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Abstract

The MAC (medium access control) of CSMA (carrier sense multiple access) is widely used in distributed wireless
networks with random node locations. In CSMA MAC, two nodes that are within the range of one another cannot
transmit packets simultaneously. Modeling the concurrently transmitting nodes is crucial for the performance
analysis of the CSMA networks. In this paper, we study the density of concurrently transmitting nodes and propose
another modification of classical hard core point process to accurately estimate the density of concurrently
transmitting nodes, in the absence and in the presence of fading conditions. The MMHCP model we propose
outperforms the popular Matérn type II model and the existing modified hard core point (MHCP) process model by
avoiding the underestimation and alleviating the overestimation issues, respectively. We conduct extensive
numerical analysis and simulations to evaluate the accuracy of our MMHCP model. Furthermore, we study the
impact of the density of initial Poisson Point Process (PPP) and fading factor on the mean probability of successful
reception and on the transmission capacity of networks from numerical analysis and simulations.
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1 Introduction
In distributed wireless networks with random node loca-
tions, such as ad-hoc networks or sensor networks, cogni-
tive femtocell networks, a decentralized medium access
control (MAC) protocol is required to control the access
of the network nodes to the shared wireless spectrum in
order to limit the mutual interference. With the low cost
of the wireless network technologies, the nodes deployed
in wireless networks are becoming denser and denser. For
example, the last few years have witnessed the prolifera-
tion of WiFi Access Points (APs) in many urban areas,
and it is very common that several APs are in the commu-
nication range of each other. In other examples such as in
the hot-spot networks [1] or cyber-physical systems [2],
with a growing number of sensors being deployed, more
and more data will be transmitted over wireless links.
For this type of networks, carrier-sense multiple access

(CSMA) protocols are very popular to avoid collisions
and improve the network performance. CSMA distin-
guishes itself with its distributed nature in coordinating

the spectrum access. Under CSMA/CA (Carrier sense
multiple access with collision avoidance), a transmitter
continuously senses the channel state prior to transmit-
ting. If the channel state is idle, the transmitter starts to
transmit packets. Otherwise, it waits for a while before it
starts sensing the status. By this way, the network can
reduce the interference to achieve a higher probability of
successful transmissions and higher network capacity.
In the studies of CSMA protocol, there are several

problems that must be considered, such as hidden ter-
minals [3], starvation, or fairness in heavily loaded net-
works [4, 5]. Many work focus on designing a better
MAC protocol to overcome some flaws or improve some
performance, for example [4–7]. In light of modeling the
CSMA networks, traditional method typically rely on
Markovian approaches. However, Markovian models fail
to represent physical layer effect, such as the impact of
fading and cumulative interference. In this paper of our
work, we focus on modeling the concurrently transmit-
ting nodes under CSMA protocol and analyzing interfer-
ence via stochastic geometry. The modeling and analysis
on the concurrently transmitting nodes can be used in
many distributed wireless networks with CSMA protocol
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to evaluate the interference and the relevant network
performance.
The introduction of stochastic geometry to analyze the

network performance from a statistical perspective has
been more than three decades [8]. In stochastic geom-
etry, the Poisson Point Process (PPP) is widely used in
modeling the topology of networks, such as cellular net-
works in [8–10] and ad-hoc networks in [11], for its
tractability in analyzing the network performance. How-
ever, the PPP is accurate for very sparse networks as the
distribution of the atoms of a PPP is independent, which
is not always the exact case in wireless networks. For ex-
ample, in heterogeneous cellular networks, the locations
of base stations are modeled by Poisson Cluster Process
(PCP) in [12] or by Ginibre Point Process (GPP) in [13],
in order to reflect the dependence of the locations of the
base stations. Similarly, due to the exclusion of CSMA
nodes, the hard core point process (HCPP), instead of
PPP, is usually applied to model the simultaneously
transmitting nodes.
Among the hard core point processes, Matérn type II

model is most widely used in modeling CSMA networks.
Although Matérn type I model can get a legitimate
HCPP, it is proved that this model only accounts for
retaining the isolated points (i.e., points which are at
least fixed distance away from every other point in the
process). While Matérn type II model captures the con-
tention among the initial points to be retained in the
HCPP. Furthermore, the author in [14] proved that
Matérn type II model can be approximated by a non-
homogeneous PPP. Many work such as [15–19] modeled
the CSMA networks by Matérn type II model.

The Matérn type II model can be obtained by thinning
a PPP as follows. Let Φ = {xi}i ∈ (1, n) be a homogeneous
PPP. Each point xi is marked by a random variable mi

that is uniformly distributed between [0,1]. The marks
are independent and identically distributed, or i.i.d, and
independent of the positions of xi. If the ball that centers
at xi with radius h does not consist of any points with
mark less than mi, the point xi is retained in the hard
core point process. The points that are not retained will
be deleted from the PPP in the end. Since whether a
point is retained or not is determined by points around
it, the thinning process is not independent.
As stated in many literatures such as [15, 17, 20, 21],

Matérn type II model tends to lead an underestimation
of the transmitting nodes’ density. As shown in Fig. 1,
node x1 is not retained as it detects its neighbor x2;
moreover, node x2 is not retained either, as it detects its
neighbor x3, i.e., m1 >m2 >m3, where mi is the mark of
xi. As a result, neither x1 nor x2 can be retained in the
thinning scheme. However, if x3 is not the neighbor of
x1, and if x3 does not detect any on-going transmissions
of its neighbors, a more reasonable MAC will allow x1
and x3 to transmit simultaneously.
That is mainly because the freezing property of the

backoff timer in the CSMA protocol is not captured to
calculate the density of the simultaneously active transmit-
ters in the Matérn type II model. In a CSMA network, a
transmitter still can access the channel if it does not have
the lowest backoff time in its contention domain given
that all of the transmitters with lower backoff time have
frozen their timers. A model named Matérn type III is de-
fined as completely capturing the freezing property, while

Fig. 1 Density underestimation in Matérn type II model
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it involves a chain of correlations among the initial points
(potential transmitters). The chain terminates when it
reaches a point (transmitter) which is definitely retained
or not. Therefore, Matérn did not discuss such a model
more and regarded it “rather formidable” [20].
In [20, 21], the authors investigated the problem of

underestimation of the Matérn type II model and pro-
posed a second-order density estimation model, named
MHCP, that partially takes the backoff timer freezing
property into consideration and reduces the underesti-
mation of density due to Matérn type II modeling. This
model is called to “go one step in the correlation chain”
and gives corresponding expression on the density, out-
age probability, and transmission capacity in [20]. How-
ever, their model tends to overestimate the transmitting
node density in dense CSMA networks, especially in fad-
ing environment.
In this paper, we propose a new idea on the correlation

chain and restrain that any nodes in the network have a
same retaining probability in statistical meaning, or take the
mean probability of retaining a node in the network to make
the density analysis tractable, which is proved that our model
can also avoid the transmitting density underestimation of
Matérn type II model and alleviate the overestimation of
MHCP in [20, 21]. The constraints make the model still
applicable in the distributed wireless network, such as in
bipolar model of MANET [17], wireless sensor networks
[22–24], or one tier of multi-tier heterogeneous networks
[10] where the nodes in the same tier have same properties.
The multi-fold contributions can be summarized as

follows.

(i). We analyze the Matérn type II model and the
MHCP model to demonstrate that the Matérn type
II model underestimates while the MHCP tends to
overestimate the density in dense networks and
fading environment.

(ii).We propose another modification of Matérn type II
model based on MHCP to estimate the retaining
probability for a node in the initial PPP and then
the transmitting density for the CSMA networks.

(iii).We get the density expression for the simultaneously
transmitting nodes in dense CSMA networks given
that nodes being retained by a same probability in
statistical meaning. This is another partial solution
for the “correlation chain” of Matérn type III model,
other than [20, 21]. Furthermore, we generalize the
model in Rayleigh fading.

(iv).We analyze the mean probability of successful
reception and transmission capacity in CSMA
networks based on the proposed model and reveal
the mean probability of successful reception being
almost immune to the fading and the initial
intensity, while the transmission capacity of the

network tends to be closer to our proposed model
with the increased fading factor.

The rest of our paper is organized as follows. Section
2 reviews the related work. In Section 3, we give the net-
work model, assumptions, and the methodology of ana-
lyzing models. Section 4 gives the retaining probability
and network transmitting density of the proposed model
in the deterministic fading, and Section 5 generalizes the
model under Rayleigh fading. The network performance
including the successful reception probability and trans-
mission capacity is given in Section 6. Section 7 demon-
strates the numerical and simulation results, and the last
section concludes this paper. A list of the key mathemat-
ical notations used in this paper is given in Table 1.

2 Related work
There are many work on the interference management
and performance analysis using stochastic geometry,
mainly for the PPP model, such as [9–11]. For the added
complexity, there are not so many results on the HCPP
modeling and analysis. In this section, we review the
work closely related to the HCPP and our work.
The author in [14] proved that there is no known ex-

pression for the probability generating functional for the
HCPP, and it is extremely difficult to find the exact dis-
tribution of the aggregate interference. The author com-
pared the Matérn type I and Matérn type II model and
proved that the Matérn type II model can be safely ap-
proximated by an inhomogeneous PPP model for
interference-based performance analysis.
In [16], the authors used the Matérn type II to model

the spatial distribution of access points (APs) in a dense
IEEE 802.11 network, and the users were modeled as a
PPP. A modified version of the HCPP, namely, the modi-
fied Matérn CSMA process was introduced. Their model
captured the fact that CSMA/CA will grant a transmission
opportunity to a given AP if this AP has the minimal
backoff time among all APs in its contention domain and
the fact that an AP will refrain transmitting if another AP
already transmits in its contention domain. In [15], the au-
thors extended the model presented in [16] and obtained
the distribution of the throughput (rather than just the
spatial average) achieved by the nodes, where the retaining
probability was defined in terms of channel gains rather
than distances. In [17], the authors formulated the Matérn
point process for networks using CSMA and derived the
probability of joint medium access and the coverage. In
[19], the Matérn hard core point process was used to
model the CSMA protocol in order to study the max-
imum throughput that could be obtained in multi-hop
MANETs. Recently, the authors in [25] used the Matérn
hard core point process to analyze the performance of a
cloud radio access network (CRAN) to get a more realistic
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result. However, the contention resolution process pre-
sented by above literatures all follows the Matérn type II
model. Some of them mentioned the underestimation of
density for the active nodes [15–17], but no essential im-
provement of the underestimation is mentioned.
Simple Sequential Inhabitation (SSI) is an alternative to

model the dense CSMA networks. It is derived from the
packing and space-filling problems. The authors in [26, 27]
used SSI to model the spatial distribution of potential inter-
ference sources. However, analyzing the model turned out
to be very challenging as SSI gives the point density only

when the underlying PPP density tends to be infinity and
cannot derive an analytical expression.
To overcome the underestimation for density of Matérn

type II model, the authors in [20, 21] proposed a modified
hard core point (MHCP) process. In MHCP, a node xi has
the privilege to transmit in a time slot for the following
two reasons. First, node xi has the lowest mark in its con-
tention domain, which is as same as that in the Matérn
type II model. Second, node xi has the second lowest mark
in its contention domain, and node xj has the lowest mark
while xj is not the node with the lowest mark in conten-
tion domain of itself. Such a scheme is called “go one step
in correlation chain” [20], which actually can avoid omit-
ting some nodes. With channel conditions deteriorate, es-
pecially in a network with dense nodes, the MHCP model
tends to overestimate the transmitting density of the net-
work [20], as shown in Fig. 2. The nodes x3 and x4 are
retained for they have the lowest mark in their contention
domains, and nodes x1, x2, x5, and x6 are retained for they
have the second lowest mark in their contention domains,
while the corresponding nodes with the lowest mark (x2,
x5, x6, x7) are not the one with the lowest mark in the con-
tention domain of themselves. But a reasonable scheme
would retain x3, x4, x1, and x5 or x3, x4, x2, and x6. That is
because when they considered the nodes with second low-
est mark, the nodes with the lowest mark may be retained
for the same reason, resulting in two nodes being retained
at the same time in one domain.
In this paper, we consider the problem of underestima-

tion and overestimation from a new perspective. That is,
in the initial PPP, a node xi is retained under the following
conditions: (1) xi has the lowest mark in its contention do-
main; (2) xi has the second lowest mark in its contention
domain; and meanwhile, node xj has the lowest mark in
the contention domain of xi, and xj is not retained. We
name our proposed model as modification of MHCP
(MMHCP). The idea seems like the correlation chain in
Matérn type III at first sight. Then, we analyze it by adding
the constraint that nodes in a network have a same retain-
ing probability in statistical meaning.

3 Network model, method, and notations
3.1 Network model

We use a marked Poisson point process ~Φ ¼ fðxi;miÞg to
indicate the potential transmitters contending to access the
spectrum, where {xi} is a homogeneous PPP over the plane
with density λp, denoting the locations of the potential
transmitters. The {mi} denotes the backoff time of a node,
that is uniformly distributed in the range [0,1], similar as in
[15, 17, 20, 21]. Although the backoff time is usually not
uniformly distributed between [0,1] in the actual protocol
(binary exponential backoff, for example), it is proved in
[28] that assuming a uniform distribution for the time

Table 1 List of key abbreviations

Notation Description

~Φ Potential transmitters (the initial PPP) contending
to access the spectrum

~Φt Concurrently transmitting nodes under CSMA protocol

xi Location of a node and the node itself

Pt Transmitting power of each transmitter

g j
i

Fading channel gain of the link between node xi
and node xj

F j
i

Virtual power emitted from node xi to node xj

P0 Power threshold for a node to sense another
transmitting node

μ Rayleigh fading factor

β Path loss exponent

re Distance threshold for a node sensing another
transmitting node

N(xi) Neighborhood of node xi

Ci Contention domain of node xi, and the set of
nodes coexisting with xi in the domain

T SINR threshold for a receiver can successfully decode

N Average number of neighbor nodes for node xi
without fading

M Average number of nodes in the shadow (Fig. 4)
without fading

~N Average number of neighbor nodes for node xi with fading

~M Average number of nodes that cannot be sensed by
node xi while can be sensed by xj with fading

~P Average number of nodes that can be sensed both
by xi and xj simultaneously

Pretain[i] Probability of a node xi being retained

P1[i], Pmin[i] Probability of a node xi having the lowest mark in
its neighborhood set

P2[i] Probability of a node xi having the second lowest
mark in its neighborhood set

P2_retain[i] Probability of a node xi with the second lowest mark
in its neighborhood set being retained

Pi½ j� Probability of node xj having the lowest mark in
Ci, and xj not being retained

e_ps Mean probability for a node successful reception

TC Transmission capacity
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marks does not affect the generality of the model. The
power emitted from xi (provided it is authorized by the

MAC mechanism) towards xj is denoted by F j
i ¼ Pt :g

j
i ,

where Pt is the transmitting power and g j
i is the fading

channel gain of the link between node xi and node xj.
Assume the transmitting power being same, the value of

F j
i is same for all nodes if we consider the fixed fading or

no fading. In this paper, we also consider the fading envir-
onment, named Rayleigh fading, of which the fading chan-
nel gain is subject to an exponential distribution with
parameter μ, μ > 0. Generally, due to the characteristic of

Rayleigh fading, g j
i is independent for different links.

The neighborhood of a node is defined as NðxiÞ ¼ f j j ð
xi;miÞ∈~Φ : F j

i=lðjxi−x jjÞ≥P0g , where P0>0 is the sensing
threshold of the network and l(.) is the path loss function,
which is usually taken as l(r) = rβ, β > 2, where r is the
distance between a transmitter and its receiver. For
simplicity, we denote the contention domain of node xi as
Ci. It is easy to see that if we consider the fixed fading, the
same transmitting power and the same sensing threshold
for each node, the contention domain is actually a disk
with a certain radius re. On the other hand, in a fading
environment, the contention domain is not a regular shape
due to the random channel gain, as stated in [20].
We assume that the receivers are randomly distributed

over the plane with another PPP, which is irrelevant to
the transmitters. The number of receivers is enough to

guarantee each active transmitter has one receiver at
least in a time slot. A receiver associates with the trans-
mitter that provides the strongest average received
power conditioned that the receiver can be sensed by
the transmitter. This means that each active transmitter
associates with the nearest receiver. Once an association
is fixed, other active transmitters are treated as interfer-
ence. Figure 3 illustrates an example of the model, where
the potential transmitters are denoted by red stars, the
transmitting nodes and the receivers are denoted by blue
circles and blue triangles respectively. The intended links
are denoted by solid arrows, and some interference links
of a receiver are denoted by dot lines.
As previous work, in recent research of wireless network

such as [29–31], the signal to interference plus noise ratio
(SINR) is taken as a metric of successful transmission for
an intended link. In dense networks of this paper, the influ-
ence of noise can be neglected, namely, interference-limited
network. The probability of successful reception can be
expressed as ps = Pro[SIR >T], where SIR is the ratio of
intended signal to the aggregate interference, and T is the
threshold that the receiving node can successfully decode.

3.2 Method
In this paper, we firstly focus on the model of the trans-
mission without fading. Under such a case, there is only
one source of randomness due to the spatial distribution
of the nodes. It is easy to analyze the retaining probability

Fig. 2 Density overestimation in MHCP model. Nodes around red circle would be retained. The nodes x3 and x4 are retained for they have the
lowest mark in their contention domain, and nodes x1, x2, and x5, x6 are retained for they have the second lowest mark in their contention
domains, while the corresponding nodes with the lowest mark (x2, x5, x6, x7) are not the one with the lowest mark in their contention domains. A
reasonable scheme would retain x3, x4, x1, and x5 or x3, x4, x2, and x6
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of a node from the potential transmitters, since the dis-
tance threshold for a node sensing other transmitters is
fixed, as re = (Pt. g/P0)

1/β (in Matérn type hard core point
process, the exclusion radius is given as a fixed value). The
contention domain, or the neighborhood of a node, can
be regarded as a disk with fixed radius as re. Meanwhile,
the area of the domain sensed by two nodes
simultaneously, and the area of the domain sensed by
node xi and not sensed by another node xj (when xi has
the second lowest mark, and xj has the lowest mark in the
contention domain of xi) can be derived based on the
probability and statistics information. We can calculate
the average number of nodes in above domains,
respectively. The transmitting density and the aggregate
interference can be derived accordingly, as [21].
However, when the model is applied to fading scenarios,

another randomness due to the random channel gains is
added in the network model. In such a case, the receiving
power is not determined, even both the transmitting power
and the link distance are fixed. Accordingly, the distance
threshold for a node sensing another node is random. Nei-
ther the contention domain of one node, nor the domain
sensed by two nodes simultaneously, is not a region with a
fixed area or fixed shape. Fortunately, the randomness stems
from the fading, so we can catch it from the fading factors.
Knowing the fading factor, the average number of nodes
sensed by a node xi, or the average number of nodes sensed
by two nodes xi, xj simultaneously (when xi has the second
lowest mark, and xj has the lowest mark in the contention
domain of xi) can be expressed with the instantaneous

distance threshold re. Therefore, the result on the retaining
probability, transmitting density, and related metric in the
model without fading can be extended to the model with
fading condition. The difference from the model without fad-
ing is that the distance threshold re is random following with
the fading factor at different directions, and at any time slot.
In [20], the authors utilized a circular bounding box around
the irregular contention domain to make the analysis tract-
able and derived a lower bound to the number of transmit-
ters in the neighborhood of a node. Different from the
bounding approach, our method considers the average num-
ber of the transmitters in the contention domain of a node
following with the random variable(re and μ) and derive the
mean retaining probability and the transmitting density,
which is consistent with the constraint added in our model.
Such analysis is applicable to the overall performance of the
network.

3.3 Notations
For the sake of argument, we specify some of the key
mathematical notations listed in Table 1. Node xi is ab-
breviated as i, and i, j, and k are used to denote different
nodes. We use Ci to denote both the nodes set in the
contention domain of node i and the contention domain
itself. The following probabilities are essential to deter-
mine whether a node is privileged to transmit.
Probability of a node i being retained is denoted by

Pretain[i] = Pro[i is retained].
Probability of a node i having the lowest mark in Ci is

denoted by P1[i] = Pmin[i].

Fig. 3 Model of transmitters, receivers and corresponding links. The red stars are the potential transmitters distributed as a PPP, the blue circles
are the concurrently transmitting nodes by CSMA protocol, and the blue triangles are the receivers distributed as another PPP. Solid arrows are
the intended links, and dotted lines denote some of the interference links
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Probability of a node i having the second lowest mark
in Ci is denoted by P2[i].
Probability of a node i with the second lowest mark in

Ci being retained is denoted by P2_retain[i].
Probability of a node j having the lowest mark in Ci

and not being retained, conditioned on that node i has
the second lowest mark, is denoted by Pi½ j�.
Suppose there are n nodes coexisting with node xi in

its contention domain. Due to the uniform distribution
of the marks among the n + 1 points in Ci, and the
marks are irrelevant to the points, the probability that xi
has a certain mark (among the n + 1 marks) equals to 1/
(n + 1). At the same time, since we adopt a homoge-
neous PPP, the average number of points in Ci is λpSCi,
where SCi is the area of Ci. With the fixed fading, SCi can
be the area of a disc with radius re. Hence, the probabil-
ity P1[i] and P2[i] can be derived as follows.

P1 i½ � ¼ P2 i½ � ¼ Pmin i½ � ¼
X∞
n¼0

1
nþ 1

P Cinxij j ¼ n½ �

¼
X∞
n¼0

1
nþ 1

e−λpπre
2
: λpπre2
� �n
n!

¼ e−λpπre
2

λpπre2
X∞
n¼0

λpπre2
� �nþ1

nþ 1ð Þ! ¼ 1−e−λpπrer
2

λpπre2

ð1Þ

where |.| denotes the size of a set. If we let N = λpπre
2,

the above probability can be written as 1−e−N
N .

Suppose xi has the second lowest mark in Ci, and xj
has the lowest mark, while there is at least one node xk
in Cj with a lower mark than mj. It is equivlant to say
that there is at least one node with lower mark than mj

in Cj−Ci (shadow of Fig. 4). The probability is Pro½∃k∈ð
C j−CiÞ;mk < mj� ¼

P∞
t¼1

t
nþtþ1

Mte−M
t! , where M is the

average number of the Cj −Ci. The derivations can be
found in [21]. We use PC j−Ci ½k� to indicate this similar
scenario in the rest of the paper. Therefore, the probabil-
ity of a node being retained on that having the second
lowest mark is

P2 retain i½ � ¼ P2 � PC j−Ci ∃k∈ C j−Ci
� �

;mk < mj
� �

¼
X∞
n¼1

1
nþ 1

Nne−N

n!

X∞
t¼1

t
nþ t þ 1

Mte−M

t!

¼ M 1−e− NþMð Þ� �
N N þMð Þ þ e−N

M−Nð Þ e−M−1ð Þ
NM

−1
� �

ð2Þ

Here, M is the average number of nodes in Cj −Ci. When
we consider the fixed fading or no fading conditions, the

deduction of M can be found in [21]: M ¼ λp
R r
0 ð2πz−4z

cos−1ð z2rÞ þ z
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4r2−z2

p Þdz.
The above expression can be manipulated in a closed

form. We can further plug it into (2) to get the probability
of a node with the second lowest mark being retained in
MHCP. The whole retaining probability for a node is
PMHCP = Pmin + P2_retain.

4 Base analysis of MMHCP
Combining the analysis of Matérn type II model and the
MHCP model, we propose the MMHCP model to estimate
the retaining probability of initial deployed nodes. In this
section, we firstly focus on the condition that fading is uni-
form, or fixed fading. In MMHCP model, we consider the
simultaneously transmitting nodes (retained nodes) under
CSMA protocol include those nodes with the lowest mark
and the nodes that have the second lowest mark in the do-
main of itself while the node with the lowest mark has not
been retained. It can be formally expressed as follows:
~Φt ¼ fxi : ∀x j∈NðxiÞ; xi≠x j;mi < mjg∪fxi : ∃x j∈NðxiÞ;mi > mj; ∀-
xk∈NðxiÞnfxi; x jg;mk > mi; x j is not retainedg. The prob-
ability of a node been granted to transmit is
Pretain½i� ¼ P1½i� þ P2½i� � Pi½ j�, where Pi½ j� is the probabil-
ity of node j having the lowest mark in Ci and not being
retained.

The difference between MMHCP and MHCP is the
retaining probability of the node with the second lowest
mark in its contention domain. In MHCP, if a node xi
has the second lowest mark in Ci, it is retained only if
the node with the lowest mark xj is not the one with the
lowest mark in Cj. In MMHCP, a node xi with the sec-
ond lowest mark in Ci is retained because node xj with
the lowest mark is not retained. Even if node j does not
have the lowest mark in Cj, it may be retained for the
same reason as node i. When this occurs, node i should
not be retained. However, in MHCP model, node i will
be retained in the same case, which leads to the overesti-
mation of the number of retained nodes.

For Pi½ j� , it can be interpreted as the condition that
node i has the second lowest mark in Ci, while node j
has the lowest mark in Ci and is not retained. In other
words, node i has the second lowest mark in Ci, and
node j is not retained only because there is at least a
node k in Cj−Ci (shadow of Fig. 4) and k is retained
(node k may have the lowest mark, or k has the second
lowest mark while the node with the lowest mark in Ck

is not retained). The authors in [21] considered the rea-
son for j not being retained is that there exist nodes in
shadow of Fig. 4. However, even there exist nodes in
shadow, j may be retained. Namely, when mj is the sec-
ond lowest and the k with the lowest mark is not
retained, j is retained, which makes i not to be retained.
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We further modify the probability in [21] as follows. Sup-
pose there are n nodes and node i coexisting in Ci, and t
nodes in the shadow, where both n and t follow Poisson
distribution with parameter N and M, respectively. Firstly,
we analyze the probability of j not being retained given that
j has the second lowest mark in Ci. Following the analysis
above, we know j is not retained for the following reasons:
mj is not the lowest mark of a node in Cj, except the case
that although mj is not the lowest mark of a node in Cj, mj

is the second lowest while the lowest mark of node k is not
retained. Because in such a case, j should be retained, too.
According to [21], we know that the probability of j not
having the lowest mark in Cj equals to P2_retain[i] in (2). We
consider the probability of mj being the second lowest mark
of a node in Cj under the condition that mj being the lowest
mark of a node in Ci. It equals to the probability of j
having the second lowest mark in (n + t + 1) nodes:
Pðxj has second lowest mark in C jjx j has the lowest mark in-
CiÞ≜P0

2½ j� ¼ 1
nþtþ1.

Hence, the probability of i being retained is
Pretain½i� ¼ P1½i� þ P2½i� � Pi½ j� ¼ P1½i� þ P2½i� � ðPðCi−C jÞ½mj is not lowest�−P0

2½ j��-
ð1−Pretain½k�ÞÞ ¼ P1½i� þ P2 retain½i�−P2½i� � P0

2½ j� � ð1−Pretain½k�Þ . Pretain[k] is
the probability of node k being retained and can be
obtained in the same way as Pretain[i]. In a dense
node distributed network, the rule is iterated until
the current node is definitely to be retained or not.
However, for the random distribution of the nodes
in a network, we cannot know the exact number of
the nodes in such an iteration chain beforehand.
Thus, the ultimate result is hard to obtain.
To simplify such a problem, we assume the probability of

each node being retained is uniform in a statistical meaning.
By this way, we can get an average probability of retaining a
node. This constraint makes the model tractable and still ap-
plicable in ad-hoc networks, wireless sensor networks, and
one tier of multi-tier heterogeneous wireless networks.

Therefore, let Pretain[i] = Pretain[j] = Pretain[k] =…, and the
problem is simplified as Pretain[i] = Pmin[i] + P2_retain[i] −
P2[i] × P2

′[j] × (1− Pretain[i]). We get

Pretain i½ � ¼ Pmin i½ � þ P2 retain i½ �−P2 i½ � � P0
2 j½ �

1−P2 i½ � � P0
2 j½ �

Here, P2_retain[i] is given in Eq. (2); we denote P0 ¼ P2½i�
�P0

2½ j� . Since n and t are distributed as Poisson with pa-
rameters N and M, we get

P0≜P2 i½ � � P0
2 j½ � ¼

X∞
n¼1

Nne−N

n!
1

nþ 1

X∞
t¼1

Mte−M

t!
1

nþ t þ 1

According to the deduction of P2_retain[i] from [21], we

can obtain P0 ¼ Me−ðNþMÞ
N ðP∞

n¼1
Nnþ1

ðnþ1Þ!
P∞

t¼1
Mt−1

t!
1

nþtþ1Þ ¼ 1
M

ðP2 retain½i�−Me−ðNþMÞ
N : e

N−1
N Þ. Finally, we get

Pretain½i� ¼ Pmin½i� þ P2retain½i�−P0

1−P0 ð3Þ

where Pmin[i] and P2_retain[i] are given by (1) and (2) and
P′ can be obtained by

P0 ¼ 1−e− NþMð Þ

N N þMð Þ þ
e−N

M
M−Nð Þ e−M−1ð Þ

NM
−1

� �
−
e− NþMð Þ eN−1ð Þ

N2

Proposition 1 If the probability of a node being
retained in MMHCP is denoted by PMMHCP = Pretain[i] as
(3), the probability of a node being retained in MHCP of
[21] is PMHCP ¼ Pmin½i� þ P2½i� � PC j−Ci ½k�, and the prob-
ability of a node being retained in Matérn type II model
is PMatern, then we get PMatern≤PMMHCP ≤PMHCP ≤1.
Proof The last “≤”: The retaining probability is obvi-

ously less than 1 in a network, and ‘=‘holds only when
the network is sparse enough. Then, let us prove that
PMatern≤PMMHCP , namely Pmin ½i�þP2 retain½i�−P0

1−P0 ≥Pmin½i� . We
need that Pmin[i] + P2_retain[i] − P′ ≥ Pmin[i] − Pmin[i]P

′

Fig. 4 Correlation chain of retaining probability. Assume mi >mj, node i is retained, if mj is the only mark lower than mi in Ci and j is not retained.
The reason for j not being retained (j has the second lowest mark) is that k is retained, if mk is the only mark lower than mj in Cj. The solution is
transformed to the retaining probability of node k
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holds. Since P′ reflects the probability of j having the
second lowest mark in shadow while P2_retain[i] reflects
the probability of node j having not the lowest mark
among more than 2 nodes, P2_retain[i] ≥ P′.
Then, we prove PMMHCP ≤ PMHCP, namely

Pmin½i�þP2 retain½i�−P0

1−P0 ≤Pmin½i� þ P2 retain½i� . Since Pmin[i] + P2_
retain[i] is the probability of a node been retained and is
less than 1, then let a = Pmin[i] + P2_retain[i], b = P′; we
know a−b

1−b < a because both a and b are less than 1. This
completes the proof.
We can conclude that the probability of a node being

retained in MMHCP is lower than that in MHCP, and
higher than that in Matérn type II model. The underlying
reasons are as follows. Matérn type II model does not re-
tain any nodes other than the nodes with the lowest mark
in the contention domain. The MHCP model retains the
node with second lowest mark only because the neighbor
with the lowest mark of such a node has a neighbor with a
lower mark. While in MMHCP model, when we consider
a node with the second lowest mark being retained or not,
we check whether any neighbor of the lowest mark neigh-
bor is retained. Hence, the MMHCP model can alleviate
the overestimation in MHCP. Knowing the probability of
being retained, the density of simultaneously transmitting
nodes in CSMA networks can be represented as λcsma

= λp. Pretain[i]. Such a density is affected both by the initial
nodes density λp and the exclusion re when we consider
the fixed fading, illustrated in Figs. 5 and 9, respectively.
The retaining probability in the fading condition is given
in the following section.

5 General analysis on retaining probability with
Rayleigh fading
In this section, we analyze the retaining probability of a
node under fading conditions. In real radio propagation,
fading is usually variable for each transmission. There-
fore, the contention domain is not always a disk with
fixed exclusion radius, but is an area with irregular shape
in different time slots, as stated in [20]. In this section,
we focus on the channel fading follows the Rayleigh fad-
ing, in which the fading factor is exponentially distrib-
uted with parameter μ and the mean 1/μ.

Similar to the previous analysis, we use NðxiÞ ¼ f jj
Ptg

j
i

lðxi−x jÞ ≥P0; j≠ig to denote the neighbor set of i. Here, g j
i

is the fading factor from node i to node j. In Matérn
type II model, the average number of neighbor nodes for
node i is denoted by ~N ¼ E0½P 1ð Ptg

j
i

lðxi−x jÞ ≥P0Þ� ¼ λp
R
R2

Pro½ g j
i ≥

P0
Pt
lðxi−x jÞ�dx ¼ 2πλp

R∞
0 ð1−GðP0

Pt
lðrÞÞÞrdr . With

the Rayleigh fading, we get ~N ¼ 2πλpΓð2=βÞ
βðP0:μ=PtÞ2=β

.
To get the retaining probability of a node, we need to

know the mean number of the nodes in the portion
similar to the shadow of Fig. 4 under fading conditions.

These nodes can be sensed by node j and cannot be
sensed by node i, on condition that node j can be sensed
by node i and mj <mi. We use ~M to denote the mean
number of those nodes. It is easy to see that ~M equals
the number of nodes sensed by node j subtracts the
number of nodes that can be sensed both by i and j sim-
ultaneously, which is denoted by ~P. We have ~M ¼ ~N−~P.
Plugging ~M and ~N into (3), we can get the retaining
probability for a node under fading condition.
The rest thing is to compute ~P.
Assume the distance between node i and its receiving

node is r, and the distance between i and j is x. Then,

the distance between j and the receiving node is y

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x2−2rxcosθ

p
, where θ is the angle between the

line from i to its receiving node and the line from node i
to node j. Following the definition of ~P, we know

P ¼ E0
X

1
Ptg0i
l rð Þ ≥P0

� �
∩1

Ptg0j
l yð Þ ≥P0

 !
ji can sense j

" #

¼ λp

Z
R2
Pro g0i ≥P0l rð Þ� �

:Pro g0j ≥P0l yð Þ
h i

:Pro x≤
P0

Ptg

� �−1
β

jg j
i ¼ g

" #
dx

¼ 2πλp

Z ∞

0
1−G P0l rð Þð Þð Þ 1−GðP0l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x2−2rxcosθ

p	 
	 

rdr
Z P0

Pt g

� �−1
β

0
dx

¼ 2πλp

Z ∞

0
e−P0μl rð Þ:e−P0μl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þx2−2rxcosθ

pð Þrdr
Z P0

Pt g

� �−1
β

0
dx

¼ 2πλp

Z ∞

0

Z P0
Pt g

� �−1
β

0
e−P0μl rð Þ:e−P0μl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þx2−2rxcosθ

pð Þrdrdx

Since θ is the interior angle of a triangle, and g is the
fading variable with g~exp.(μ), we compute the value of
~P on θ and g:

P ¼ 2πλp

Z ∞

0

Z ∞

0

Z P0
Pt g

� �−1
β

0

Z π

0
e−P0μl rð Þ:e−P0μl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þx2−2rxcosθ

pð Þrdθdxdr f g gð Þdg

¼ 2πλpμ
Z ∞

0

Z ∞

0

Z P0
Pt g

� �−1
β

0

Z π

0
e−P0μl rð Þ:e−P0μl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þx2−2rxcosθ

pð Þ:e−μgrdθdxdrdg

ð4Þ

It is noted that in the presence of fading, the retaining
probability of a node decreases with the increasing density
of initial PPP, which is as same as that in the absence of fad-
ing. However, for the density of concurrently transmitting
nodes, namely the transmitting density in a time slot, it
tends to be stable much faster than that under no fading or
fixed fading condition, especially when the density of initial
PPP increases, as shown in Figs. 7 and 8 of Section 7.1.
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6 Mean probability of successful reception and
transmission capacity
In wireless networks, the probability of successful reception
for a node is an important metric used to guide the configur-
ation of network parameters. The transmission is mainly af-
fected by the aggregate interference that is the accumulated
signals sent by concurrent transmitters at the same time.
Based on the analysis in [14] that the Matérn type II model
can be safely approximated by an inhomogeneous PPP to
model for interference-based performance analysis, many lit-
eratures analyzed the probability of successful reception
based on the link distance, such as [15, 17]. Authors in [21]
statistically modeled the aggregate interference based on the
MHCP transmitting density using a homogeneous PPP.
According to the shot noise theory in [32, 33], the Laplace
transform of the pdf (probability density function) of the ag-
gregate interference, the mean and variance can be expressed
in closed form. The authors in [34] characterized the inter-
ference distribution in Poisson networks, both in the absence
and in the presence of fading. In [35], the CSMA protocol
was modeled by excluding interference from a guard zone
around the typical receiver in a Poisson model. The authors
in [36] provided a Taylor-series type expansion of functions
to approximate the interference and illustrated that the
approach could be used to find outage probability in both
Poisson and non-Poisson wireless networks.
In this section, we also assume that the interference is

produced only by transmitters located outside a distance
equal to the sensing range in CSMA networks, as in [34].
Different from [15, 17], in this paper, we consider the mean
probability of successful reception over the distance r of a
link. We assume the successful reception is only related to
the receiving node, or the transmitting is successful if the
node is granted to transmit. Following the well-known

Slivnyak theorem in [17, 37], we assume the typical receiver
at origin, which experiences the same interference as any
other coexisting receivers.
In the absence of fading, the probability of successful

reception is easy and is determined only by the link distance
r. Under fading condition, we have the following result.
Theorem 1 Assume the retaining probability of a node

from initial PPP is Pretain, with the fixed transmitting
power, and fading distribution is exponential with par-
ameter μ, the mean probability of successful reception in
a CSMA network can be approximated as:

e ps ¼ E ps½ �

¼
Z ∞

0

Z ∞

r
exp −2πλpPretain

Z ∞

re−r

μ μþ μT r=xð Þβ
	 


−1

μ μþ μT r=xð Þβ
	 
 xdx

0
@

1
A

f re reð Þdre f r rð Þdr
ð5Þ

where f reðreÞ ¼ P0μ2βreβ−1 expð−P0μreβÞ , and f rðrÞ

¼ 2πλprPretain 2r≤re
2πλprPretaineMs 2r > re

�
, Ms is the area of the

shadow in Fig. 4 in fading environment.
Proof From the definition of ps and the exponen-

tial distribution of the fading, we get

eps ¼ E½ps� ¼ EðPro½ Ptgiri
−βP

j≠i
Pt g jr j

−β > T jri ¼ r�Þ ¼ R R2Pro½gi-

>
T
P

j≠i
g jr j

−β

ri−β
� f rðrÞdr ¼

R
R2 expð−μTrβIÞ f rðrÞdr ¼

R
R2LIðμTrβÞ f rðrÞdr ,

where gi is the fading gain from the transmitter to
the receiver i, LIðsÞ is the Laplace functional of I,
and I=

P
j≠ig jr j

−β is aggregate interference with unit

transmitting power (even if the transmitting power is

Fig. 5 Retaining probability without fading
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not unit, it is a common factor and can be removed
from the numerator and the denominator in the SIR
expression). For LIðsÞ, there is not a closed form be-
cause the transmitting nodes form a hard core point
process. But from the Compbell theorem [17], the
mean of the aggregate interference is same for any
stationary point process with same density and is ir-
relevant to the distribution of them. Therefore, we
approximate I as the aggregate interference under a
PPP deployed network and compute it in a closed
form. The difference is that the interference nodes
are distributed out of re − r, and re is the exclusion
distance on current fading. So we get

LI sð Þ ¼ E exp −s
X
j≠i

g jr j
−β

 !" #
≈ E

Y
j≠i

Eg exp −sg jr j
−β

	 
	 
" #

¼ exp −λpPretain

Z
R2nB 0;re−rð Þ

1−Eg exp −sg jr j
−β

	 
	 
	 

dr j

 !

¼ exp −λpPretain

Z
R2nB 0;re−rð Þ

1−
1

μ μþ sr j−β
� �

 !
drj

 !

¼ exp −λpPretain:2π
Z ∞

re−r

μ μþ sx−β
� �

−1
μ μþ sx−βð Þ xdx

� �

And let s = μTrβ, we get LIðμTrβÞ ¼ expð−λpPretain:2πR∞
re−r

μðμþμTðr=xÞβÞ−1
μðμþμTðr=xÞβÞ xdxÞ.

In this expression, re is a variable affected by the
fading and the sensing threshold of the network. We
can get the probability density function (pdf ) of re by
the fading distribution as f reðreÞ ¼ tμβreβ−1 expð−treβÞ,
where t = P0μ. When r > re, the receiving node cannot
sense the transmitter, so we consider re ≥ r, and get

LIðμTrβÞ ¼
R∞
r expð−λpPretain:2π

R∞
re−r

μðμþμTðrxÞ−βÞ−1
μðμþμTðrxÞ−βÞ

xdxÞ f reðreÞdre:
Then, fr(r) is the pdf of the distance between the

intended transmitter and the receiver, or the pdf of near-
est distance between two nodes in a hard core point
process. From [15], we know that in hard core point
model, the nearest distance between two nodes can be

expressed as f rðrÞ ¼
2πλprPretain 2r≤re

2πλprPretaineMs 2r > re

�
,

where λp is the density of the initial PPP, Pretain is the
retaining probability of a node in hard core point
process, and Ms is the area of shadow in Fig. 4. The
proof is completed.

In this paper, we take the same process as Matérn type II
model in MHCP model and MMHCP model and use PMHCP

and P
MMHCP

to replace Pretain in (5) to approximate the pdf of
distance between two nearest nodes. Generally, the expres-
sion (5) is not closed, but when the fading parameter μ= 1,

LI has the closed form as LI
1ðsÞ ¼ expð−λpPretainπ

R∞
re−r

v
1þs−1vβ dv ¼ expð−λpPretainπsδ :Cðs−δðre−rÞ2; βÞÞ.

Plugging s = Tri
β, we get LIðTriβÞ ¼ expð−λpPretainπ

T δr2:CðT−δr−2ðre−rÞ2; βÞÞ , where δ = 2/β, and Cðb; αÞ
¼ R∞b 1

1þuα=2 du ¼ 2π
α cscð2π=αÞ−b 2F1ð1; 2α ; 2þα

α ;−bα=2Þ ,

where 2F1(.) is the hypergeometric function. At the same
time, we have f 1reðreÞ ¼ P0βreβ−1 expð−P0reβÞ with μ = 1.
The mean probability of successful reception can be
approximated as:

e ps ≈
Z ∞

0

Z ∞

r
exp −λpPretainπTδr2:C T−δr−2 re−rð Þ2; β� �� �

f 1re

reð Þdre f r rð Þdr
ð6Þ

Actually, due to the transmitting power Pt has no influ-
ence on the successful transmission probability ps, we can
let the transmitting power Pt equals to 1/μ when the fad-

ing parameter μ ≠ 1. The virtual power F j
i ¼ Pt:g

j
i still fol-

lows the exponential distribution with parameter 1 and
can be analyzed by expression (6). From (6), it is clear that
the fading parameter μ has no effect on the mean prob-
ability of successful reception for the whole network. In
other words, the influence of fading on the successful re-
ception probability in hard core point process deployed
networks is same as that in the PPP deployed networks as
[9]. The simulations in Section 7.1 also confirm this.
Another important metric for the network is the trans-

mission capacity (TC), which captures the global effect of
interference on the network throughput and many import-
ant features of a wireless network. In our paper, we define
the transmission capacity as the mean number of successful
transmissions per unit area, similar as [20], and denote it by
TC = λp × Pretain × e_ps. In the metric of transmission cap-
acity, there still exists underestimation for the Matérn type
II model. It is noticeable that when the nodes of the net-
work is not so dense, the overestimation of MHCP model
is not so obvious. But with the potential transmitting nodes
becoming denser, the transmission capacity tends to be
overestimated by the MHCP model. Since e_ps is almost
immune to the initial transmitters density and the fading,
the impact of the two factors on the transmission capacity
stems from Pretain and λp. Based on previous analysis on Pre-
tain, the transmission capacity by our MMHCP model is
also more accurate than the other two models, which is also
shown in simulations of Section 7.1.

7 Results and discussions
7.1 Results
The retaining probability, transmitting density, probabil-
ity of successful reception and the transmission capacity
can be numerically evaluated and simulated via Monte
Carlo method using MATLAB.
At first, we realize CSMA networks inherited from

PPP with different densities in a rectangle with 10 × 10.
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In the absence of fading, a node is retained if the mini-
mum distance between it and all of the previously
retained nodes is greater than re. Under fading condi-
tion, a node is retained if it has the lowest mark among
its neighbors that can be sensed. Figure 3 is an example
of the network in fading environment with initial PPP
density λp = 0.4, and fading parameter μ = 1, where the
red stars are the initial nodes distributed as the PPP, and
the blue circles are the retaining nodes in a time slot.
The retaining probability of a node decreases with the

initial PPP density, while the transmitting density of the
network varies not so much with it. To analyze the slope
of the retaining probability and transmitting density with
the density of initial PPP, we repeat 300 times by setting
the initial PPP density from 0.2 to 2. The trend of retain-
ing probability with the initial PPP density in the

absence of fading is shown in Fig. 5, where re= 1. The
trend under Rayleigh fading condition is shown in Fig. 6.
It is clear from both figures that the retaining probability
decreases with the initial PPP density. At the same time,
we can see from both figures that the simulation results
are closer to the MMHCP model than Matérn type II
model and MHCP model.
The transmitting node density in a time slot varies

with the initial PPP density λp when λp is small, but the
slope tends to be flat when λp is large, which is consist-
ent with our analysis. And from Figs. 7 and 8, we can
see that the slope becomes flat much faster in the pres-
ence of fading (when λp ≥ 0.8 or so) than that in the ab-
sence of fading (when λp ≥ 2.5 or so). This concludes
that fading makes the transmitting node density tends to
be stable much faster. From the figures, the transmitting

Fig. 6 Retaining probability with fading

Fig. 7 Transmitting node density without fading
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density of MMHCP model is also closer to the simula-
tion than the other two models.
In the absence of fading, for the trend of the estimated

density following the exclusion re, we take a fixed density
of initial PPP as 0.5 and set the exclusion radius from 0.1
to 1, and repeat the simulation for 300 times. The curves
are shown in Fig. 9, where we can see the trend of trans-
mitting density following re. Meanwhile in the presence of
fading, we demonstrate the retaining probability following
with the fading parameter μ from 1 to 10 in Fig. 10.
From the analysis in Section 6, we know the mean

probability of successful reception in the models of this
paper does not change with the fading parameter μ. We
repeat the simulation for 300 times for μ, setting SIR
threshold from − 5 to 10 dB. The result is shown in Fig.
11. An interesting fact is that the density of initial PPP

has little effect on the e_ps, as illustrated in Fig. 12,
which is as same as that in a PPP deployed network.
For transmission capacity, we simulated the impact of the

initial PPP density and the fading parameter on the metric.
According to the expression of the transmission capacity
and the analysis about the probability of successful recep-
tion, we know the initial PPP density and fading parameter
affect the metric only from the transmitting node density.
The Matérn type II model still has the flaw of underestima-
tion. An example is shown as Fig. 13, that the transmission
capacity increases with the density of the potential trans-
mitters, where the density of the potential transmitters is
set from 0.1 to 1, the fading parameter μ is set 10 and the
SIR threshold is set 0 dB. Under such a channel condition,
we can see that the MMHCP model is closer to the simula-
tion result than the MHCP model. Figure 14 is an example

Fig. 8 Transmitting node density with fading

Fig. 9 Retaining probability with re without fading
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of transmission capacity following with the fading param-
eter, where the initial PPP density is set 0.6 and SIR thresh-
old is 2 dB. This figure also shows that the simulation is
closer to the analysis by MMHCP model.

7.2 Discussions
For the result of transmitting node density of the net-
work, it varies little with the initial PPP density, and the
underlying reason is intuitive. Whether fading is fixed or
not, when the density of initial PPP increases, the retain-
ing probability of each node decreases for the character-
istic of exclusion in hard core point process. But the
transmitting node density of the whole network varies
little when the initial PPP tends dense. Here, we take
Matérn type II model in fading condition as an example.

The transmitting density can be expressed as

λ1CSMA ¼ λp:PMatern ¼ λp:
1− expð− ~NÞ

~N
¼

1− expð− 2πλpΓð2=βÞ
βðP0μ=Pt Þ2=β

Þ
2πΓð2=βÞ

βðP0μ=Pt Þ2=β
. From the

expression, we can see that the density λp only affects
the exponent in the numerator, and when it tends to in-

finity, the transmitting density tends to be βðP0μ=PtÞ2=β
2πΓð2=βÞ ,

which tends to be irrelevant to λp.

For the probability of successful reception, we know in
a PPP deployed network, it has been proved in [9, 10]
that the density of nodes has no impact on the probabil-
ity of successful reception. Similarly, in a CSMA net-
work deployed by granting hard core points transmitting
simultaneously from an initial PPP, we can see from Fig.
12 that the probability e_ps varies little with the initial

Fig. 10 Retaining probability with μ with fading

Fig. 11 e_ps for different initial PPP density with the SIR
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PPP density. From (6), we know that the probability e_ps
is affected by λp from LI and fr(r). In our analysis, the
retaining probability Pretain decreases with λp, but the
product of λp and Pretain actually varies little for a fixed
point process. That is why the initial PPP density has lit-
tle effect on the final probability of successful reception
when λp tends to infinity.
Finally, it should be noted that the reason of MMHCP

model outperforming the MHCP model is the network
nodes becoming denser or the channel condition be-
coming worse. In fact, when the network is sparse and
the fading is not so serious, the overestimation of MHCP
model is not so obvious, even the intensity underestima-
tion flaw still exists in the MHCP, as stated in [20]. That
is why the curve of simulation (magenta) is not far from
the blue curve (MHCP model) when the fading

parameter μ is small (≤6). But with the fading parameter
μ becoming large, the curve tends to be close to the red
curve (MMHCP model). From this discussion, we know
the MMHCP model is more suitable for the dense net-
work and with bad fading condition.

8 Conclusions
In this paper, we study the model of dense CSMA net-
works with randomly distributed nodes and analyze the
transmitting density, mean probability of successful recep-
tion, and transmission capacity. In view of that the Matérn
type II model underestimates and MHCP model overesti-
mates the density of the simultaneously transmitting
nodes, we propose another modification on the traditional
model to alleviate the overestimation of the density. We
give a more accurate density estimation for the

Fig. 12 e_ps for different fading factor μ with the SIR

Fig. 13 Transmission capacity for different initial PPP density
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simultaneously transmitting nodes in dense networks and
in fading environment. In the absence of fading, given the
initial density of the PPP and exclusion radius, we express
the density estimation in a closed form by regarding the
retaining probability of each node being same. Under Ray-
leigh fading condition, we express the retaining probability
of a node with fading parameter and initial PPP density.
The simulation results demonstrate that the density from
MMHCP model is closer to the actual distribution of
nodes in CSMA than Matérn type II model and MHCP
model. The impact of the density of nodes and fading fac-
tor on the mean probability of successful reception and
transmission capacity are also studied in our numerical
analysis and simulations, from which we can see that the
fading parameter has no effect on the probability of suc-
cessful reception, which is same as that in the PPP de-
ployed network. And the density of initial PPP also has
little effect on the probability under Rayleigh fading when
the network becomes dense. The density of initial nodes
and the fading conditions affect the transmission capacity
as they affect the active nodes density, and with the nodes
becoming denser or the fading deteriorates, the simulation
tends to be close to the MMHCP model. All simulations
confirm that the proposed model can be used to accur-
ately model the network behavior than Matérn type II and
MHCP models in many situations.
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