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Abstract

This paper proposes a novel algorithm based on cloud model granulation (CMG) for air quality forecasting. Through
data exploration of three different types of monitoring localities in Wuhan City, the determinative pollutants were
reduced to NO2, PM10, O3, and PM25 for modeling. After iterative granulation of original time series, the concepts of
cloud model were extracted for each granule from original data space to feature space. Then, the cloud model features
of future granules were predicted in the new feature space. Finally, the value in the feature space is transformed into
the solution in the concept space. In addition, this paper uses the grid search to optimize the parameters in all
experiments. Compare with several machine learning approaches, considering the mean squared error, the results on
composition model and direct model shows that the proposed algorithm has better in predicting both individual air
quality index and air quality index. At ZKX locality, the CMG algorithm can achieve high accuracy 71.43% for prediction
of air quality index class. The results show that this algorithm not only can simplify the modeling process of uncertain
time series in the form of knowledge abstraction, but also has good prediction performance in IAQI and AQI.
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1 Introduction
In health issues related to deterioration of air quality,
people use air quality index (AQI) [1–3] to report on the
conditions of air pollutants (APs), which were first pro-
posed and universally acknowledged as one important de-
terminant of adverse health effects. In the Aphekom
project, the paper [4] pointed out that a reduction in APs
would bring significant health and currency benefits to
Europe. Recently, more and more researchers have paid
attention to air quality forecasting (AQF). Previous litera-
ture has shown that the air quality forecasting is a com-
plex problem, whose relevant data are non-linear,
uncertain, and heterogeneous. Therefore, the soft comput-
ing (SC) and machine learning (ML) approaches can pro-
vide good results [1, 5–7]. When attempting to design a
model combined with several APs, the problem may be-
come more complex. Only very few attempts have been
made to solve this issue [1, 8, 9]. Unfortunately, these
models lost a lot of information because it converted the
values of AQIs to nominal values for classification tasks.

So far, all the literature on AQF can be divided into
three categories [10]: (1) simple empirical methods, (2)
physically based methods, and (3) parametric or non-
parametric statistical methods. In simple empirical
methods, there are two ways to predict tomorrow’s
value: (1) using present day’s value (persistence method)
(2) relying critically on the dependencies between me-
teorological variables and predicted air pollutants. Either
way, it provides low prediction accuracy. The physically
based approaches model the temporal and spatial pat-
terns of APs and meteorological variables [11], which
are more accurate than the simple empirical methods. In
fact, these processes are too usually too complex to be
represented with physically based models. Therefore,
such models can lead to biased predictions. Parametric
or non-parametric statistical approaches [12, 13] can be
superior to outperform physically based approaches in
prediction accuracy [14], such as neural networks (NNs).
However, there are some disadvantages of artificial
intelligence approaches reported in the current research
on APs prediction [6, 15]. Firstly, because these models
are developed under meteorological conditions and
chemical of some specific localities, it cannot be
employed in other areas. Secondly, these models usually
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simplify the meteorological process. Thirdly, the interre-
lationships among multiple pollutants are not modeled.
Zhang et al. [10] have shown that the NNs models give

significantly higher accuracy than the linear regression
approaches in the prediction of future AP concentra-
tions, because it can model the complicated non-linear
relationships between independent variables and object-
ive functions. Recently, the support vector regression
(SVR) [16] has been proven to perform better or equal
than NNs in a variety of APs’ predictions [17]. Com-
pared with many other methods, such as NNs, SVR has
obvious dominance. The former minimizes empirical
risk and the latter minimizes structural risk. Therefore,
the SVR model is relatively insensitive to the limited
number of train data, and the error of test data is also
limited by the SVR model. That is, the SVR model has
stronger generalization performance. Lately, the fuzzy
logic-based models [1, 5, 18] have been used to predict
APs, which were capable of processing the inherent un-
certainties in both human knowledge and data. But these
approaches may suffer from computational complexity,
and their prediction accuracy is lower than SVR [1].
The purpose of this study is to design one algorithm for

air quality forecasting which could accommodate the un-
certainties in the data at lower computational cost and
good generalization performance. This algorithm not only
considers the fuzziness and randomness of the problem as
a whole, but also through transformation of three different
state space to reduce data. First, the time series in the ori-
ginal data space is iteratively granulation and mapped into
the new granules time series in the feature space. Then,
the cloud model feature of each granule is extracted and
deductive reasoning is performed. Finally, from the feature
data space to the concept space, the proposed algorithm
solves the original problem based on the task to be solved
and the related knowledge. In addition, the paper uses the
grid search to optimize all the parameters in the experi-
ments. The results show that the proposed algorithm is
capable of (1) modeling the uncertainties between data
sampling points of time series; (2) maximizing
generalization performance; (3) and finally costing lower
computational cost.
In our study, it conducted contrast experiments at

three different regions of Wuhan City. First of all, it per-
forms data exploration to grasp the features of target
data. Next, it gives the proposed algorithm’s detailed de-
scription and explanation, which has also not been
reported in the literature so far. Additionally, it com-
pares this approach with several popular algorithms,
non-linear autoregressive neural networks (NARNNs)
[19] and SVR, on the prediction of IAQI and AQI time
series. The results suggest that the CMG algorithm ob-
tains better or nearly performance than contrast algo-
rithms in the most experiments. At ZKX, the proposed

algorithm can achieve high accuracy 71.43% on the pre-
diction of AQI class. In the future, the research will
focus on the quantitative calculation between fuzzy and
random of the cloud model, and it hopes to give the
value range of the problem to be solved according to the
specified degree of certainty, which also can be used for
other problems with uncertainty.

2 Methods
2.1 Air quality forecasting
The datasets of our studies were come from the Wuhan
Municipal Environmental Protection Bureau, which con-
tain the information about maximum daily emission var-
iables(SO2, NO2, PM10, CO, O3, PM2.5) and other
knowledge (primary pollutants, Air quality index, AQI
index class) from three localities in 2016~ 2017:
Ganghua of Qingshan District (GH), south area of
Jianghan District (JHS), and new area of Zhuankou
locality (ZKX).The basic information about these studied
localities is provided as follows: Ganghua locality is an
urban residential zone, localized at 30°37′34.60″ north
latitude, 114°22′11.13″ east longitude, altitude = 26 m;
south area of Jianghan locality (JHS) is an urban com-
mercial zone, localized at 30°18′38.86″ north latitude,
114°05′9.13″ east longitude, altitude = 16 m; new
area of Zhuankou locality (ZKX) is an urban industrial
zone, localized at 30°28′57.89″ north latitude, 114°09′
24.07″ east longitude.
As presented in Table 1, there are six maximum daily

emission variables, including SO2, NO2, PM10, CO, O3,
PM2.5, for individual localities GH, JHS, and ZK. The
JHS locality has the best air quality, while the GH local-
ity, in particular, showed high levels of PM10 and PM2.5,
and the ZKX locality, in particular, showed high levels of
O3. This is because the characteristics of the zones de-
termined the air quality to a great extent [1].
After data statistical, it is not difficult to find that there

is about 1.93% of data is missing. In order to improve
the accuracy of air quality forecasting, there are usually
three approaches to deal with missing data before mod-
eling: (1) deleting sample instances with missing data;
(2) replacing missing values; and (3) using multiple im-
putations. The most common way is to replace the

Table 1 Basic descriptive statistics (mean ± StdDev) of
monitored pollutants

Pollutants GH JHS ZKX

SO2 [μg/m3] 10.712±8.266 11.942 ± 7.926 13.283± 7.849

NO2 [μg/m3] 62.404± 23.421 65.308± 26.161 61.992 ±23.79

PM10 [μg/m3] 73.617 ± 28.238 68.076 ±27.027 65.28 ± 26.536

CO [mg/m3] 25.64±10.442 25.785 ±9.656 27.063 ± 9.703

O3 [μg/m
3] 48.288 ± 35.028 43.277± 32.54 51.861±38.154

PM2.5 [μg/m
3] 89.259±52.543 82.222± 43.414 79.794 ±45.31
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missing value by selecting the reasonable value based on
the context of the problem. In this way, it does not need
to delete any sample instances. That is, this method does
not lose any information but may lead to slightly biased
estimates. In this paper, it uses the mean instead of miss-
ing values for numeric attribute and the most for nom-
inal attributes.
In this study, the individual air quality index (IAQI)

refers to the air quality index calculated according to the
concentration of individual pollutant, whose formula is
expressed as follows:

IAQIi ¼
Ihigh−I low
Chigh−Clow

Ci−Clowð Þ þ I low ð1Þ

Where Ci is the pollutant concentration of APi, Clow

denotes the nearest concentration breakpoint that is ≤ C,
Chigh denotes the nearest concentration breakpoint that is
≥ C, Ilow indicates the index breakpoint corresponding to
Clow and Ihigh indicates the index breakpoint correspond-
ing to Chigh. So, the IAQI formula is purely based on
piecewise linear function using pollutant concentration
breakpoints. In this way, the total daily health impact is
expected to be the sum of the values associated with each
AP [20]. In addition, the measurement intervals of these
six pollutants were not identical to each other in China.
For example, the concentration of PM2.5 and PM10 are
measured by the average of the last 24 h. SO2, NO2, O3,
CO are measured by the average of last hour. It is remark-
able that this approach for computing AQI is different
from the way used in Europe [1, 21]. Because the latter
uses AQIs for the city’s background and traffic conditions,
it emphasizes on the role as a traffic pollutions sources.
The air quality indexes of Ministry of Environmental

Protection (MEP) in China were used as target variables
in this study. According to the formula published by the
MEP [22], the AQI is expressed as follows:

AQI ¼ max IAQI1; IAQI2;…; IAQInð Þ ð2Þ
where IAQIi is the individual air quality index value for
the i-th air pollutant, i = 1, 2, …, n and n denote the
number of air pollutants. It is obvious that this approach
uses only the maximum value of IAQI to calculate the
value of AQI. In this formula, the effects of each AP are
independent, without considering the interaction be-
tween of different APs. The daily maximum concentra-
tion limits of the examined air pollutants were published
by China MEP as follows: SO2: 2620 μg/m3, NO2:
940 μg/m3, PM10: 600 μg/m3, CO: 60 mg/m3, O3:
1200 μg/m3. While the pollutant concentration exceeds
the upper limit, the maximum value of IAQI is still 500.
The value beyond the maximum index is not available.
In this case, it named “Beyond Index” [22]. It should be
noted that the concentration limits of different air

pollutants items are different from regional types and
time scales. In general, the timescales are longer, the
concentration limit is lower; the concentration limits of
the first districts, such as nature reserves, scenic areas,
and other areas requiring that need special protection, are
lower than those of the second districts such as residential
areas, commercial transportation, mixed residential areas,
cultural areas, industrial areas, and rural areas.
As shown in Fig. 1, the boxplots depict the general

span of IAQI (NO2, PM10, O3, PM25) and the AQIs in
above three localities. It is not difficult to find that, the
IAQI and AQI in GH locality were generally higher than
other two localities. The JHS locality showed higher
NO2 and the ZKX locality showed higher O3. In JHS
locality, the AQIs were significantly lower than other
two localities. The distribution range of the IAQIs and
AQIs in the GH and JHS localities were similar.
In life, what people pay more attention to is the AQI

class. It is more concise, intuitive, and easy to under-
stand than AQIs. According to technical regulation on
ambient air quality index [22], the AQIs were further
transformed into six classes as shown in Table 2.
Figure 2 computes the cumulative days of various diffe-

rent air quality classes at different localities in the observa-
tion period, which shows further detailed information on
the distribution of the AQI classes. The AQIs show that
the air in these localities is good or slightly polluted.
Figure 3 provides the composition and percentages of

determinative pollutants in the AQIs. It is found that PM2.

5 and O3 play a determining role in the AQI computing,
while NO2 and SO2 together account for about 20~ 30%
importance. The impacts degree of determinative pollut-
ants was calculated in the occurrence proportion of AQI.
In order to make 1 day ahead AQI predictions, our study

used several machine learning algorithms. There is no one
approach can do the best at any time, each approach has
its own limitations and advantages. Although artificial
neural networks have been widely used in various predic-
tion domain, it has been criticized for poor generalization
performance and high computational complexity [6, 15,
23, 24] Support vector regression can provide good
generalization performance and lower computation cost
but it may perform poorly on the noisy data. Finally, this
paper proposed a regression prediction algorithm based
on cloud model granulation and support vector machines,
which are competent to process inherent fuzziness and
randomness in both the human knowledge and data, also
inherit the strong generalization performance and low
running cost of SVR. The experiments with the presented
methods were carried out in macOS Sierra, MATLAB
R2016b Neural Network Toolbox (nntraintool), A Library
for Support Vector Machines (LIBSVM-3.22) [25]. For the
sake of fairness, it used grid search algorithm for param-
eter selection in all algorithms.
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2.2 Algorithm based on cloud model granulation
Recent studies show that NNs and SVR have achieved
significant improvement compared to the previous
methods in the prediction of APs [12]. But the data of APs
are non-linear, heterogeneous, and uncertain. The fuzzy
logic systems have an advantage in dealing with the inhe-
rent uncertainty of data and human cognition, which suf-
fer from computational cost. In this paper, it proposed an
method based on concept extraction of cloud model and
the conversion of state space on time series prediction of
APs and AQI. This method can not only in processing un-
certainty at coarser granularity, but also take into account
both efficiency and generalization performance.

In 1995, the cloud model was first proposed by Deyi Li
[26], who is a member of Chinese Academy of Engineering.
The cloud model is a model of mutual conversion between
qualitative concepts and quantitative descriptions. It has
been applied in many fields, such as intelligent evaluation
and fuzzy assessment. The cloud model integrates the
probability theory and fuzzy set theory. By constructing a
specific algorithm, the randomness, fuzziness, and rele-
vance between concepts are unified. Cloud model does not
require a priori knowledge, which can analyze the statis-
tical rules from a large number of raw data and realize the
transformation from quantitative value to the qualitative
concept. It has three digital features: expectation Ex,

Table 2 AQI classes of China’s Ministry of Environmental Protection

Range AQI class Class description

0–50 1 Excellent, no health implications.

51–100 2 Good, few hypersensitive individuals should reduce outdoor exercise.

101–150 3 Slight pollution, slight irritations may occur, individuals with breathing or heart problems should reduce outdoor exercise.

151–200 4 Moderate pollution, slight irritations may occur, individuals with breathing or heart problems should reduce outdoor exercise.

201–300 5 Heavy pollution, healthy people will be affected significantly. People with breathing or heart problems will experience reduced
endurance in activities. These individuals and elders should remain indoors and restrict activities.

300+ 6 Severe pollution, the endurance of healthy people in activities will decrease. There may be strong irritation symptoms that may
cause other diseases. The old and the sick should stay indoors to avoid exercise. Healthy should avoid outdoor activities.

Fig. 1 Boxplots of IAQI and AQI. The boxplots depict the general span of IAQI (NO2, PM10, O3, PM25) and the AQIs in above three localities. The
first group of boxplots is the distribution of these five pollutants in the GH locality. The second group of boxplots is the distribution of these five
pollutants in the JHS locality. The third group of boxplots is the distribution of these five pollutants in the ZKX locality. The color of boxplot
indicates the type of air pollutants
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entropy En, and super entropy He, which reflects the over-
all features of qualitative concepts. Expectation Ex is the
most representative value of the qualitative concept in the
domain space. Entropy En reflects the range of number
domains that can be accepted by the concept. Hyper
Entropy He is the measure of entropy’s uncertainty, that is
entropy’s entropy.
In the process of human cognitive thinking, the con-

cepts are relative and hierarchical. Concepts or values of
the same attribute usually belong to more than one
upper-class concept. The proposed algorithm abstracts
the target time series into mutually overlapping

conceptual granules sequences then predicts them by in-
ference judgment of qualitative concept extension. Each
concept is one basic information granule, and the time
range of information covered by each concept is called the
window width of the granule. By backward cloud gener-
ator [27, 28], the proposed algorithm converts the distri-
bution characteristics of data samples in each granlue into
qualitative concepts represented by three digital features
exception Ex, entropy En, and hyper entropy He.
After extracting concept features of the cloud model,

SVR is used to predict the feature sequences Ex, En, and
He respectively. The greater the probability of cloud

Fig. 2 Histogram of AQI classes. It computes the cumulative days of various different air quality classes at different localities in the observation
period. The first group of histograms shows the days that belong to the first AQI class at three locations. The second group of histograms shows
the days that belong to the second AQI class at three locations. The third group of histograms shows the days that belong to the third AQI class
at three locations. The fourth group of histograms shows the days that belong to the fourth AQI class at three locations. The fifth group of
histograms shows the days that belong to the fifth AQI class at three locations. The blue column is the result of the GH locality and the green
column is the result of the ZKX locality. The yellow column is the result of the JHS locality

Fig. 3 Percentage of AP impact on AQIs. It provides the composition and percentages of determinative pollutants in the AQIs. The first pie is the
result of the GH locality, the second pie is the result of the ZKX locality, and the third pie is the result of the JHS locality. Different colors
represent different air pollutants
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drop, the uncertainty of cloud drop is smaller. Therefore,
the exception Ex was selected as the prediction values of
the target. Specifically, the proposed algorithm based on
cloud model granulation (CMG) is described in Table 3:

3 Results and discussion
3.1 Forecast results of air quality index
As mentioned above, the time series data of APs and AQIs
show non-linearly characteristics over time, which are also
missing, inconsistent, heterogeneous, and uncertain. It in-
dicates that the approaches of dealing with uncertainty
might perform better in air quality forecasting. In this
study, it used three approaches: the support vector regres-
sion (SVR) (Vapnik, 1995), Non-linear autoregressive
neural network(NAR), and the proposed SVR algorithm
based on cloud model granulation, to predict the target
AQIt + 1. In our experiments, the set of training data Otrain

(used in the procedure of learning) contained the 2016 an-
nual data (366 data points) and the set of testing data Otest

from 2017.1.1~ 2017.1.7 (7 data points). In order to avoid
overlearning, it used the 5-fold cross-validation to select
the optimum values of the approaches’ parameters.

In this study, all the SVR approaches use the ε-
insensitive loss function in the regularized risk func-
tional that ensures optimum generalization performance.
In addition, The radial basis function kernel (RBF) was
used in LIBSVM toolbox [25]. In the experiments, the
epsilon in loss function of epsilon-SVR is set to 0.01.
The grid search method is used to find the optimum
kernel parameter with penalty parameter C = [−10, 10]
and kernel parameter g = [−10, 10].
NAR employed here is one kind of dynamic neural

network, which can use to solve a non-linear time series
problem with the non-linear autoregressive neural net-
work model. The structures and parameters of the NARs
were also found by a grid search method for the follow-
ing values: (1) the maximum number of neurons in the
hidden layer ranged was set from 10 to 100; (2) the delay
days were set to {3, 7, 15, 90} in order to the fairness of
comparative experiments.
The CMG algorithm refers to the presented SVR ap-

proach based on cloud model concept extraction. Like
above SVR approach, the CMG uses ε-SVR for the pre-
diction of exception Ex, entropy En, and hyper excep-
tion He. The RBF kernel was used in sequential
minimal optimization (SMOreg) for training SVR with
the kernel parameter g = [−10, 10] and penalty param-
eter C = [−10, 10]. According to the season effect of air
quality forecasting and the physical meaning of gran-
ules, the experiments tested different values of the win-
dow width winSize={3, 7, 15, 30, 90};
Figure 4 presented the MSEtest of AQI prediction on

both composition models and the direct models. The re-
sults indicate that the CMG algorithm trained on the
direct model gets the lowest MSEtest of AQI. In contrast,
the highest MSEtest error for the direct model was ob-
tained using NAR. In the composition model, the lowest
MSEtest was also the achieved by the CMG algorithm.
This observation means that, when compared with other
popular artificial intelligence algorithms like SVR and
NAR, the proposed CMG is able to cope with the lower
amount of data in the process of learning and testing.
To further study the performance of CMG, MSEtest ex-

periments on all determinative pollutant was performed.
It is obvious that the CMG algorithm performed best on
the four determinative pollutants for all localities, except
for the PM10 prediction in ZKX locality. While the Nar
performed worse in most cases. The results for SVR are
slightly inferior to CMG in most cases. It can be found
that the high error of PM25 seems to generate a high
MSEtest in the process of AQF. It occurred despite the
low errors on NO2, PM10, and O3. The former is almost
four times that of the latter in all localities. The MSEtest
for NO2 was, for all methods, almost the same in the
case of GH, JHS, and ZKX, respectively. For the ZKX
locality, the MSEtest of SVR and CMG was always lower

Table 3 CMG algorithm description

Algorithm: CMG (TS, winSize, n)

Input: Time series——TS,
Granulating window width——winSize,
A number of days to be predicted——n.

Output: Qualitative predicted feature sequence of cloud model
Êxi; Êni; Ĥeiði ¼ 1; 2;…; nÞ:

Algorithm steps:
A. Granulating the TS by cloud model, the digital feature sequence Ex,

En, He of TS is generated.
a-1. Firstly, the original data series is converted into the granular unit

data series according to the window width.
a-2. Second, for each granular unit, the sample mean of each granular

unit is calculated X
!¼ 1

n

Pn
i¼1 xi ,which is the estimated value of

expectation EX.

a-3. Then, it calculates the sample variance S2 ¼ 1
n−1

Pn
i¼1 ðxi−XÞ

2
and

first order sample absolute center moments 1
n

Pn
i¼1 jxi−X j of each

granular;
a-4. Finally, it calculates the entropy En ¼

ffiffiπ
2

p � 1
n

Pn
i¼1 jxi−EX j and

hyper entropy He ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2−En2

p
.

B. Regression prediction of Ex by SVR.
b-1. First of all, it uses the grid search method to find the best kernel

parameters for EX.
b-2. Then, it established the regression prediction model of EX by the

above-selected parameter.
b-3. Finally, it used this model to predict the expectation Ex.

C. Regression prediction of En by SVR.
c-1. First, this algorithm uses grid search method to find the best

kernel parameters for En.
c-2. Then, it established the regression prediction model of En by the

above-selected parameter.
c-3. Finally, it used this model to predict the entropy En.

D. Regression prediction of He by SVR.
d-1. First, it uses the grid search method to find the best kernel

parameters for He.
d-2. Then, it established the regression prediction model of He by

above best parameter.
d-3. Finally, using the model d-2 to predict He.
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with the similar values on both IAQI prediction and AQI
forecasting. This occurred despite the various between
other methods on different localities. To sum up, these re-
sults advised that the prediction performance was related
to the algorithms and the datasets. But, CMG algorithm
performed best for both IAQI prediction and AQI models
compared with other two algorithms.

3.2 Forecast results of air quality index class
In human life, the AQI class is the most desired, not the
AQI. The prediction ability of the AQI class is one of the
most interesting topics for AQI prediction model. There-
fore, the above prediction values of AQI were transformed
into corresponding AQI class. As shown in Fig. 5, it com-
pared the predictive classification results of the compos-
ition models and direct models at three localities. It is not
difficult to find that patterns of the test data were only
presented in the 1–5 AQI class. Finally, the test accuracy
of AQI class was calculated to evaluate the classification
performance. Table 4 showed the percentage of correctly
classified patterns of various prediction models. It shows
that the direct model based on CMG for ZKX performed
best up to 71.43%. The performance of CMG and SVR
run better in most experiments.
As can be seen from Fig. 2, the vast majority of air qual-

ity classes can be divided into four AQI classes in three lo-
calities. In addition, the analysis of the classification
results in Fig. 5 shows that the proposed CMG approaches

for measuring misclassification were mainly divided into
the adjacent class, i.e., from (3→ 2 or 3→ 4), from (3→ 2
or 3→ 4), from 1→ 2. Only in very few cases are divided
into interval classes.

3.3 Analysis and discussion
After the data exploration, the results show that the pro-
posed CMG approach can give better performance in
both IAQI and AQI forecasting. The exploration of in-
put data provides an understanding of the data compos-
ition of raw data. The results of the variability (mean
and standard deviation) of IAQIs and AQIs indicate that
the overall air quality in three localities is generally simi-
lar, but the features are locality specific. Specifically, in
all localities, the percentage of the second and third clas-
ses are significantly higher than other classes, and the
fifth classes have the fewest number of days. But it is
worth noting that the proportion of the first class is sig-
nificantly lower than the fourth class in GH, which is a
contract to that in JHS and ZK. Most importantly, it is
found that PM25 and O3 accounted for most of the
major determinative pollutants. In this study, it proposed
a new algorithm based on cloud model granulation. This
paper compared the performance of three approaches
(nar, svr, and CMG) on both composition model and dir-
ect model in three regions.
The high importance of cloud model granulation in

the prediction models gives a strategy for solving

Fig. 4 MSEtest for AQI prediction. The first subgraph shows the MSEtest of three algorithms (CMG, SVR, NAR) for NO2 prediction. The second
subgraph shows the MSEtest of three algorithms (CMG, SVR, NAR) for PM10 prediction. The third subgraph shows the MSEtest of three algorithms
(CMG, SVR, NAR) for O3 prediction. The fourth subgraph shows the MSEtest of three algorithms (CMG, SVR, NAR) for PM25 prediction. The fifth
subgraph shows the MSEtest of three algorithms (CMG, SVR, NAR) for AQI prediction on direct model. The sixth subgraph shows the MSEtest of
three algorithms (CMG, SVR, NAR) for AQI prediction on composition model
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problems at a higher thinking Level. It uses only three
numerical features (expectation, entropy, hyper) to de-
scribe the randomness, fuzziness, and their relevance of
time series data. This model enables complex data to
form information granules with semantic descriptions
and mine complex data in the new feature space, which

is in line with human thinking and background know-
ledge of air quality forecasting in the real world.
In order to achieve more accurate forecasting and fair,

several important artificial intelligence algorithms in
AQF are compared on composition models and direct
models. As expected, the designed algorithm is overall

Fig. 5 Prediction of AQI class. The first subgraph shows three methods of predicting the AQL class by the composition model at the GH location.
The second subgraph shows the results of three algorithms (CMG, SVR, NAR) for AQI class prediction by direct model at GH locality. The third
subgraph shows the results of three algorithms (CMG, SVR, NAR) for AQI class prediction by composition model at JHS locality. The fourth
subgraph shows the results of three algorithms (CMG, SVR, NAR) for AQI class prediction by direct model at JHS locality. The fifth subgraph shows
the results of three algorithms (CMG, SVR, NAR) for AQI class prediction by composition model at ZKX locality. The sixth subgraph shows the
results of three algorithms (CMG, SVR, NAR) for AQI class prediction by direct model at ZKX locality

Table 4 Prediction accuracy of AQI class

CMG SVR NAR

Com-model Dir-model Com-model Dir-model Com-model Dir-model

GH 42.86% 14.29% 42.86 42.86% 28.57% 28.57%

JHSouth 42.86% 42.86% 14.29% 28.57% 0 0

ZKX 57.14% 71.43% 57.14% 57.14% 28.57% 28.57%
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optimal due to its ability to process uncertain informa-
tion and remarkable generalization, especially in O3 pre-
diction. In addition, the SVR approach performs better,
which corroborates the findings of a great deal of the
previous work in this field of AQF [1, 17]. In the case of
the AQI class’ prediction, similar to AQIs forecasting,
the proposed algorithm and SVR showed the promising
result. The instances of misclassification are basically
placed into neighboring classes.

3.4 Limitations and future work
In general, a number of important improvements of this
study need to be considered. First of all, the experiments
use free public data, which includes only the IAQI of APs
and AQI. If more chemical and meteorological conditions
information obtained, the study may get more accurate
prediction results. Second, it replaced the missing data
with the mean or most. It may lead to biased results. The
ε-insensitive SVR with semi-supervised learning approach
may use unlabeled data with missing output values.
Therefore, it may be effectively used for further study. In
the future, we will employ multiple output SVR for con-
sidering the error between the true value and prediction
value. In addition, because classification performance was
strongly influenced by class size balance, it may use the
optimized classifier to solve this problem in the case of
the imbalanced dataset. Last but not least, the structural
model of cloud model granulation can not only enable to
give a rational approach for the value prediction of IAQIs
or AQIs but can also be used to estimate target’s confi-
dence interval. It hopes that the prediction range of true
value can be calculated according to the given member-
ship range, which can be used in other data with
uncertain.

4 Conclusions
This paper proposed one novel algorithm based on
cloud model granulation for air quality forecasting,
whose data is non-linear, uncertain, and heterogeneous.
After iterative granulation of original time series, the
proposed algorithm extracted the conceptual features of
cloud model for each new granule. Then, the cloud
model feature is used as the operating space for problem
solving. The CMG algorithm gives the solution to the
problem by inferring the eigenvalues of future granules.
The experimental results show that this algorithm can
not only simplify the modeling process of uncertain time
series in the form of knowledge abstraction, but also has
good predictive performance in IAQI and AQI.
Compared with previous literature, this is the first at-

tempt to predict AQIs by cloud model granulation. This
method not only considers the fuzziness and random-
ness of the problem as a whole, but also transforms the
problems in the original data space to the feature space

and from feature space to concept space. Finally, the so-
lution to the original problem is accomplished by con-
tinuous data reduction, without concern for the original
data distribution characteristics. This algorithm does not
only design for the time series of air quality forecasting.
Its aim is to provide a new solution based on state space
transformation and cloud model granulation for time
series with uncertainty. There is a large research field
that researchers and engineers must make more effort
around data mining, machine learning, and artificial
intelligence with uncertainty that these will brings light
to big data. It is hoped that this will inspire readers to
continue to explore cloud models to deal with the
uncertainties in the real world.

Abbreviation
ML: Machine Learning; APs: Air pollutants; AQF: Air quality forecasting;
AQI: Air Quality Index; GH: Ganghua of Qingshan District; JHS: South area of
Jianghan District; LIBSVM: A Library for Support Vector Machines;
MEP: Ministry of Environmental Protection; NARNNs: Non-linear
Autoregressive Neural Networks; NNs: Neural networks; SC: Soft computing;
SVR: Support vector regression; ZKX: New area of Zhuankou locality
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