et al. EURASIP Journal on Wireless Communications and Networking  (2018) 2018:78 Page 6 of 8



Table 6 shows the average number of iterations needed
for the reconstruction of the test images under Bernoulli
random measurement matrix. As Table 6 shows, the
average number of iterations of OMP algorithm is equal
to the preset signal sparsity. Except StOMP algorithm,
the averages of number of iterations of other algorithms
in Bernoulli and Gaussian random measure matrix are
consistent. In StOMP algorithm, the threshold of atom
selection is determined by the inner product of the
measurement matrix and the current residual. When the
inner product of the Bernoulli random measurement
matrix and the current residual is larger, the larger
threshold of atom selection can make more matching
atoms selected in StOMP algorithm. Therefore, the
reconstruction accuracy of StOMP algorithm improves,
while the reconstruction time and the number of itera-
tions increase. Results in Tables 4, 5, and 6 show that
FSAMP algorithm guarantee the number of atom selec-
tion is approximate to the signal sparsity and also lower
the possibility of frequent iterations that can improve
the reconstruction efficiency. Meanwhile, reselection
strategy in avoiding excessive selection of atom obtains
higher reconstruction accuracy.
Basing on the PSNR results, reconstruction time, and

number of iterations, we conclude that the FSAMP algo-
rithm has the best reconstruction performance among the
five reconstruction algorithms whether under Gaussian or
Bernoulli random measurement matrices. Furthermore,
given the sufficient randomness of the Gaussian random
measurement matrix elements, the reconstruction
performance of the five reconstruction algorithms under
the Gaussian random measurement matrix are better than
those under the Bernoulli random measurement matrix.
The Gaussian random measurement matrix is more
consistent with respect to the design requirement of the
measurement matrix for CS.

5 Conclusions
Obtaining timely and accurate reconstruction results is the
key focus of CS application for large-scale image transmis-
sion. MP algorithms exhibit optimal reconstruction per-
formance with respect to reconstruction accuracy and
reconstruction time. However, some MP algorithms require

prior knowledge of the signal sparsity, and other MP algo-
rithms that do not require this knowledge have unstable re-
construction accuracy or long reconstruction time.
In this regard, we focus on the reconstruction time of

the SAMP algorithm, which does not need signal sparsity
in advance and demonstrates high reconstruction
accuracy. Therefore, we propose an FSAMP algorithm
where the number of selected atoms is changed from the
original linear growth model to a nonlinear one. The
FSAMP algorithm starts at a large step-size and gradually
shrinks in iterations until the number of selected atoms is
precisely approximate to the signal sparsity. To prevent
the excessive selection of atom, the FSAMP introduces
the adaptive reselection strategy on the basis of varied re-
siduals and delete mismatching atoms to increase its re-
construction accuracy. Overall, the FSAMP algorithm
exhibits optimal reconstruction performance among the
above five reconstruction algorithms whether under
Gaussian or Bernoulli random measurement matrices.
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