
RESEARCH Open Access

Fuzzy Logic-based Virtual Cell Design in
Ultra-Dense Networks
Qian Liu* , Gang Chuai, Weidong Gao and Kaisa Zhang

Abstract

One of the main trends in the fifth generation (5G) cellular network is the bifurcation of systems that enable network
densification. With this trend, ultra-dense networks (UDN) become a pillar technology to provide high data rates gains.
However, these gains come at the expense of more complex interference and higher handover frequency. The
user-centric virtual cell conception has been proposed to solve these problems. But it still has encountered some
challenges in practical application. In this paper, we propose a fuzzy logic-based virtual cell design to balance data rates
and resource overhead in order to improve virtual cell applicability. In our design, we consider a practical UDN scenario
with imperfect channel state information (CSI) feedback and model it by stochastic geometry theory. Then, we find the
optimal radius of virtual cells by maximizing the system spectral efficiency. On the basis, we propose a fuzzy logic-based
activation strategy selection (FASS) algorithm to rationally choose the virtual cell activation threshold and resources
allocation scheme under different traffic loads and quality of service (QoS) requirement. Simulation results demonstrate
that the proposed solution can effectively eliminate the interference, obviously improve the user’s system spectral
efficiency and dynamically adapt to different traffic loads.
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1 Introduction
The fifth generation (5G) wireless networks are re-
quired to satisfy the increasing user population and
their traffic demands. The most substantial amount of
this system performance gains will be obtained by
means of network infrastructure densification [1]. Thus,
UDN has been identified as one of pillar technologies
in 5G to significantly improve system capacity and
coverage [2]. In theoretical analysis, UDN can bring sig-
nificant benefits in terms of proximal transmission.
However, the densely deployed BSs and irregular net-
work topology introduce a huge amount of problems.
More complex interference and frequent handover will
offset gains. To meet these challenges, the user-centric
virtual cell concept has been proposed [3].
A user-centric virtual cell is configured with several

cooperate BSs and a user. The user is located in the
center and BSs in a circle area with radius D. Virtual
cells can convert interference signals into useful

signals and offer users seamless moving experience
[4]. There have been quite a few studies in multiple
BSs transmissions. Such as dynamic cell clustering
[5–9], coordinated multipoint transmission (CoMP)
[10–12], and virtual multiple-input multiple-output
(MIMO) [13–15].
Dynamic cell clustering is widely used in many

fields due to its low complexity. In [5], they pro-
posed a service-aware user-centric clustering and
scheduling scheme. With the proposed scheme,
throughput improvements can be achieved for both
center and edge users in a fair fashion. In [6], au-
thors investigated an adaptive clustering for irregular
topologies. Some papers handled resources allocation
with clustering in different scenarios [7–9]. Coordi-
nated multi-point (CoMP) transmission is considered
as an efficient technique to improve cell-edge per-
formance. In [10], authors compared performances
of different CoMP schemes in downlink. In [11], a
novel user-centric CoMP scheme was proposed to
improve energy efficiency in dense heterogeneous
network. In [12], a two-step joint clustering and
scheduling scheme was proposed for heterogeneous
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networks. A large number of transmission nodes that
configure a single antenna make up a distributed an-
tenna system (DAS). If the DAS provides service for
multiple users, it will be equivalent to a virtual
MIMO system. In [13], an adaptive virtual MIMO
technology was used to increase spectral efficiency.
In [14], authors develop a new formulation of the
beamforming problem for sum-rate maximization in
virtual cell networks and analyze the structure of its
optimal solutions. In [15], a virtual MIMO broad-
casting transceiver has been proposed to reduce the
computational complexity and improve the end-to-
end sum rate.
However, it was found that accurate CSI feedback

and tight BS synchronization required for coherent
cooperation may limit the achievable gains of above
technologies [16]. Techniques with less stringent re-
quirement will be first choice for virtual cell forma-
tion. In this article, we adopt non-coherent joint
transmission (NCJT) technique to support virtual cell
formation. In NCJT, a user’s signal is transmitted by
multiple cooperating BSs without prior phase-
mismatch correction and tight synchronization across
BSs. At the user, the received signals are non-
coherently combined, thereby providing opportunistic
power gains [17].
Although NCJT has so many advantages, it still has

an application restriction. With aggressive cooper-
ation, more BSs will be allowed to participate in joint
transmission and resource overhead will increase fas-
ter. NCJT may be favorable only to a lightly loads ex-
tent since the additional load imposed on BSs
eventually outpaces the spectral efficiency gains. Thus,
NCJT is considered more suitable for deployment in
lightly loaded scenario [17]. It will greatly limit the
deployment of virtual cells in a practical scenario. In
order to break this restriction, the effect of different
loads should be taken into account in virtual cell de-
sign. To the best of our knowledge, there is no virtual
cell design to simultaneously consider the effect of
imperfect CSI and traffic loads. In this paper, we
propose a novel fuzzy-based virtual cell design to bal-
ance data rates and practical resource overhead by
flexible activation strategies.
The main contributions of this paper are as follows:

(1) In our design, we consider deploying virtual cells in
a typical ultra-dense network with imperfect CSI
feedback. We model the impact of imperfect CSI as
a new interference by stochastic geometry theory.

(2) We investigate the virtual cell optimal radius to
maximize the system spectral efficiency.

(3) We propose a fuzzy logic-based activation strategy
selection (FASS) algorithm for virtual cells. Users

can achieve a strong applicability for different loads
by our virtual cell design.

The rest of this paper is organized as follows. In
Section II, we provide the system model and assump-
tions. Section III, the virtual cell optimal radius is in-
vestigated. On this basis, we propose a FASS
algorithm to find the optimal activation strategy in
Section IV. We validate the proposed design and dis-
cuss simulation results in Section V. Finally, Section
VI concludes the paper and outlines our future work.

2 System model
There are many different definitions of UDN in litera-
tures [18–20]. In our paper, we consider a practical
scenario of UDN. The denser employment of BSs
makes network exhibit random topologies. We use
stochastic geometry tools to capture this network
characteristic [21]. For the influence of imperfect CSI,
we consider it as a new interference resource. In
addition, we install a network controller unit (NCU)
by splitting the control plane (C-plan) and user plan
(U-plan) to harvest densification gains [22]. This unit
takes charge of virtual cell formation, wireless radio
resources allocation, and mobility management. BSs
only undertake the task of data transmission.
We model BSs and mobile users with stationary

Poisson point process (PPP). The BSs are modeled as
a PPP ΦBS with density λBS. They are assumed to be
equipped with a single antenna of equal transmit
power. The single-antenna mobile users are spatially
distributed according to an independent PPP ΦU with
density λU. Let hij ¼

ffiffiffiffi
lij

p
f ij represents the channel

gain for the user j from the BS i. lij = |xi − xj|
−α

represents the corresponding path loss. xi and xj
denotes the random location of the BS i and the user
j, respectively. α > 2 is the path loss exponent.
Assuming a Rayleigh fading environment, {fij} are
independently and identically distributed (i.i.d)
complex Gaussian random variables with zero mean
and unit variance. Each channel is estimated
independently. The composite channel of a virtual
cell subsumes all cooperative channels.
The user-centric virtual cell is a circular region

around the user with radius D. The set of BSs within
virtual cell region of user j denoted as V j≜fBSi∈ΦBS; j
xBSi−x jj≤Dg. Information cannot be sent reliably over
a link that in a deep fading. If BSs participating in
joint transmissions, their RSPRs have to greater than

or equal to a threshold T. aiaxV j
∈f0; 1g is the activation

indictor for each BS. aiaxV j
¼ 0 is inactive and aiaxV j

¼ 1

is active. In addition, iax is an indicator of resources
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allocation scheme. ia1 is “silent” scheme, which indi-
cates resources allocated for NCJT cannot be reused
by other inactive BSs in a virtual cell. ia2 is “reuse”
scheme, which indicates resources allocated for NCJT
can be reused by other inactive BSs. All active BSs in
a virtual cell provide a non-coherent joint transmis-
sion for the user. The user served by its own virtual
cell as shown in Fig. 1.
In our paper, the channel estimation error accord-

ing to imperfect CSI is equivalent to a new interfer-
ence resource. Therefore, the aggregate interference
mainly includes three categories: (1) sum interference
caused by inactive BSs in virtual cells (resources allo-
cation scheme is reuse); (2) sum interference created
by BSs outside virtual cells; (3) residual interference
due to imperfect CSI.
Sj denotes the transmitted signal to user j, nj is the

corresponding complex Gaussian noise with zero
mean and variance σ2n. The received signal at user j is
given by

y j ¼
X

i∈ΦBS∩V j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−σMMSE;ij

2
� �q

hijS ja
iax
V j

þ
X

i∈ΦBS∩V j

hijS j 1−aiaxV j

� �
þ

X
i∈ΦBS∩V j

hijS j þ
X

i∈ΦBS∩V j

σMMSE;ijhijS ja
iax
V j

þ nj

ð1Þ

Where, σMMSE, ij
2 is the minimum mean-square error of

,i-th channel estimate given K transmitters for j-th user.
For pilot-based channel estimation, σMMSE, ij

2 has the
similar form with [23].

σMMSE;ij
2 ¼ 1

1þ EH ij SINRpilot;ij
� �Npilot

K

ð2Þ

K is the number of active BSs in a virtual cell. η is
the signal-to-noise ratio. Npilot is the total number of
pilot resource blocks dedicated for channel state esti-
mation. Assuming these resources share among active
BSs and the inter-reference signals interference is
avoided in a virtual cell. σMMSE, ij

2 is further
expressed as

σMMSE;ij
2 ¼ 1

1þ hij
		 		2X

i∈ΦBS∩V j
hij
		 		2 þ 1

.
η
Npilot

K

ð3Þ

The signal to interference plus noise ratio (SINR) at
the user j can be expressed as

SINR ¼ R

Ic þ Ic þ ICSI þ 1
.
η

ð4Þ

Where

R ¼
X

i∈ΦBS∩V j ð1−σMMSE;ij
2Þjhijj2aiaxV j

: received signal

power from the active BSs in a virtual cell.

Ic ¼
X

i∈ΦBS∩V j jhijj2ð1−aia2V j
Þ : sum interference

caused by inactive BSs in a virtual cell. Especially,
when resource allocated indictor is ia1 or T = 0, Ic = 0.

Fig. 1 Virtual cell architecture
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Ic ¼
X

i∈ΦBS∩V j
jhijj2 : sum interference created by

BSs outside a virtual cell.

ICSI ¼
P

i∈ΦBS∩V j
σMMSE;ij

2jhijj2aiaxV j
: residual interference

due to imperfect CSI.
η: signal-to-noise ratio.

3 The optimal radius of virtual cell
3.1 Signal power
The received signal power R is sum of multiple serving
BSs channel gains. Considering the number of activate
BSs in a virtual cell is K, the Laplace transform of the re-
ceived signal power R is given by

LR sð Þ≜E e−sR
� �

¼ 2

αD2

Z ∞

D−α
t−1−

2
α 1−e−

T
t þ e−

T
t uþ1ð Þ

uþ 1

 !
dt

 ! K

ð5Þ

Where, u ¼ st2
tþK=½NpilotðE½Ic�Þþ1=η�

Proof: see (21) in Appendix.

3.2 Interference power
For residual interference due to the estimation error of
imperfect CSI, in loosely speaking, we treat it residual as
an independent Gaussian noise [24]. In [25], authors
showed that the Gamma distribution can provide a rea-
sonably tight fit to the statistics of Poisson interference.

Thus, we adopt a Gamma random variable ~I to approxi-
mate the aggregate interference. The variable ~I with dis-
tribution as

ℙ ~I ≤z
� � ¼ 1−Γ k; z=θð Þ=Γ kð Þ ð6Þ

Then, the variable ~I can be computed using Campbell’s
theorem as

E ~I
� � ¼ E 2πλ

Z
0

D

f ij
2r−αþ1 1−aia2V j

� �
dr

24 35þ 2πλ
Z
D

∞
E f ij

2
� �

r−αþ1dr

þE
XK−1

i¼0

σMMSE;ij
2 f ij

2r−α 1−aiaxV j

� �" #
þ 1
.
η

ð7Þ
Var ~I
� � ¼ E 2πλ

Z
0

D

f ij
4r−2αþ1 1−aia2V j

� �
dr

24 35þ 2πλ
Z
D

∞
E f ij

4
� �

r−2αþ1dr

þE
XK−1

i¼0

σMMSE;ij
4 f ij

4r−2α 1−aiaxV j

� �" #
−E

XK−1

i¼0

σMMSE;ij
2 f ij

2r−α 1−aiaxV j

� �" #

ð8Þ

The parameters k and θ satisfy the relations E½~I�
¼ kθ and Var½~I� ¼ kθ2. With (7) and (8), we can solve
the specific value for k and θ. The expressions are
(22) and (23) in Appendix.

Fig. 2 Fuzzy logic system
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3.3 Optimal radius
Base on the previous analysis, the approximation of cu-
mulative distribution function (CDF) of SINR can be de-
rived with the familiar form in ([26], Corollary1)

ℙ SINR≤βð Þ ≈ k−kð Þℒk
R

1
θβ


 �
θβð Þ−k
k!

þ
X

k
m¼0ℒ

mð Þ
R

1
θβ


 �
θβð Þ−m
m!

ð9Þ
The system spectral efficiency CT ;iax can be obtained

using the relation R = log2(1 + SINR) and E½R� ¼ R∞0 ℙ ð
SINR≥2τ−1Þdτ.

CT ;iax ¼ E R½ �≜ 1
ln2

Z ∞

β¼0

1
βþ 1

1−ℙ SINR≤βð Þð Þdβ

ð10Þ
From (4), we know that the signal power is an in-

creasing function of virtual cell radius D. When radius
D is small, the system spectral efficiency is dominated
by the signal power, which would be improved by

virtual cell area expansion. We can also see that the
mean of aggregate interference is an increasing func-
tion of the virtual cell radius D from (7). When the vir-
tual cell radius D becomes large, the resident
interference caused by pilot-based channel estimation
keeps on increasing and becomes a main restriction on
virtual cell size. The gain of the signal power gradually
saturates, and it is finally overwhelmed by the increase
of the aggregate interference power. Given λBS and Npi-

lot, it exists an optima virtual cell radius Dbest to
maximize the system spectral efficiency.

Dbest ¼ arg maxCT ;iax Dð Þ ð11Þ

4 Fuzzy logic-based activation strategy selection
algorithm
In the previous section, we have discussed the opti-
mal radius of virtual cell. Given λBS, T, and iax, the
maximum system spectral efficiency can be obtained
with Dbest. In light-load scenario, we choose aggres-
sively activation threshold T and silent resources allo-
cation scheme to maximize the rate performance. A

Fig. 4 Membership functions of output

Fig. 3 Membership functions of inputs
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low threshold T allows more BSs to participate in a
joint transmission. Silent resources allocation scheme
means that the resources allocated to NCJT cannot
be reused by other inactive BSs in a virtual cell. It
can make the interference Ic = 0. However, these re-
sources reserved for NCJT may become unacceptable
when virtual cells in a high-load condition. The other
users may possibly suffer from radio resources short-
age. The importance of resource saving is higher than
that of data rates at this time. We have to choose the
reuse scheme, despite which increasing the interfer-
ence within virtual cells. With the loads increasing
continuously, the number of active BSs can be further
decease by high activation thresholds T. We just pro-
tect users to obtain the guaranteed bit rates according
to requirements of QoS.
From above analysis, we can see that data rate perform-

ance is tightly coupled with the traffic loads. But in a co-
operative scenario, it is difficult to model and analyze due
to different cross-cell scheduling [27, 28]. Instead of char-
acterizing the impact of actual loads on network

performance, we choose an alternative way to investigate
this effect. It is capturing the preference for resources allo-
cation scheme under different loads conditions.
To NCJT mechanism, there are two main resources al-

location schemes: silent and reuse. (1) Silent, resources
allocated to NCJT cannot be reused by inactive BSs to
avoid intra-cell interference. Thereby, Ic = 0. However,
the loads on inactive BSs are increased. (2) Reuse, re-
sources allocated to NCJT can be reused by inactive BSs.
This scheme can improve the utilization of resources,
but cause interference in a virtual cell. There is a trade-
off relationship between resources consumption and
data rates. We can get the resources saving by switching
resources allocation scheme from silent to reuse. It dir-
ectly translates into a load reduction for virtual cells.
The resources saving ration is as (12).

△Resource ¼ 1−E

P
i∈ΦBS∩V j

aia2V jP
iΦBS∩V j

i

24 35
¼ 1−E

E
P

i∈ΦBS∩V j
aia2V j

h i
K

24 35
¼ 1−E min 1;

TDα

f ij
2

 !−2
α

8<:
9=;

24 35
ð12Þ

In addition, we can adjust the number of active BSs by
activation threshold T so as to further reduce resource

Fig. 5 Value of activation bias factor

Table 1 Reasoning rules

Adjust
rate

Load

Low Medium High

Low Medium Medium-high High

Medium Medium-low Medium Medium-high

High Low Medium-low Medium
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allocation. Thus, we balance data rates and resource
overhead by different activation strategies. The prefer-
ence of activation strategy can be modeled by a utility
function.

4.1 A utility function
The user receives a non-coherent sum of multiple
copies of the useful signal transmitted by active BSs
in its own virtual cell. Let W1 be the utility value for
one bit of transmission, and W2 be the cost for one
resource block. We define a utility functionQ(T, iax)
to comprehensively reflect the impact of rates and re-
sources on users. The optimal activation strategy has
the largest utility value.

Q T ; iaxð Þ ¼ W 1CT ;iax−W 2ResourceT ;iax ð13Þ

But it is difficult to set the specific values of W1

and W2. We can only empirically give the relative

importance of resource and data rates according con-
ditions. Thus, we set β ¼ W 2

W 1
as a bias factor of activa-

tion strategy. It indicates the relative importance of
resource to data rates under different loads and QoS
requirements. When β is large, the resource is more
important than data rates. Conversely, the data rate is
more important.
For β, we can only empirically set its value. It is

not enough for solving the utility function. We need
to adjust values for different degrees of load and rate.
And fuzzy logic technology seems suitable to handle
the imprecision problems of the practical wireless
network [29]. Fuzzy sets maps the set elements to a
membership function with indicates the degree of
truth belonging to the set. This helps us to express
the imprecision and vagueness in the real networks
which cannot be easily studied [30]. Thus, we propose
a method based on fuzzy logic theory to get β.

4.2 A fuzzy logic-based method to obtain β
According to our previous analysis, there are two
main influence factors for β. One is average loads of
virtual cells, which reflects the degree of resource
shortage. The other is adjustable data rates, which in-
dicates users’ requirements. These two factors are set
as inputs for the fuzzy logic system (FLS), and the
values can be calculated as (14) and (15).
The NCU construct virtual cells with this radius

Dbest for users. The number of BSs is N in j-th vir-
tual cell. It collects the resources usage of BSs in

Fig. 6 CDF of SINR when λBS = 14/km2 and D = 300m

Table 2 Simulation parameters

Parameters Unit Values

Operating frequency MHz 3500

Bandwidth MHz 20

BSs density(λBS) /km2 14/87/174/261

Npilot 40/92

Path loss exponent 3/4/5

Transmit signal-to-noise rate (η) dB 162

Area of simulation m 1000*1000
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virtual cell region and calculates the average loads of
the virtual cells.

LoadV j tð Þ ¼
X

N
i¼1Ni∈V j

N � N total
ð14Þ

Where, Ntotal is the total number of physical resource
blocks (PRBs) owned by each BS. Ni∈V j is the number of
PRBs that BS i has consumed at time t. BS i is located in
j-th virtual cell.
The ratio of adjustable data rates is expressed by (15).

It indicates users’ tolerate ability for data rates change.

ΔCV j ¼ 1−
Cgbr

Cmbr
ð15Þ

Where, Cmbr and Cgbr is the maximum and guaranteed
bit rates of a GBR bearer for downlink.
Our FLS includes two inputs and one output as Fig. 2.

We take the results of (14) and (15) as inputs and the
value of activation bias factor β is the output. Mamdani
FIS is used as it is known to be well suited to capture ex-
pert knowledge [31]. We adopt “maximum-minimum”
fuzzy inference synthesis rule. The defuzzification
method is centroid.
The implement of FLS mainly includes four steps:
Step 1: Fuzzification of inputs. There are two in-

puts, namely, the loads of virtual cells and the ratio
of adjustable data rates. Their range both are 0~ 1.
The corresponding input fuzzy sets are denoted bygVload and gArate . Each input fuzzy set has three

membership functions (low, medium, high). These
membership functions setting rely on expert experi-
ence. We use triangular and trapezoidal functions to
fuzzy inputs. The fuzzy membership functions (FMS)
of inputs are shown in Fig. 3.
Step 2: Fuzzification of output. There is an only one

output, namely, activation bias factor β, and its range is

[− 50 dB, − 10 dB]. We set output fuzzy set as gIvalue ,
which contains five fuzzy membership functions (low,
medium-low, medium, medium-high, high). The FMS of
output is shown in Fig. 4.

Fig. 8 E[R] v.s. D when λBS = 87/km2

Fig. 7 CDF of SINR when D = 105 m
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Step 3: Fuzzy reasoning rules. The number of if-then
rules is 9 based on Eq. 3 from [32]. Each fuzzy rule is
assigned a decision output, which is also based on expert
knowledge. The input values during fuzzification process
can belong to more than one fuzzy set with the different
degreed of membership. Hence, it might trigger several
if-then rules as a result. The specific reasoning rules as
shown in Table 1. In our FLS, the 9 inference rules in

the table below have the same importance, so their
weights are all set to 1.
Step 4: Carry out defuzzification. The aggregated fuzzi-

fied gIvalue is given by (Eq. 6 from [32])

gμIvalue ¼ maxk min μ gVloadk loadð Þ; μ gAratekh ih i
;

for k ¼ 1; 2;…9
ð16Þ

Fig. 10 Optimal activation threshold v.s. traffic load when λBS = 174/km2 D = 135, α = 4, Npilot=92, Arate = 0.2, iax = ia2

Fig. 9 Surface viewer of activation bias factor
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The defuzzifier coverts the aggregated fuzzified value
to a crisp value. It is calculated using centroid method
(Eq. 6 from [32]):

Ivalue ¼
R
μIvalue yð ÞydyR
μIvalue yð Þdy ð17Þ

Through the above steps, we can get the value of β
under different loads and QoS conditions as Fig. 5.

4.3 The optimal activation strategy
In Section 4.1, we build a utility function for users
synthetically consider the effects of loads and rates.
In Section 4.2, we get the value of β based on the
fuzzy logic theory. In this subsection, we can choose
the optimal activation strategy to maximize the utility
function. It is worth noting that some rules must be
observed in selection.

� Only one resource allocated scheme in a virtual cell.
� The number of PRBs that allocated to users cannot

exceed bandwidth resources of BSs.
� In order to reach the QoS requirement of users,

we have to activate the minimum number of BSs
which is at least 1, even the traffic load is high.

From (13), we know the utility value Q(T, iax) is a
function of activation strategy (T and iax). Given the
activation bias factor β(e.g.,W2/W1), we can find the
optimal activation strategy (T, iax)

∗.

T ; iaxð Þ� ¼ arg maxQ T ; iaxð Þ
s:t: C1 : iax ¼ ia1; ia2f g

C2 : N i∈V j < N total

C3 : K ≥1

ð18Þ

We calculate the utility values for all possible acti-
vation strategies (e.g., T and iax). In the calculation
process, we set a comparison baseline for reducing
computational complexity. When activation threshold
T = 0, the activation indictor iax has no effect on the
system spectral efficiency. In this case, the BSs in a
virtual cell will all be activated, and the spectral effi-
ciency of the virtual cell will reach the data rates
upper limit Cmbr and resource consumption of NCJT
upper limit Resourcemax. Compared with the baseline
case, the normalized value of data rates and resource
can be calculated as (19) and (20).

NCT ;iax ¼
CT ;iax

Cmbr
ð19Þ

NResourceT ;iax ¼ 1−△Resource ð20Þ

The specific algorithm is as follows:
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5 Results
Monte Carlo simulations are carried out to evaluate
the performance of proposed virtual cell design and
the FAAS algorithm in UDN environment. Simula-
tion parameters are in the Table 2.

5.1 Evaluation impact of the imperfect CSI
In our virtual cell design, the effects of imperfect CSI
channels are considered. We compare the SINR of
our proposed virtual cell design with the virtual cell
based on perfect CSI [26]. In Fig. 6, we can see that
imperfect CSI can significantly affect users’ SINR and
course approximately 10 dB decrease. Thus, the im-
pact of imperfect CSI cannot be ignored.

5.2 Evaluation the optimal radius of virtual cell
Figure 7 compares the SINR from (9) with the em-
pirical CDF obtained through simulation. From our
previous analysis, we know that the aggregate inter-
ference includes three parts and it is approximated
by a gamma random variable. From Fig. 7, we can
see this approximation matches the empirical SINR
very well. With λBS increases, the distances between
users and their potential service BSs reduce. It gives
BSs more chances to cooperate. But it does not
mean that the density can be increased indefinitely.
In Fig. 7, the SINR of λBS = 174/km2 is better than
λBS = 261/km2. This is because of interference
sources that also increase with the λBS. The residual
interference due to imperfect CSI will increase until
offset most signal gain. There is an optimal λBS to
maximize the SINR.
Thus, we know that there is an optimal radius for

virtual cell when the λBS is constant. Furthermore,
considering the constriction of resources, the radius
D should not be too large. This trend can be seen in
Fig. 8. We can find the saturate point is around D =
185 when α = 4 and Npilot = 92. From previous
analysis, we also know the system average spectral
efficiency is influenced not only by the virtual cell
radius but also by path loss exponent and the pilot
resources blocks. In Fig. 8, we also see that the
spectral efficiency saturation point increase with α
and Npilot.

5.3 Evaluation the optimal activation strategy
We can comprehensively calculate the impact of dif-
ferent traffic loads and adjustable rates ratio on β by
the fuzzy logic system. The result is as Fig. 9 and
the unit of value is decibel. When it is above 0, it
means that the importance of resources is higher
than data rates. In most cases, the value of factor is
below 0. It indicates our main pursuit to increase

rate. The value of factor increase gently with the
loads and adjustable rates. When a user experiences
a high-load condition and adjustable rates ratio is
small, it will change the first task to save resources.
The optimal activation threshold T by our design

can be seen in Fig. 10. The adjustable rate of the
virtual cell is set to 20% of Cmbr. The optimal activa-
tion threshold T gradually increases with traffic
loads. In light-load condition, virtual cells prefer to
aggressively active their all BSs in order to maximize
data rates. In medium or high loads, virtual cells
prefer to activate several BSs with high RSRP to ob-
tain the balance between data rates and resource
overhead. When resources allocated scheme indicator
are ia1, activation threshold can change the number
of activated BSs in a virtual cell and affect the data
rates. However, it is noteworthy that the activation
threshold will not affect the proportion of resource
saving. In this case, the use of resources is the same
as that of the baseline case. There are no resources
reduced. The simulation results show that the
proposed algorithm dynamically adjust activation
threshold according to different traffic loads condi-
tions and improve the adaptability of virtual cell in
practical scenario.

6 Conclusions
In this paper, we analyzed the challenges of ultra-
dense network in 5G. UDN becomes a pillar technol-
ogy for the 5G cellular networks. In order to harvest
densification gains, we proposed a virtual cell design
to overcome the complex interference and frequent
handover.
In our article, we adopt the NCJT as the enabler

technology to construct the user-centric virtual cells.
However, it consumes more resources and has a limi-
tation in using. For breaking this constriction, we
need to rationally choose activation strategies for vir-
tual cells to balance data rates and resource alloca-
tion. We consider the practical scenario of UDN and
use random geometry tools to model network with
the imperfect CSI. We find the optimal virtual cell ra-
dius to maximize the average system spectral effi-
ciency. On this basis, we propose a FASS algorithm
to find the optima activation strategy. Users can
achieve higher system spectral efficiency, better ser-
vice experience, and seamless moving.
However, NCJT is not the optimal transmission

technology when some users are close to each other.
Multiuser cooperative transmission could bring per-
formance improvement in high-loaded areas instead
of sacrificing performance to ensure resource
utilization. This will be discussed in our future work.
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