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Abstract

Vanishing component analysis (VCA) method, as an important method integrating commutative algebra with
machine learning, utilizes the polynomial of vanishing component to extract the features of manifold, and solves
the classification problem in ideal space dual to kernel space. But there are two problems existing in the VCA
method: first, it is difficult to set a threshold of its classification decision function. Second, it is hard to handle with
the over-scaled training set and oversized dimension of eigenvector. To address these two problems, this paper
improved the VCA method and presented a grouped VCA (GVCA) method by grouping strategy. The classification
decision function did not use a predetermined threshold; instead, it solved the values of all polynomials of
vanishing component and sorted them, and then used majority voting approach to determine their classes. After
that, a strategy of grouping training set was proposed to segment training sets into multiple non-intersecting
subsets, which polynomials of vanishing component were later acquired through a VCA method, respectively, and
finally combined into an integral set of vanishing component polynomial. What is more important is that it uses
the bagging theory in ensemble learning to successfully expound and prove the correctness of the strategy of
grouping training sets. It also compares the time complexity for training algorithm with and without grouping
training sets, thus demonstrating the effectiveness of the grouping strategy. A series of experiments showed that
the GVCA method proposed in the paper has a perfect classification performance with a rapid rate of convergence
compared to other statistical learning methods.
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1 Introduction
Commutative algebra is a discipline of algebra mainly
studying commutative ring [1]. It takes the algebraic
number theory and algebraic geometry as its study back-
ground. In a classic sense, the research object of com-
mutative algebra is the zero point of a polynomial
equation set, which correlates with not only the number
theory (such as Diophantine equation [2]) but also the
manifold pattern (such as the hypersurface defined by
polynomial) [3]. While, in a modern sense, the research
object of commutative algebra is the topological space
with rich structure (structure sheaf ) that could be pro-
vided by a spectrum of a commutative ring. Commuta-
tive algebra integrated with a manifold pattern has been
widely applied in machine learning in recent years, as it

can solve some common machine learning problems,
such as classification and clustering, from a perspective
of a manifold pattern. Vanishing component analysis
(VCA) [4] is a method of solving classification problem
by applying the theory of commutative algebraic that has
emerged in recent years. Therein, the vanishing compo-
nent refers to a generator (i.e., Grobner basis [5]) for
vanishing ideal of polynomial ring space of fitting a
manifold pattern, which is in form of a group of polyno-
mials employing feature as their variable. Once acquiring
the vanishing component, the natural feature of a data
manifold pattern can be captured.
The VCA method uses an ideal space dual to kernel

space [6], thus becoming a dual algorithm of a kernel
method. However, the VCA method has two problems:
(1) A set of polynomials obtained through the VCA
method, i.e., vanishing component, should be judged
whether it is zero or not, when a test sample is
substituted into a classification decision function. But in
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the case of noise, it is difficult to ensure it is strictly zero.
Even if a threshold is used, it is impossible to set its
value. (2) The VCA method faces a similar difficulty with
kernel method, that is, restriction on the scale of train-
ing set [7]. This is because, in training algorithm, the
number of training samples will influence the number of
vanishing component polynomials, the number of mo-
nomials contained in vanishing component polynomials,
the order of polynomial, etc. [4], thereby largely increasing
the amount of calculation. On the other hand, an over-
sized eigenvector dimension will also lead to an oversized
dimension of singular value decomposition (SVD) matrix
used in the VCA method, and finally make it harder to
solve.
To solve the above two problems of the VCA method,

this paper made a theoretical analysis and experimental
research to improve the VCA method and presented a
grouped VCA (abbreviated as GVCA) method. The
GVCA method modified the classification decision func-
tion in the VCA method. It did not preset a threshold;
instead, it solved the values of all polynomials of vanish-
ing component and sorted them, and then used the ma-
jority voting approach to determine their classes. After
that, a strategy of grouping training set was proposed on
the basis of deduction of ensemble learning theory. In
this strategy, the training sets were horizontally or verti-
cally segmented into multiple non-intersecting subsets,
which polynomials of vanishing components were later
acquired through the VCA method, respectively, and fi-
nally combined into an integral set of vanishing compo-
nent polynomials. By experiment, it is verified that the
GVCA method has a perfect classification performance
with a rapid rate of convergence.
The main contributions of this paper include that (1)

it proposed a classification decision function easier to
operate, (2) it put forward a strategy of grouping train-
ing sets and utilized the Bagging theory in ensemble
learning to successfully expound and prove the correct-
ness of the strategy of grouping training sets, and (3) it
deduced the time complexity for training algorithm
after grouping, thus demonstrating the effectiveness of
such strategy.
The paper is arranged as below: Section 2 introduces

the efforts related to commutative algebra, the VCA
method, and ensemble learning. Section 3 firstly pro-
vides the theoretical basis of commutative algebra, then
gives the VCA method and analyzes the problems
caused by the threshold of its decision function being
hard to set, and over-scaled training sets and oversized
dimension of eigenvector. Finally, based on the analysis
of problems resulted from setting threshold of a deci-
sion function in the VCA method and proposed an
improved decision function on the basis of sorted value
of vanishing component polynomial, the experiment

showed that such improved decision function was more
operational. Furthermore, based on the analysis of
problems brought by the over-scaled training set and
the oversized dimension of eigenvector, this section
raised a strategy which horizontally and vertically
grouped the training sets, made analysis on vanishing
components respectively, and classified the union of
vanishing component in each group. Then, the ensem-
ble learning theory was utilized to verify the correct-
ness and effectiveness of this strategy. By improving
these two aspects, a GVCA method was formed. After-
wards, In Section 4, four experiments were conducted
with simulation dataset and UCI dataset, which indi-
cates that this method has a perfect classification per-
formance with a rapid rate of convergence. At last,
Section 5 presents a conclusion and forecast of the
future work.

2 Related work
2.1 Commutative algebra
From the late eighteenth to the mid-nineteenth century,
Gauss and Kummer et al. studied the nature of rational
integer and the rational integer solution of equation
and considered the Elementary Number Theory prob-
lems in the quadratic field, cyclotomic field, and their
algebraic integer ring [8, 9]. Through abstraction and
systematization implemented by Dedekind and Hilbert
et al. [10, 11], a new discipline generated to study alge-
braic number field and its algebraic integer ring, called
Algebraic Number Theory [12]. In 1882, the concepts
of the Ideal and the Prime Ideal proposed by Dedekind
[13] laid a foundation for one-dimensional commuta-
tive algebra [14]. At the time later than the number
theory, geometry also experienced an algebraization
process, and thus the multidimensional commutative
algebra started to form its shape [15]. The Ideal Theory
[16] proposed by Hilbert et al. at the end of nineteenth
century and Noether in the 1920s to the 1930s, and the
Valuation Theory [17], the Local Ring Theory [18], and
the Dimension Theory [19] established by Krull have
furnished classical geometry with brand new algebraic
tools and enabled commutative algebra to be an inde-
pendent discipline.

2.2 VCA method
Livni et al. put forward a vanishing component analysis
method with stable values, i.e., the VCA method, to
solve the generator (i.e., vanishing component) for van-
ishing ideal of fitting data manifold pattern. A set of
polynomials obtained by this method can be used to rep-
resent the structure of manifold pattern. And the
method can also be applied in supervised learning field,
which has proved to achieve a good precision in experi-
ments [4]. Actually, the emergency of the VCA method
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is a result of commutative algebra combined with ma-
chine learning, while the key is to apply commutative
algebra in solving the generator for vanishing ideal of
fitting manifold pattern. As data often contains
noises, it is difficult to acquire an analytical solution,
so numerical methods are needed to solve an ap-
proximate vanishing ideal. The VCA method-related
research involves as follows: Buchberger and Möller
et al. firstly proposed an algorithm to figure out the
vanishing ideal of finite point set, called Buchberger-
Möller algorithm [20], which can be regarded as the
Euclidean algorithm that solves the maximum com-
mon divisor of single variable and the generalization
of Gaussian elimination method in a linear system.
The obtained Grobner basis has stable values when
the coordinate system is measurable [21]. Corless et al.
raised a singular value decomposition (SVD) [22] ap-
proach for polynomial system and used it to solve the
maximum common divisor problem [23], while SVD is
the main step for solving the approximate vanishing
ideal. Stetter developed the theory proposed by Corless
et al. and presented a more general numerical method
[24]. Heldt et al. utilized SVD and stable numerical
method [25] to solve the approximate vanishing ideal,
and these vanishing component polynomials almost
composed a border basis [21]. Heldt et al. also worked
out the Cohen-Macaulay basis of vanishing ideal [26].
Sauer et al. made use of a strategy of independent co-
ordinate and increased degree of polynomial to calcu-
late the approximate vanishing ideal, thereby acquiring
an approximate solution of Buchberger-Möller algo-
rithm [27]. Kiral et al. raised two dualities, namely, the
duality between kernel and ideal and the duality be-
tween ideal and manifold pattern. Then, these two
dualities can be used to design two algorithms: ideal
principal component analysis (IPCA) and approximate
vanishing ideal component analysis (AVICA), in order
to learn the generation features and discriminant fea-
tures of manifold pattern [28]. Both algorithms can be
considered as an extension of kernel primary compo-
nent analysis (Kernel PCA) algorithm [29]. To sum up,
commutative algebra provides an approach to solve the
approximate vanishing ideal, and the VCA method uses
an ideal space dual to kernel space, thus becoming a
dual algorithm of kernel method. This has offered a
new idea for solving machine learning problem in ker-
nel space and is of great value in studying kernel
method and machine learning.

2.3 Ensemble learning
Ensemble learning refers to a kind of machine learn-
ing method which uses a lot of learning devices to
study and then integrates each learning outcome
under some certain rules, so that the model’s stability

and prediction ability can be enhanced. Kleinberg
proposed a general stochastic discrimination (SD)
method to segment multidimensional space by sto-
chastic process [30]. The SD method is capable to en-
hance the performance of weak classifier. Based on
this, Ho raised a random subspace method (RSM)
and constructed a forest with the idea of RSM and
the decision tree [31]. Hansen and Salamon proved
that introducing ensemble learning into artificial
neural network can improve the properties [32]. On
the basis of random decision forest (RDF), Breiman
employed the Bagging (i.e., bootstrap aggregation)
technology, made a theoretical analysis, and provided
an error upper-bound [33]. Bagging attempted to
achieve similar learning module in small sample set,
and then averaged the predicted values. This method
uses different learning modules in different datasets
to reduce the variance. Schapire put forward a boost-
ing method [34], an iterative technique regulating the
weight of observed value based on the last classifica-
tion. If an observed value has been wrongly classified,
it will increase the weight of observed values, and
vice versa. Generally, boosting can decrease offset
error to build a powerful prediction model. But some-
times, it can also over-fit the training data. Freund
and Schapire proposed an Adaboost method [35].
Cho and Kim integrated the results of multiple neural
networks that used fuzzy logic, and the experiment
showed this method improved the precision of
classification [36]. The stacking approach raised by
Wolpert is suitable to integrate different types of
models and helps to bring offset error and variance
down [37].

3 Methodology
3.1 Theoretical basis
Definition 1 (Left Ideal). The nonempty subset I ⊆ R in
ring R is called the left ideal in R, if I satisfies the follow-
ing two conditions [13]:

(1) The addition operation of I in ring R constitutes a
subgroup of additive group of ring R.

(2) RI ⊆ R, i.e., for ∀a∈ R and b∈ R, it satisfies
ab∈ R.

Definition 2 (Right Ideal). The nonempty subset I ⊆ R
in ring R is called the right ideal in R, if I satisfies the
following two conditions [13]:

(1) The addition operation of I in ring R constitutes a
subgroup of additive group of ring R.

(2) IR ⊆ R, i.e., for ∀a∈ R and b∈ R, it satisfies
ba∈ R.
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Definition 3 (Ideal). If I is both left ideal and right ideal,
then I is called a bi-ideal, abbreviated as Ideal [13].
Definition 4 (Vanishing Ideal). Given k is a domain, and

f1, f2, …, fm is a polynomial in the ring k[x1, x2,…, xn], then,
the set V can be defined as below:
V(f1, f2,…, fm) = {(u1, u2,…, un) ∈ k

n : fi(u1, u2,…, un) = 0}.
In which, i = 1, 2, …, m. The set V(f1, f2,…, fm) is called
an affine variety of the polynomial f1, f2, …, fm. Then the
set I(V) = {f ∈ k[x1, x2,…, xn] : f(u1, u2,…un) = 0, ∀u ∈V} is
an ideal of the ring k[x1, x2,…, xn], called the vanishing
ideal of V [37].
Definition 5 (Grobner basis). Fix a monomial, if it

satisfies the following formula, then a finitely gener-
ated G = g1, …, gk will be the Grobner basis of ideal
I [5].

LT g1ð Þ;…; LT gk
� �� � ¼ LT Ið Þh i ð1Þ

in which, LT(f ) represents the leading type of non-zero
polynomial f. The coefficient of leading type is called a
leading coefficient, denoted as LC(f ), and the corre-
sponding term is called a leading term, denoted as
LM(f ).
Example 1. For a non-zero polynomial f(x) = a0x

n +
a1x

n − 1 +K + an, its leading type LT(f ) = a0x
n, the

leading coefficient LC(f ) = a0, and the leading term
LM(f ) = xn. It is easily known that the formula below
is valid.

LT fð Þ ¼ LC fð ÞLM fð Þ ð2Þ

There is an important proposition about ideal and
Grobner basis, as below [38]:
Proposition 1. Suppose I is a non-zero ideal in poly-

nomial A, G = {g1,…, gk} is a non-zero ideal in I, then
the following statements are equivalent:

(1) G is the Grobner basis of I.
(2) f∈ I, if and only if f is generated by G.
(3) f∈ I, if and only if h1, …, hi exists, making

f ¼
Xk

i¼1

higi ð3Þ

It is known from Hilbert Basis Theorem and the above
ratiocination that the generator of vanishing ideal I in
ring R is the Grobner basis [5], namely, vanishing
component.

3.2 VCA method and its existing problems
3.2.1 VCA method
In the VCA method, by solving the generator of vanish-
ing ideal (i.e., Grobner basis), it is feasible to obtain the
generation features of a manifold pattern, so that an
input space can be switched into a feature space. In
a feature space, it is easier to judge the class of data.
Suppose an input space is S ⊆ Rn, then VCA output
will be V = {f1(x),…, fk(x)}, in which fi(x) is a
polynomial, and it satisfies ∀x ∈ S, f ∈ I(S), f(x) = 0.
That is a vanishing ideal. When V is a finite set to
get a group of generators of vanishing ideal of S.
These generators are vanishing components, which
compose the generation feature of manifold pattern
S. Therefore, the VCA method is an application of
Buchberger-Möller1 in nature. What it works out is
the Grobner basis of vanishing ideal in polynomial
ring of fitting manifold pattern.
The VCA method firstly initializes three sets, i.e.,

the candidate polynomial set C1 = {f1,…, fn}, in
which, fi(x) = xi, non-vanishing component polyno-
mial set F ¼ f f ð�Þ ¼ 1=

ffiffiffiffi
m

p g and vanishing compo-
nent polynomial set V = φ. Next, the algorithm
FindRangeNull() used to solve zero space is applied
to solve the new non-vanishing component polyno-
mial set F1 and vanishing component polynomial set
V1, and later combined with original sets F and V,
thus composing the current non-vanishing compo-
nent polynomial set F and vanishing component
polynomial set V. At the same time, a new candidate
polynomial set Ct is figured out. In case of Ct = φ, it
is time to finish and output the final non-vanishing
component polynomial set F and vanishing compo-
nent polynomial set V. But if Ct ≠ φ, it is necessary
to conduct iterative computations on the above
steps until the termination condition is satisfied at
the end; that is to say, all vanishing component
polynomials are worked out, thereby forming an in-
tegral non-vanishing component polynomial set (i.e.,
the Grobner basis of vanishing ideal). In the VCA
method, after the Grobner basis of vanishing ideal
is calculated, it is possible to implement classifica-
tion via the classification decision function. Assum-
ing fpl1ðxÞ;…; plnlðxÞg is the generator of vanishing
ideal of class l, then for an example of any class l, it
satisfies jpljðxÞj ¼ 0 . However, for examples of other

classes, there are some polynomials not equaling to zero
at least.

3.2.2 Problem of setting threshold for classification decision
function
(1) Setting threshold for classification decision function:
As mentioned above, the classification decision function
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in the VCA method chooses jpljðxÞj as the feature of ex-

ample x. If each class belongs to different algebraic sets,
then the data can be linearly classified in such feature
space. Nevertheless, its classification decision function
formula

plj xð Þ
���

��� ¼ 0 ð4Þ

has some problems. Regarding data without noise,
Eq. (2) is theoretically valid (considering the factors
like calculation error, it is actually non-valid). While
for data with noise, this equation approximates to
zero, that’s

pij xð Þ
���

��� ≈ 0 ð5Þ

Hence, both above situations need to consider setting
threshold. If let ε be threshold, when jpljðxÞj 〈 ε , Eq. (5)
will be valid. The problem is what value should this
threshold ε supposed to be. Next, the paper will verify it
through experiment.
(2) A test carried out according to the problem led by

threshold setting: This paper built the following two
groups of polynomials to generate analog data set for
testing:

x21 þ 0:01x22 þ x23 ¼ 1 ð6Þ

x21 þ x23 ¼ 1:4 ð7Þ
The experimental data is generated using sampling ap-

proaches. By adding noise or not, the sampling methods
are classified into noiseless sampling and noisy sampling.
The noiseless sampling method is as follows: For formula
(6), generate a stochastic number x1 between [− 1,1] and a
stochastic number x2 between [− 10,10]. If both of them
can satisfy 1‐x21−0:01x

2
2≥0 , the above sampling is a suc-

cessful one, and can be used to calculate the candidate
value of x3. But if neither of them can satisfy the above
condition, it needs to return and re-sample. The algorithm
will finish until it gets enough amount of sampling. For
formula (7), generate a stochastic number x1 between
[− 1.1832,1.1832], use the same approach to calculate
x3, and generate a stochastic number between [− 1,1]
and evaluate it as x2. The algorithm will finish until it gets
enough amount of sampling. The noisy sampling method
is similar to noiseless sampling method, in which the only
difference is the Gaussian noise μ = 0, σ = 0.02, …, 0.10
added in the process of generating dataset.

3.2.2.1 Experiment without noise The following ex-
periment aims to verify the impact of the threshold
ε, used to judge whether the vanishing component
polynomial value is zero or not, on the classification

performance. This experiment applies a noiseless
sampling method, and two types of experiment data
are sampled from above formulas (6) and (7), with-
out noise. The iterative times are ten. Both training
examples and tested examples are 200. The experi-
ment is conducted with a fixed training set and test-
ing set method. See the experimental results in
Table 1.
Table 1 demonstrates (1) the value of threshold ε,

used to judge whether the polynomial value is zero or
not, should be small in case of no noise. Because it
can be seen from experimental results when ε is
small, the values of Precision, Recall, and F1 are all
very good, but should not be smaller than machine
precision; otherwise, the results cannot be judged. (2)
When the threshold ε gradually increases, the per-
formance gradually decreases and tends to change
monotonously. This shows the VCA method is sensi-
tive to the change of threshold in case of no noise,
and there is a rule.

3.2.2.2 (b) Experiment with noise The following
experiment also aims to verify the impact of the
threshold ε, used to judge whether the vanishing
component polynomial value is zero or not, on the
classification performance, but there is a difference
that this experiment adds the Gaussian noise. All ex-
perimental data are sampled from above formulas (6)
and (7), added with the Gaussian noise μ = 0, σ = 0.1.
Both training examples and tested examples are 200.
The experiment is conducted under fixed training set
and testing set method. See the experimental results
in Table 2.
Table 2 demonstrates (1) after adding noise, for the

same threshold ε, the experimental performance is
lower somewhat than the above experiment without
noise. This shows the noise can affect performance.
(2) After adding noise, on a whole, the smaller the
threshold ε is, the better the performance will be. But
under the effect of noise, this result has some excep-
tional circumstances. For example, when ε = 10‐1,
there is a better result than others. Besides, when ε = 100,
the results are not the worst one. This suggests the setting
of threshold ε is relevant to the features of noise in case

Table 1 The impact of the threshold ε of classification decision
function in the VCA method on the classification performance
(without noise)

ε 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

P 1.0 1.0 1.0 1.0 1.0 0.85 0.83 0.83 0.75

R 1.0 1.0 1.0 1.0 1.0 0.73 0.71 0.74 0.69

F1 1.0 1.0 1.0 1.0 1.0 0.78 0.77 0.78 0.72
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that noise exists. On the premise of having no idea of
noise distribution in advance, it is impossible to set a
reasonable value for ε. This directly makes the
classification decision function in the VCA method
hard to operate.

3.2.3 Problems resulted from over-scaled training set and
oversized eigenvector dimension
The influence produced by over-scaled training set
and oversized eigenvector dimension: On the one
hand, it can be known from the VCA method that the
over-scaled training set, i.e., too many training exam-
ples, will result in too many vanishing component
polynomials, too many monomials contained in the
vanishing component polynomial, and too high order
of polynomials. Among them, the worst impact is pro-
duced by too high order of polynomials. On the other
hand, the dimension of eigenvector has a great impact
on the computing time of an algorithm, which is be-
cause the eigenvector dimension is directly embodied
in the number of variables in an algorithm. When
there are too many variables, both the number of can-
didate polynomial and its maximum number of times
will increase rapidly, and the SVD algorithm used to
solve zero space will correspondingly quickly become
more complex. Both situations will bring about a too
long or even intolerable computing time in the VCA
method and consequently let the VCA method be less
practical.
An experiment against the problem caused by an over-

scaled training set: The following experiment aims to
directly verify the influence of the order of vanishing
component polynomial on the performance and, accord-
ingly, indirectly verify the influence of over-scaled train-
ing set on the performance. Two types of experimental

data are sampled from the above two groups of polyno-
mials, i.e., formulas (6) and (7).
Both the training examples and testing examples are

200. All these 400 examples form an experimental data-
set. Having considered that the training sets usually
have noise in real situation, the Gaussian noise is set
with μ = 0, σ = 0.1. Afterwards, the order of vanishing
component polynomial is set as the integer between [2, 12].
Then VCA method is used to solve, and the experimental
results are as shown in Table 3. Table 3 indicates that the
experimental performance increases with added order of
polynomial in the beginning (with the number of times
from 2 to 7), but when it reaches to some certain value
(with the number of times from 7 to 12), the perform-
ance will slowly increase or no longer increase. The
reason lies on that a too high order of polynomial may
lead to over-fitting phenomena, so that the change of
performance goes to a plateau. This proves that too
high order of vanishing component polynomial exactly
greatly affects the classification performance. Moreover,
it can explain over-scaled training set not only increases
computation difficulty but also affects the experimental
performance.

3.3 GVCA method
According to the abovementioned two problems of the
VCA method, i.e., a problem caused by setting thresh-
old ε of its classification decision function and a
problem resulted from over-scaled training set and
oversized eigenvector dimension, this paper proposed
a grouping-based VCA (i.e., grouped VCA, abbrevi-
ated as GVCA) method to solve the problems. The
GVCA method improves the classification decision
function in the original VCA method and raises a
strategy of grouping training set.

3.3.1 Classification decision function in the GVCA method
The classification decision function in the GVCA
method does not preset a threshold ε; instead, it solves
the values of all vanishing component polynomials
and sorts them (in an order from large to small ac-
cording to their absolute values). Later, the top ranked
N % = (10%, 20%, 30%,…) ones of all polynomials are
selected and judged the class through a majority
voting approach. The classification decision function
of the GVCA method is as shown in Algorithm 1.

Table 3 The influence of the order of vanishing component polynomial in the VCA method on the classification performance

The order of polynomial 2 3 4 5 6 7 8 9 10 11 12

P 0.75 0.63 0.70 0.82 0.84 0.87 0.86 0.88 0.88 0.88 0.88

R 0.50 0.60 0.60 0.74 0.80 0.83 0.83 0.85 0.85 0.85 0.85

F1 0.60 0.62 0.64 0.78 0.82 0.85 0.85 0.86 0.86 0.86 0.86

Table 2 The impact of the threshold ε of classification decision
function in the VCA method on the classification performance
(with noise)

ε 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

P 0.88 0.86 0.75 0.75 0.75 0.74 0.78 0.77 0.72

R 0.84 0.81 0.51 0.51 0.60 0.65 0.75 0.76 0.70

F1 0.85 0.83 0.60 0.60 0.66 0.71 0.76 0.76 0.71
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This classification decision function has two inputs. One
is the vanishing component polynomial set {fn1,…, fnm} of
each class of data produced by training steps via the VCA
method, in which n represents the number of class and m
represents the number of polynomial corresponding to
each class. The other on is the test set Test Data, in which
the output is the labels of test set. The main steps are as
follows: 5–9: construct double circles with class number n
and testing example number m, respectively, then substi-
tute the testing example Test Data into the vanishing
component polynomial set {fn1,…, fnm} of each class, and
later figure out the absolute |Valueij| of polynomial value.
10–11: take the top ranked N% results of the calcu-
lated absolute value |Valueij| of vanishing compo-
nent polynomial and choose the class of maximum
amount as the class label of testing example.

3.3.2 Training set grouping strategy in the GVCA method

(1) Grouping the training set: this paper proposed the
GVCA method to address two situations of over-scaled
training set and too high dimension of eigenvector.
Regarding the problem of over-scaled training set, it
is a practicable way to group the examples, i.e., to
horizontally segment the entire training set into several
training subsets (for instance, take 10/20/30/40/50
examples as a group), then acquire the features (i.e.,
vanishing component polynomial) by the original VCA
method respectively and combine the vanishing
component polynomial in multiple grouped training
sets into the vanishing component polynomial in an
integral training set. This approach is called the
horizontal grouping method.

The GVCA method based on horizontally grouped
training set is as shown in Algorithm 2. Meanwhile,
regarding the problem of too high eigenvector dimen-
sion of training set, a feasible approach is to group

the features, i.e., to randomly group a feature set into
several non-intersecting subsets, and project the ori-
ginally integral training set into those feature sets,
thereby composing several new grouped training sets.
After that, the original VCA method is used to obtain
vanishing component polynomial respectively, and fi-
nally, the vanishing component polynomial in mul-
tiple grouped training sets is combined into the
vanishing component polynomial in an integral train-
ing set. This approach is called the vertical grouping
method. The GVCA method based on vertically
grouping training sets is as shown in Algorithm 3.
Furthermore, to handle both problems of over-scaled
training set and too high eigenvector dimension, the
horizontal and vertical grouping approaches can be
applied simultaneously.
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(2) Prove the correctness of the strategy of grouping
training set: the following paragraphs expound and
prove the correctness of the strategy of grouping
training set in the GVCA method. There are
vertically and horizontally grouping cases, stated
respectively below.

3.3.2.1 (a) Horizontal grouping In nature, the VCA
method lies on doing feature mapping x→jpljðxÞj on

dataset, i.e., mapping the dataset for x into a dataset for
t ¼ ðjp11ðxÞj;…; jplnlðxÞjÞ , in which, fpl1ðxÞ;…; plnlðxÞg is
the generator for vanishing ideal of class l. Horizontally
grouping the training set is equivalent to Bagging inte-
grated learning implemented after bootstrap sampling
on t. Due to the correspondence between Grobner basis
and dataset x, the results of classifying t can be directly
mapped back to x, thus guaranteeing its correctness.

3.3.2.2 (b) Vertical grouping Vertical grouping is
equivalent to attribute Bagging done to t, which means to
repeatedly sample the eigenvector set to obtain the feature
subsets. Either group is allowed to cross each other, in
other words, different feature subsets are allowed to con-
tain several same features. In accordance with the theory
raised in [39], its correctness can be ensured as well.

(3) Analysis on time complexity of grouped training
set: Assume the size of training set is M before
being grouped, and the dimension of eigenvector is
N. From the original VCA method, the following
conclusions [4] can be obtained:

(a) The training under the VCA method will finish
after iteration for t ≤M + 1 times at the most.

(b) The highest order of polynomial in both non-vanishing
component polynomial set F and vanishing component
polynomial set V areM order at the most.

(c) |F| ≤M, and|V| ≤ |F|2 × min {|F|,N}.
(d) The time complexity of all vanishing component

polynomial in V is computed to be O(|F|2 + |F| × |V|).

Before grouping the training set, usually M〉〉N; there-
fore, the time complexity of all vanishing component
polynomial in V is computed to be:

O Fj j2 þ Fj j � Vj j� �
≤O M2 þM � Vj j� �

≤O M2 þM � Fj j2 � min Fj j;Nf g� �

≤O M2 þM �M2 � min M;Nf g� �

≤O M2 þM �M2 � N
� �

¼ O M2 þM3 � N
� �

ð8Þ
According to formula (8), it can be known that the

time complexity of non-grouped training set is:

O M3 � N
� � ð9Þ

Now, the training set is segmented into k groups that
do not intersect, and the example number of each group
is m, so it is easily known that M = km. Besides, the
eigenvector dimension is till N, and after grouping, usually
m ≤N. Therefore, the time complexity of all vanishing
component polynomial in each subgroup Vi, i = 1, …, k is
computed to be:

O Fij j2 þ Fij j � V ij j� �
≤O m2 þm� V ij j� �

≤O m2 þm� Fij j2 � min Fij j;Nf g� �

≤O m2 þm�m2 � min m;Nf g� �

≤O m2 þm�m2 �m
� � ¼ O m4

� �

ð10Þ

According to formula (10), it can be known that the
time complexity of grouped training set is:

O k �m4
� � ð11Þ

In addition, due to M = km, the total time complexity
of grouped training set is

O k �m4
� � ¼ O k � M=kð Þ4� � ¼ O M4=k3

� � ð12Þ

Then, according to formulas (9) and (12), the ratio of
time complexity before and after grouping training set is

M4=k3 � 1= M3 � N
� � ¼ M= k3 � N

� � ð13Þ

It is known from formula (13) that, when the grouping
number k is large enough, the ratio of time complexity
before and after grouping training set will be small
enough. However, as the value of k can be M at the most
(in real situation, it should be a suitable value approxi-
mating to M), so the minimal value of such ratio will be:

M= k3 � N
� �

≥M= M3 � N
� � ¼ 1= M2 � N

� � ð14Þ

The formula (14) is the lower bound of such ratio.
Example 1. Suppose the size of training set before be-

ing grouped is M = 1000, the eigenvector dimension is
N = 100, the training set is segmented into k = 20 groups,
and the size of training set in each group is m = 50. It
can be seen from formula (13) that the time complexity
of grouped training set has been reduced to the follow-
ing ratio of that before grouping.

M= k3 � N
� � ¼ 1000= 203 � 100

� � ¼ 10=203

¼ 1=800 ð15Þ

In conclusion, the strategy of grouping training set can
significantly lower the time complexity of the VCA
method.
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4 Results and discussion
This paper had totally designed and completed four
groups of experiments. At first, by experiment, it found
out a proportion of sorted vanishing component polyno-
mial suited to the classification decision function in the
GVCA method. Next, by experiment, it found out a suit-
able size of grouped training set (including horizontally
and vertically). At last, on the basis of the above two ex-
periments, the classification and convergence perform-
ance of the GVCA method were tested on simulation
dataset and UCI dataset, respectively.

4.1 Experimental settings
The data used in simulation dataset were sampled from
the abovementioned formulas (6) and (7), with all exam-
ples added with Gaussian noise at μ = 0, σ = 0.02(σ = 0.06,
σ = 0.1). In order to generate balanced vanishing compo-
nent polynomial, the number of two classes of examples
was set to be equal.
The UCI standard dataset is a dataset for machine

learning proposed by the University of California, Irvine.
It is a frequently used standard testing dataset. Depending
on the experimental need, the paper chose two types of
data subsets in UCI dataset. One is a dataset with small
eigenvector dimension, which includes seven subdatasets
such as Wine, Transfusion, Connectionist Bench, Breast
Cancer Wisconsin, Indian Liver Patient, Mammographic

Masses, and Iris. The dataset scale and eigenvector dimen-
sion are as shown in Table 4.
And the other one is a dataset with large eigenvector

dimension, which includes seven subdatasets such as
Onehr, Hill Valley(with noise and without noise), LSVT,
and 100Plant Species(data Sha 64, data Tex 64 and data
Mar 64). The subset scale and attribute dimension are
as shown in Table 5. Their universality lies on their be-
ing classification task, full data type, small scaled train-
ing set, and convenient to test. Other classification
algorithms chosen to compare with the GVCA method
involves the decision tree, naive Bayesian classifier, K-
neighborhood, SVM (polynomial kernel), and SVM
(Gaussian kernel). All of them are commonly used clas-
sification algorithm with good performance. Using
Weka [40] as the experimental platform, the compari-
son was made until the performance had been regu-
lated to a good state through a parameter selection
method [41] in the experiment. In view of possible de-
fault in some certain data, the decision tree J48 algo-
rithm was used together with Laplace smoothing
method. The K-neighborhood employed IBk algorithm
and set the neighborhood parameter to be 7. The SVM
used SMO algorithm, and considering the computa-
tional complexity, the exponent parameter of polyno-
mial kernel was set to be 2, and the gamma parameter
of Gaussian kernel was set as 0.01.

4.2 An experiment studying the influence of the
proportion of vanishing component polynomial of
classification decision function in the GVCA method on
the classification performance
Likewise, the paper used the following experiment to
verify the rationality of classification decision function in

Table 4 UCI dataset used in the experiment

Dataset Example no. Eigenvector Classification no.

Wine 178 13 3

Transfusion 748 5 2

Connectionist Bench 528 10 10

Breast Cancer Wisconsin 699 10 2

Indian Liver Patient 583 10 2

Mammographic Masses 961 6 2

Iris 150 4 3

Table 5 UCI dataset used in the experiment

Dataset Example no. Eigenvector Classification no.

Onehr 2536 73 2

LSVT 126 309 2

Hill Valley (with noise) 606 100 2

Hill Valley (without noise) 606 100 2

100Plant Species
(data Sha 64)

1600 64 100

100Plant Species
(data Tex 64)

1600 64 100

100Plant Species
(data Mar 64)

1600 64 100

Table 6 The influence of the sorting-purpose polynomial
proportion in classification decision function of the GVCA
method on the classification performance

N% 10% 20% 30% 40% 50% 60% 70% 80% 90%

P 0.83 0.84 0.86 0.88 0.86 0.86 0.86 0.88 0.87

R 0.76 0.80 0.81 0.84 0.83 0.83 0.83 0.86 0.84

F1 0.79 0.82 0.83 0.85 0.84 0.84 0.84 0.86 0.85

Table 7 The influence of the horizontal grouping of simulation
dataset in the GVCA method on the classification performance

N σ

0.02 0.04 0.06 0.08 0.10

10 0.67 0.73 0.76 0.69 0.67

20 0.84 0.87 0.87 0.88 0.89

30 0.84 0.85 0.84 0.87 0.86

40 0.88 0.87 0.82 0.85 0.84

50 0.86 0.84 0.82 0.83 0.83
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the proposed GVCA method. The experiment aims to
examine the influence of sorting-purpose polynomial
proportion on the performance. In the experiment, the
results of polynomial were sorted in an order from
small to large according to their absolute values, and
then the class with the maximum numbers in top
ranked N% of the total number was determined as the
class label. The experimental results are as shown in
Table 6. This indicates when N% increases to a certain
quantity, specifically in this table, when N % = 20%
until N % = 70%, the experimental performance re-
mains stable. When N % = 80%, the performance turns
to be better yet with limited superiority. So, there is a
stable interval from 20 to 70% in the number of van-
ishing component polynomial required to sort in
classification decision function of the GVCA method.
During this range, there is no large change in perform-
ance. For this reason, the proportion of sorted vanish-
ing component polynomial adopted in this paper is
N % = 20%.

4.3 Experiments studying the influence of the size of
grouped training set in the GVCA method on the
classification performance
A. An experiment conducted on simulation dataset
An experiment was conducted on simulation dataset to

study the relation between the size of grouped training set
and the classification performance. Firstly, this paper used
a simulation dataset and sampled all experimental data
from the above formulas (6) and (7), with all examples
added with Gaussian noise at μ = 0, σ = 0.02, σ = 0.04, …,
σ = 0.10. In order to generate balanced vanishing compo-
nent polynomial, the number of two classes of examples
was set to be equal. Due to small eigenvector dimension
in simulation dataset, only horizontal grouping experi-
ment was implemented. The size of horizontally grouped
training set was set as 10/20/30/40/50. The experimental
results are as shown in Table 7, in which, N represents the
size of grouped dataset, and the experimental performance
is represented by F1 value corresponding to different σ.
It can be known from Table 7 that, though the values

Table 8 The influence of the horizontal grouping of UCI dataset in the GVCA method on classification performance

Group size Wine Transfusion Connectionist Bench Breast Cancer Wisconsin

P R F1 P R F1 P R F1 P R F1

10 0.90 0.86 0.88 0.72 0.60 0.66 0.84 0.76 0.79 0.86 0.94 0.90

20 0.94 0.90 0.92 0.91 0.51 0.65 0.75 0.72 0.73 0.85 0.93 0.89

30 0.94 0.90 0.92 0.74 0.60 0.66 0.90 0.87 0.89 0.96 0.97 0.96

40 0.94 0.92 0.93 0.62 0.58 0.60 0.89 0.85 0.87 0.91 0.96 0.94

50 0.95 0.93 0.94 0.77 0.63 0.69 0.84 0.81 0.82 0.88 0.94 0.91

Group size Indian Liver Patient Mammographic Masses Iris AVG

P R F1 P R F1 P R F1 P R F1

10 0.58 0.58 0.58 0.81 0.81 0.81 0.74 0.63 0.68 0.78 0.74 0.76

20 0.56 0.57 0.56 0.82 0.81 0.81 0.96 0.95 0.95 0.83 0.77 0.79

30 0.58 0.54 0.56 0.81 0.79 0.80 0.94 0.93 0.93 0.84 0.80 0.82

40 0.58 0.58 0.58 0.80 0.80 0.80 0.94 0.93 0.93 0.81 0.80 0.81

50 0.56 0.55 0.56 0.80 0.77 0.78 0.84 0.67 0.74 0.81 0.77 0.78

Table 9 The influence of the vertical grouping of UCI dataset in the GVCA method on classification performance

Group number Wine Transfusion Connectionist Bench Breast Cancer Wisconsin

P R F1 P R F1 P R F1 P R F1

2 0.90 0.88 0.89 0.92 0.73 0.81 0.76 0.82 0.79 0.91 0.90 0.90

3 0.89 0.92 0.90 0.87 0.79 0.83 0.86 0.85 0.85 0.89 0.87 0.88

4 0.86 0.90 0.88 0.76 0.80 0.78 0.87 0.89 0.88 0.91 0.85 0.88

Group number Indian Liver Patient Mammographic Masses Iris AVG

P R F1 P R F1 P R F1 P R F1

2 0.86 0.87 0.86 0.87 0.87 0.87 0.92 0.90 0.91 0.83 0.77 0.79

3 0.85 0.86 0.85 0.83 0.80 0.81 0.90 0.93 0.91 0.84 0.80 0.82

4 0.83 0.87 0.85 0.81 0.80 0.81 0.88 0.91 0.89 0.86 0.80 0.83
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of standard deviation σ are varied, the optimum experi-
mental performance appears under a moderate scale of
grouped dataset (that is N = 20 to N = 40, in this table).
The reason of this phenomenon is the undersized or
oversized scale of grouped dataset will result in under-
fitting or over-fitting.
B. An experiment conducted on UCI dataset
Below, UCI standard dataset was chosen to study the

influence of the size of grouped training set in the
GVCA method on the classification performance.
Horizontal grouping means to group the dataset ex-

ample. The paper tested seven subdatasets contained in
UCI standard dataset, such as Wine, Transfusion, Con-
nectionist Bench, Breast Cancer Wisconsin, Indian Liver
Patient, Mammographic Masses, and Iris. The number
of grouped dataset was 10/20/30/40/50, respectively.
The evaluation criterion was set as Precision, Recall, and
F1. After several tests, the performance of different
training sets was averaged, see results in Table 8. This
set of experimental results shows a total trend: when the

grouped scale in the GVCA method is placed in a mid-
dle position, that is, taking 30 or 40 examples to com-
pose one subgroup, the obtained performance will be
the best. And the performance may slightly decrease
with a lower or higher value than 30 and 40. The reason
for this is when the grouping scale is moderate, neither
under-fitting nor over-fitting will happen. Therefore, the
GVCA method can acquire an optimum performance in
the vertical grouping test.
Vertical grouping means to group the eigenvector di-

mension. After several tests, the performance of different
training sets was averaged, see results in Table 9.

4.4 Experiments comparing the performance of the GVCA
method and other classification algorithms
4.4.1 An experiment conducted on simulation dataset
This paper utilized simulation dataset to compare the
GVCA method with other classification algorithms. The
experimental data were still sampled from the above for-
mulas (6) and (7), with all examples added with Gauss-
ian noise at μ=0,σ=0.02(σ=0.06,σ=0.1). The training set
used 10, 20, 30, 40, 50, 100, 150, and 200 examples, re-
spectively. The machine learning methods for contrast
are decision tree, naive Bayesian classifier, K-
neighborhood, SVM (polynomial kernel), and SVM
(Gaussian kernel). The evaluation criterion was set as
Precision, Recall, and F1. After several tests, the results
of different training set sizes were averaged, see results
in Table 10, in which DT represents naive Bayesian clas-
sifier, KNN represents K-neighborhood, POLYK repre-
sents SVM (polynomial kernel), and RBFK represents

Table 10 Comparison of the classification performance on
simulation dataset by the GVCA method and other classification
algorithms

Algorithm Precision Recall F1

DT 0.90 0.88 0.89

NB 0.87 0.84 0.85

KNN 0.83 0.76 0.79

POLYK 0.78 0.65 0.71

RBFK 0.76 0.72 0.74

GVCA 0.94 0.92 0.93

Table 11 Comparison of the classification performance on UCI dataset by the GVCA method and other classification methods

Algorithm Wine Transfusion Connectionist Bench Breast Cancer Wisconsin

P R F1 P R F1 P R F1 P R F1

DT 0.94 0.90 0.92 0.84 0.82 0.82 0.75 0.73 0.74 0.97 0.97 0.97

NB 0.90 0.86 0.88 0.81 0.83 0.80 0.66 0.64 0.65 0.98 0.98 0.98

KNN 0.99 0.99 0.99 0.77 0.81 0.78 0.82 0.81 0.81 0.96 0.97 0.96

POLYK 0.94 0.92 0.93 0.79 0.82 0.75 0.97 0.97 0.97 0.98 0.98 0.98

RBFK 0.94 0.90 0.92 0.67 0.82 0.73 0.66 0.64 0.65 0.99 0.99 0.99

GVCA 0.94 0.90 0.92 0.77 0.63 0.69 0.90 0.87 0.89 0.97 0.96 0.96

Algorithm Indian Liver patient Mammographic Masses Iris AVG

P R F1 P R F1 P R F1 P R F1

DT 0.56 0.75 0.64 0.93 0.93 0.93 0.81 0.73 0.77 0.86 0.84 0.85

NB 0.84 0.50 0.51 0.88 0.86 0.86 0.76 0.64 0.69 0.83 0.81 0.81

KNN 0.86 0.83 0.80 0.80 0.79 0.79 0.73 0.78 0.75 0.86 0.88 0.87

POLYK 0.79 0.54 0.57 0.74 0.82 0.77 0.76 0.82 0.79 0.88 0.89 0.87

RBFK 0.56 0.75 0.64 0.64 0.64 0.64 0.80 0.64 0.71 0.81 0.82 0.81

GVCA 0.84 0.50 0.63 0.70 0.71 0.70 0.84 0.87 0.85 0.87 0.82 0.85
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SVM (Gaussian kernel). It can be discovered from
Table 10 that the average performance of the GVCA
method is higher than other five machine learning
methods.

4.4.2 An experiment conducted on UCI dataset
This paper tested seven subdatasets contained in UCI
standard dataset, such as Wine, Transfusion, Connec-
tionist Bench, Breast Cancer Wisconsin, Indian Liver
Patient, Mammographic Masses, and Iris. The evalu-
ation criterion was set as Precision, Recall, and F1.
After several tests, the performance of different training
sets were averaged, see results in Table 11. These re-
sults indicate that compared to some classification al-
gorithms, the proposed the GVCA method can achieve
perfect average performance, which fully displays its
strong stability and perfect performance.

4.5 Experiments comparing the convergence rate by the
GVCA method and other classification algorithms
The following experiments aim to test the convergence
performance by the GVCA method. For simulation
dataset and UCI dataset, the 25, 30, 35, 40, 45, 50, and
55% of total example number were adopted as the
training set, and the balanced ones were taken as test-
ing set and compared with common machine learning
methods. The evaluation indexes are F1 values corre-
sponding to different training set scales and different
classification algorithms.

4.5.1 An experiment conducted on simulation dataset
After several tests, the performance of different training
sets was averaged, see results in Fig. 1.

4.5.2 An experiment conducted on UCI dataset
The paper tested the convergence rate of seven subda-
tasets contained in UCI standard dataset, such as
Wine, Transfusion, Connectionist Bench, Breast Cancer
Wisconsin, Indian Liver Patient, Mammographic Masses,
and Iris. The experimental results are as shown in Fig. 2,
which indicates the GVCA method can still obtain a good
performance with a small training set scale (less than 50%)
compared to other methods. This is because the Grobner
basis acquired by the GVCA method on a moderate-scale
grouped training set could well characterize the inner
structure of a manifold pattern. Thus, the GVCA method
can get a rapid rate of convergence and quickly achieve
favorable learning performance.

5 Conclusions
This paper analyzed the characteristics and existing
problems of the VCA method, and then improved it
from both aspects to form a GVCA method. (1) The
classification decision function is based on the sorting of
values that vanishing components take from tested data,
while the non-vanishing component makes its decision
depending on the number of value being zero taken
from tested data. This avoids the problem of not easily
set threshold of classification decision function for the
VCA method and enhances feasibility in real application.

Fig. 1 Comparison of the convergence rate of simulation dataset by the GVCA method and other classification algorithms

Fig. 2 Comparison of the convergence rate of UCI dataset by the GVCA method and other classification algorithms
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(2) A strategy of grouping training set was proposed, which
segmented training set into several non-intersecting sub-
sets, solved the vanishing polynomial on subset, and com-
bined them into the vanishing component polynomial set
of an integral training set, to apply to solve the problem of
large-scaled training set. (3) The integrated learning theory
was utilized to prove the correctness of the strategy of
grouping training set. The analysis of time complexity be-
fore and after grouping demonstrates it can effectively re-
duce computational time. A series of experimental results
show that the GVCA method obtains a perfect experimen-
tal performance and quicker convergence compared to
other classification algorithms.
In future, the dual relation between ideal space and

kernel space can be further used to switch the computation
of kernel space into that of ideal space, thereby realizing the
application of commutative algebra to efficiently solve the
machine learning problem.
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