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Abstract

In cellular networks, each mobile station adjusts its power level under control of its base station, i.e., through uplink
transmit power control, which is essential to reach desired signal-to-interference-plus-noise ratio (SINR) at the base
station and to limit inter-cell interference. The optimal levels of transmit power in a network depend on path loss,
shadowing, and multipath fading, as well as the network configuration. However, since path loss is distance
dependent and the cell association distances are correlated due to the cell association policies, the performance
analysis of the uplink transmit power control is very complicated. Consequently, the impact of a specific power
control algorithm on network performance is hard to quantify. In this paper, we analyze three uplink transmit power
control schemes. We assume the standard power-law path loss and composite Rayleigh-lognormal fading. Using
stochastic geometry tools, we derive the cumulative distribution function and the probability density function of the
uplink transmit power and the resulting network coverage probability. It is shown that the coverage is highly
dependent on the severity of shadowing, the power control scheme, and its parameters, but invariant of the density
of deployment of base stations when the shadowing is mild and power control is fractional. At low SINRs,
compensation of both path loss and shadowing improves the coverage. However, at high SINRs, compensating for
path loss only improves coverage. Increase in the severity of shadowing significantly reduces the coverage.
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1 Introduction
Both uplink and downlink transmit power control (TPC)
is an integral part of modern cellular system standards
(e.g., Long-Term Evolution (LTE), LTE-advanced) to con-
trol the transmit power of mobile stations (MSs) and base
stations (BSs), respectively, in order to mitigate inter-cell
and intra-cell interference, while achieving energy sav-
ings, improving connectivity, and maintaining a required
signal-to-interference-plus-noise ratio (SINR) [1]. Uplink
power control is essential to the operation of CDMA
cellular systems (e.g., the 3G cellular systems). Without
the uplink power control, these systems would simply
not work, due to the near-far effect on their uplink [2].
The simplest uplink TPC is to ensure that all user trans-
missions reach the same SINR at the base station (BS),
which however requires that those encountering high
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path loss transmit with much higher power. In contrast,
fractional power control, standardized by 3rd Generation
Partnership Project (3GPP), compensates for the path
loss between the MS and its serving BS, and higher path
loss users (e.g., cell-edge users) are allowed to operate
at a lower SINR, thus reducing inter-cell interference.
TPC (both downlink and uplink) is especially important
for dense heterogeneous cellular networks (HCNs), the
layouts of which may be very irregular. In HCNs, uplink
interference from a neighboring cell can be very strong
[3], and battery-powered MS handsets need to save
energy. All these reasons have motivated the development
of various uplink TPC schemes to improve the total net-
work throughput, cell-edge user performance, and energy
efficiency [3–16].
Therefore, it is critically important to understand and

quantify the performance of both uplink and down-
link TPC schemes. Fortunately, the downlink has been
widely modeled and optimized using stochastic geometry
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[3, 5, 17–21]. Stochastic geometry facilitates tractable
analysis of HCNs, where the locations of the BSs, APs
(access points), and MSs are distributed according to
mathematically tractable point processes [17, 20, 22]. For
example, the homogeneous Poisson point process (PPP)
has been widely used to study HCNs [17, 20, 22]. How-
ever, the uplink studies have been relatively limited but
have become necessary due to, for example, applications
such as cloud processing and storage [23].
Location-dependent power control and orthogonal

multiple access make uplink analysis more challenging.
To elaborate, there is only one randomly located MS
per cell per resource block due to the use of orthogonal
frequency division multiple access (OFDMA). Thus, cell
association policy couples the locations of MSs. Conse-
quently, even when all MSs in the network form a PPP,
the set of active MSs in a given resource block does not
form a PPP. Moreover, the transmit powers of MSs, which
typically depend on the MS-BS distances and random
channel gains due to shadowing and multipath fading, are
highly variable and correlated. This is because, although
MS-BS distances of different cells are identically dis-
tributed, they are not statistically independent. All these
conditions pose fundamental challenges for the analysis
of uplink TPC performance.
In previous research, the aforementioned challenges

have been overcome in two ways. First, one neglects
or only partially captures the dependency among loca-
tions of interfering MSs and simply assumes them to
form a homogeneous/inhomogeneous PPP. Therefore, we
call this the PPP-approximated MS model. The correla-
tion between the tagged MS and the interfering MSs is
captured by considering an appropriate interference pro-
tection region around the serving BS. In that model, the
MS transmit powers are also assumed to be independent
and identically distributed (i.i.d.). The exact distribution
depends on the power control scheme adopted. Second,
one considers a fully loaded network, i.e., each cell has an
active uplink transmission scheduled per time-frequency
resource block, and MSs form a homogeneous PPP [24].
When the spatial dependency between co-channel MSs is
neglected, they are assumed to form a homogeneous PPP.
This makes the density of MSs per resource block equal
to the density of BSs in the network. Each MS is assumed
to be associated with the BS that provides the highest area
averaged received signal power. To capture the correla-
tions among MS-BS distances, the associated BS of each
MS is assumed to be uniformly distributed in the Voronoi
cell of the MS. We refer to this approach as the downlink
equivalent model [5].

1.1 Prior related research
In general, uplink power control may be a combination
of two mechanisms: open-loop and closed-loop [1]. The

open-loop power control mechanism adjusts MS transmit
power according to downlink path loss estimates, while
the closed-loop one involves adjusting the MS transmit
power according to power control signals sent by the BS
on the downlink that are determined by BS estimates
of the received uplink signal power [1]. Mathematical
analysis of closed-loop power control has so far been
intractable. Hence, this work considers only open-loop
power control.
For modern OFDMA-based or similar cellular net-

works, open-loop TPC (TPC for simplicity) attempts
full/fractional compensation of path loss and/or shadow-
ing [5, 25]. Common schemes are path loss inversion (PLI)
and path loss and shadowing inversion (PLSI). In the fol-
lowing, we summarize recent uplink TPC studies and
highlight their contributions.
PLI, which compensates for path loss only, is considered

in [3, 5–9, 14–16, 24, 26]. The downlink equivalent model
is used by [5, 24], while the PPP-approximated MS model
is adopted by [3, 6–9, 14–16, 26]. Reference [5] has intro-
duced the downlink equivalent model and has derived
the coverage and average rate of uplink fractional PLI
power control in a single-tier network. Inter-cell interfer-
ence mitigation through uplink fractional frequency reuse
and fractional PLI power control is investigated in [24].
For a multi-tier HCN, [8] proposes a tractable and general
model to characterize the uplink signal-to-interference
ratio (SIR) and rate distribution. The first uplink analysis
with multiple antenna BSs is presented in [9] consider-
ing a generalized version of fractional PLI power control.
The coverage probability and achievable rate are derived
for maximum ratio combining and optimum combining at
the BS. All works thus far consider fractional PLI. In con-
trast, full PLI, whichmaintains a constant areamean (after
averaging over variations due to shadowing and multi-
path fading [2]) received power at BSs, is considered in
[3, 7, 26]. The outage probability and spectral efficiency
of both single-tier and multi-tier cellular networks are
investigated in [3]. Symbol error rate analysis of multi-
tier HCNs is presented in [7]. A two-tier HCN consisting
of femtocells and macrocells is considered in [26]; upper
and lower bounds for the outages of femtocell and macro
users are derived there. SIR distribution in a two-tier HCN
is investigated in [6], where the MS transmit power is
selected out of a finite set of discrete values to maintain
the area mean received power above or equal to a pre-
defined target value. Reference [14] investigates uplink
outage probability in a multi-channel environment and
captures the load variation on BSs. Uplink SINR and rate
distribution in a massive multiple input multiple output
(MIMO) network are investigated in [16].
In all previously mentioned references, uplink perfor-

mance is investigated by averaging over the respective
underlying point processes considered for the spatial
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distribution of users and BSs. Recently, [27, 28] have
investigated the uplink coverage probability of arbitrary,
but fixed, realization (meta distribution of SIR) of Pois-
son cellular networks. Both these references consider
fractional PLI power control.
References [4, 10–12, 15] consider PLSI power con-

trol (i.e., compensation of both path loss and shadowing).
The downlink equivalent model is adopted by [4], but
PPP-approximated MS model is used by [10–12, 15]. Ref-
erence [10] considers an interference aware PLSI scheme,
where interference from each MS to the most interfered
BS is kept under a predefined value. Reference [11] evalu-
ates the uplink interference in a two-tier HCN considering
multi-type users and BSs. Uplink capacity in a two-tier
direct sequence CDMA (DS-CDMA) HCN consisting of
macro BSs and femto APs is considered in [12]. Our
work [4] investigates coverage probability of a single-tier
cellular network in composite Rayleigh-lognormal fading
channels, where we consider fractional inversion of path
loss and complete compensation of shadowing. Uplink
SINR and rate distribution in a multi-tier cellular net-
work are investigated in [15]. Joint uplink and downlink
rate coverage (joint probability of uplink and downlink
rate/SINR exceeding their respective thresholds) is also
investigated there.

1.2 Motivation and our contribution
Our main goal is to study and characterize the impact of
power control and shadowing on the uplink performance.
The effectiveness of shadowing compensation by power
control is also in the focus. Shadowing may degrade the
performance of modern HCNs that include both macro
and low-power, small form-factor small cells, which have
low antennas. In such environments, a significant impact
of shadowing is to be expected. Shadowing specifically
refers to variations in the signal strength over distances
proportional to the length of an obstructing object
(10–100 meters) in outdoor environments and less in
indoor environments [29]. Experiments have confirmed
that typical shadowing effects can be modeled as log-
normal [2, 29] and that distribution has thus been widely
used to study the effects of shadowing [2, 29–31]. Over-
all, power control schemes that alleviate shadowing in
addition to path loss (i.e., PLSI) will undoubtedly have a
beneficial effect on the uplink coverage, data rates, and
power efficiency.
Although uplink PLSI studies exist [10–12], their

system models appear to be not flexible enough to
investigate the effect of uplink TPC in modern cellular
networks. For example, [10, 11] consider shadowing as
a random displacement on the MS point process. This
prevents the consideration of different shadowing levels
for different radio channels, desired and interfering chan-
nels for example. Reference [12] investigates the cellular

uplink with PLSI power control. However, it investi-
gates a two-tier DS-CDMA cellular network. Therefore,
the results of this research are not fully applicable for
modern OFDM or discrete Fourier transform spread
OFDMA (DFT-s-OFDM)-based cellular uplink. With
this motivation, in our previous work [4], we investi-
gated fractional compensation of path loss and complete
inversion of shadowing (number 3 in the list below) in an
OFDMA/DFT-s-OFDM-based cellular network consider-
ing more practical composite Rayleigh-lognormal fading
channels. In this paper, we extend our study by consider-
ing additional two power control schemes and comparing
the performance of these schemes under various network
configurations and propagation conditions.
The three TPC schemes provide full and/or fractional

compensation for

1. Path loss only
2. The aggregate effect of path loss and shadowing
3. Fractional compensation of path loss and complete

inversion of shadowing

With these, the transmit power of an MS becomes a
random variable, whose statistics depend on the MS-BS
distance and shadowing. We thus use the downlink equiv-
alent model of [5] and the PPP [32] to characterize the
spatial distribution of MSs. We derive the cumulative dis-
tribution function (CDF) and the probability density func-
tion (PDF) of the transmit MS power. Analytically derived
expressions are validated via simulations. These expres-
sions help us to quantify the impact of power control and
shadowing on the coverage probability. Specifically, the
main contributions of this paper can be summarized as
follows:

• We provide analytical expressions for PDF and CDF
of the transmit power and coverage probability for the
three power control schemes considering composite
Rayleigh-lognormal fading and path loss. To evaluate
the complicated integrals, we use the Gauss-Hermite
and Gauss-Laguerre quadratures to express them as
weighted sums of function evaluations. This provides
a powerful, flexible platform to evaluate the effects of
different shadowing levels. Computing the Gauss
quadrature nodes and weights is very simple with
Golub-Welsch (GW) algorithm [33], which utilizes
the eigenvalues and eigenvectors of the symmetric
tridiagonal matrix formed by the recurrence relations
to compute the nodes and weights.

• We investigate in detail the effects of shadowing,
power control factor, and BSs’ density on the coverage
probability using analysis and simulations. We show
that under all three power control schemes, density
of BSs has no significant effect on the coverage.



Herath et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:141 Page 4 of 14

• Comparing the performance of three power control
schemes, we show that at low SINRs (cell edge users),
compensating for both path loss and shadowing
improves the coverage probability. However, at high
SINRs (users closer to BS), compensating for path
loss only is more effective.

Notation: ||x − y|| is the Euclidean distance between
x, y ∈ R

2. The probability of event A is Pr(A). E [·] is
the expectation operation. fX(·) and FX(·) represent the
PDF and CDF of a random variable X. The Laplace trans-
form of the PDF of a random variable X is denoted as
LX(s) = EX

[
e−sX]

. 2F1 (α,β ; γ ; z) = 1
B(β ,γ−β)

∫ 1
0 tβ−1(1−

t)γ−β−1(1 − tz)−αdt, Re γ > Re β > 0 ([34], eqs. 9.14.2,
9.111) is the hypergeometric function, where B(x, y) =∫ 1
0 tx−1(1− t)y−1dt ([34], eq. 8.380.1) is the beta function.

2 Systemmodel, power control, and assumptions
This section presents the network setup, three open-loop
power control schemes considered, and key assumptions
needed for tractable mathematical analysis.

2.1 Systemmodel
This research considers uplink transmission in a cellu-
lar network with the following network configurations
and assumptions. We use the downlink equivalent model
proposed in [5], which is described by the following six
points.

1. Network consists of a single class of BSs with density
λ > 0. Similar to [3, 5], we consider minimum path
loss-based association policy. Therefore, each MS is
associated with the BS providing the highest area
mean received power [2]. This is equivalent to
connecting to the closest BS. Considering minimum
path loss association is motivated by two reasons.
First, investigating the effectiveness of compensating
for shadowing as a part of power control is one of the
aims of this paper. Therefore, we refrain from
considering shadowing and fast fading for the cell
association. Second, this association policy is simple
and also avoids frequent handoffs [35]. An
orthogonal multiple access technique is used, for
example, OFDMA or DFT-precoded OFDMA
(single-carrier FDMA).

2. Universal frequency reuse [2], which allows every cell
in the network to reuse the same set of carrier
frequencies. The network is fully loaded, i.e., each BS
has an active uplink transmission scheduled for each
time-frequency resource block.

3. The locations of MSs operating in a particular
time-frequency channel form a homogeneous PPP �.
Due to orthogonal channel assignment and the
assumption of a fully loaded network,
� = {x1, x2, . . .}, where xk ∈ R

2 has the intensity λ.

4. With this network setup, each BS is uniformly
distributed in the Voronoi cell of its corresponding
MS [5, 24]. This is referred to as the downlink
equivalent model for uplink communication.

5. All the radio channels are subject to power-law path
loss and composite Rayleigh-lognormal fading.
Although the severity of shadowing depends on the
density and locations of shadowing objects,
considering different shadowing levels for each cell is
mathematically intractable. Therefore, we consider
only two values for the standard deviation of the
shadowing process: σ for the local environment
(locality of the BS serving MS z0) and ξ for
interfering cells. Channel power gains due to
small-scale fading are assumed to be independently
distributed across all MS-BS pairs.

6. We investigate the coverage probability of a
randomly chosen MS z0 ∈ �. Since a homogeneous
PPP in R

2 is translation and rotation invariant,
without loss of generality, the BS associated with z0 is
assumed to be located at the center of the network.
The network is assumed to be interference-limited;
therefore, the background thermal noise is ignored.

Reference [5] has investigated the accuracy of this model
and has shown that it accurately models the uplink trans-
missions in a cellular network.

2.2 Power control schemes
We consider three fractional power control schemes,
which compensate for path loss and shadowing. For a
selected power control scheme, we assume all theMSs use
the same set of power control parameters.

Scheme 1 Fractional/full path loss compensation.
This scheme aims to compensate for the effect of path

loss on the received signal power. Therefore, the transmit
power Pz ofMS z ∈ � associated with the BS y1 is given by

Pz = ρ (l(z, y))−η , (1)

where ρ is a constant and l(z, y) is the channel power
gain due to path loss. For power-law path loss model,
l(z, y) = ||z − y||−α , where α > 2 is the path loss expo-
nent. The power control factor is denoted by η ∈ [0, 1]. η
can be interpreted as a fairness parameter, where higher
value helps the cell edge users meet their SIR target but at
the cost of increasing the interference level in the network
[15]. This can reduce the SINR experienced by cell center
users. η = 1 represents complete elimination of path loss
while η = 0 represents no power control (ρ is a constant,
value is the same for all the MSs).

Scheme 2 Fractional/full compensation for both path
loss and shadowing.
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With this power control, the transmit power of MS z ∈
� is given by

Pz = ρ
(
l(z, y)hzy

)−η , (2)

where hzy is the shadowing power gain. Therefore, η = 1
(η = 0) represents complete compensation for path loss
and shadowing (no power control).

Scheme 3 Fractional compensation for path loss and
complete inversion of shadowing.
This scheme completely eliminates the shadowing effect

but only partially inverts path loss. Therefore, the transmit
power of MS z ∈ � is given by

Pz = ρ (l(z, y))−η h−1
zy . (3)

In (3), power control factor η ∈ [0, 1] determines the
degree of path loss compensation. That is, η = 1 (η = 0)
gives a complete inversion of path loss (path loss is not
compensated for and only shadowing is inverted).

2.3 Downlink equivalent model
As mentioned before, correlations among transmit pow-
ers and the locations complicate the analysis. To overcome
this, we will use the downlink equivalent model [5] and
make two additional assumptions to obtain the PDF of the
transmit power for each TPC scheme.

Assumption 1 According to the system model described
earlier, the BS is uniformly distributed in the Voronoi cell of
the MS being served. By replacing the Voronoi cell with R

2,
the distance between an MS and its associated BS follows
the Rayleigh PDF given by

fr(r) = 2πλr exp
(−πλr2

)
, 0 < r < ∞. (4)

This assumption is also made in [5], and it is shown that
the loss of accuracy due to this assumption is minimal. We
will use it to derive the PDFs of the MS transmit powers.

Assumption 2 All MS-BS distances are i.i.d. with
PDF (4).

Assumption 3 Transmit powers of different MSs are
also i.i.d.

References [3, 5] showed that the dependencies between
MS-BS distances and transmit powers are in fact weak,
and above assumptions yield accurate results. In Section 5,
we also test the validity of these assumptions by compar-
ing numerical and simulation results and show that the
loss of accuracy due to these assumptions is negligible.

3 Transmit power analysis
Here, we derive the transmit power PDFs and CDFs.

3.1 Scheme 1: Fractional compensation for path loss
In this scheme, each MS adjusts its transmit power
according to (1). Using Assumptions 1 and 2 and (4),
approximate expressions for the CDF and PDF of the
transmit power at MSs z ∈ �, Pz, can be derived as given
in the following lemma.

Lemma 1 In a single-tier Poisson cellular network with
the closest BS cell association and fractional path loss
inversion power control, the CDF and the PDF of the
transmit power Pz are given by

FPz(t) = 1 − exp
(
−πλρ

− 2
αη t

2
αη

)
, 0 < t < ∞. (5)

fPz(t) = 2πλ

αηρ
2
αη

exp
(
−πλρ

− 2
αη t

2
αη

)
t

2
αη

−1 ,

0 < t < ∞. (6)

Proof Using (1), the CDF of Pz can be written as

FPz(t) = Pr
[
ρrαη < t

] = Pr
[

r <

(
t
ρ

) 1
αη

]

. (7)

Substituting the PDF of r given by (4) in (7), we obtain
the CDF of Pz given in (5). By differentiating (5), we obtain
the PDF of Pz given in (6).

3.2 Scheme 2: Fractional compensation for the aggregate
effect of path loss and shadowing

For partial inversion of the path loss and shadowing, the
transmit power at the MS z ∈ �, Pz, is given by (2). The
CDF and PDF of the transmit power are given below.

Lemma 2 In a single-tier Poisson cellular network with
the closest BS cell association and fractional path loss and
shadow inversion power control, the CDF of Pz is given by

FPz(t) = 1 −
N∑

k=1

wk√
π
exp

(
− πλ

(
t
ρ

) 2
αη

× exp
(
2
√
2ξuk
α

))
+ ON , 0 < t < ∞. (8)

The PDF of the transmit power is given by

fPz(t) = 2
√

πλ

αηρ
2
αη

N∑

k=1
wkt

2
αη

−1

× exp
(
2
√
2ξuk
α

− πλ

(
t
ρ

) 2
αη

exp
(
2
√
2ξuk
α

))

+ εN , 0 < t < ∞.
(9)

Here, N > 1 is an integer which determines the accuracy
of the approximation. ON and εN represent the error terms
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that decrease to zero as N increases to infinity. wk and uk
are weights and abscissas for Gauss-Hermite quadrature
of order N. For different values of N, wk and uk are avail-
able in [36], Table (25.10), or can be calculated by a simple
MATLAB® program.
Proof: See Section 7.1.

3.3 Scheme 3: Fractional compensation for path loss and
complete inversion of shadowing

The transmit power of each MS z ∈ �, Pz, is given by (3).
The CDF and PDF are given by the following lemma.

Lemma 3 In a single-tier Poisson cellular network with
the closest BS cell association and fractional path loss com-
pensation and complete shadow inversion power control,
the CDF is given by

FPz(t) = 1 −
N∑

k=1

wk√
π
exp

(

−πλ

(
t
ρ

) 2
αη

(10)

×exp
(
2
√
2ξuk
αη

))

+ ON , 0 < t < ∞. (11)

The PDF of the transmit power Pz is given by

fPz(t) = 2
√

πλ

αηρ2/αη

N∑

k=1
wkt

2
αη

−1

× exp
(
2
√
2ξuk
αη

− πλ

(
t
ρ

) 2
αη

exp
(
2
√
2ξuk
αη

))

+ εN , 0 < t < ∞.
(12)

Similar to in Lemma 1, wk and uk are the weights and
abscissas for Gauss-Hermite quadrature of order N. ON
and εN are the error terms.
Proof: See Section 7.2.

4 Coverage probability analysis
Next, we derive the coverage probability of the network
for the three power control schemes (Section 2.1). Similar
to [19], the coverage probability is defined as the probabil-
ity that a randomly chosen MS z0 ∈ � achieves the uplink
SIR target of T.

4.1 Scheme 1: Fractional compensation for path loss
Under this power control scheme, the SIR at the BS
serving MS z0 ∈ � can be written as

SIR = ρrα(η−1)
z0 hz0∑

z∈�\z0 Pzr
−α
z hz

, (13)

where rz0 is the distance betweenMS z0 and its associated
BS at the origin. The channel power gain due to composite

Rayleigh-lognormal fading is given by hz0 . The set �\z0
represents all the active co-channel interfering MSs (all
MSs of � except z0). For MS z ∈ �, where z �= z0, rz =
||z|| and hz are the Euclidean distance and channel gain
(Rayleigh lognormal) to the BS. The coverage probability
is given by the following theorem.

Theorem 1 The uplink coverage probability of an MS
in a single-tier cellular network under fractional path loss
inversion power control is

Pc(T) = 2
√

πλ

L∑

i=1
ζi

∫ ∞

0
rz0exp

(−πλr2z0
)

× LI�\z0

⎛

⎝s =
T exp

(
−√

2σvi
)

ρrα(η−1)
z0

⎞

⎠ drz0 + εL,

(14)

where

LI�\z0 (s) = exp

⎛

⎝−2π
1−αη
2 λ

2−αη
2 sρ r2−α

z0
α − 2

×
M∑

j=1
κj exp

(√
2σxj

) Q∑

q=1
βq

× 2F1

⎛

⎜
⎝1,

α−2
α

, 2− 2
α
,
−sρ exp

(√
2σxj

)
δ

αη
2
q

rαzo (πλ)
αη
2

⎞

⎟
⎠

⎞

⎟
⎠

+ RMQ.
(15)

Here, ζi and vi are the weights and nodes for the Gauss-
Hermite quadrature of order L. Similarly, κj and xj are
the weights and nodes for Gauss-Hermite quadrature of
order M. Finally, βq and δq are the weight and nodes for
the Gauss-Laguerre quadrature of order Q. Weights and
nodes for Gauss-Laguerre quadrature of different orders
are available in [36], Table (25.9), or can be calculated by
a simple MATLAB program [33]. Terms εL and RMQ are
the errors of the approximations.
Proof: See Section 7.3.

4.2 Scheme 2: Fractional compensation for the resultant
effect of path loss and shadowing

When Scheme 2 is employed, SIR at the BS serving MS
z0 ∈ � can be written as

SIR = ρrα(η−1)
z0 ĥz0∑

z∈�\z0 Pzr
−α
z hz

. (16)

Since power control partially inverts the effect of shad-
owing, ĥz0 ∼ exp(μ), where μ ∼ lognormal(0, (1 − η)σ ).
The coverage probability for this power control is given by
the following theorem.
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Theorem 2 In a single-tier Poisson cellular network with
the closest BS cell association and fractional path loss and
shadow inversion power control, the coverage probability
can be given by

Pc(T) = 2
√

πλ

L∑

i=1
ζi

∫ ∞

0
rz0exp

(−πλr2z0
)

× LI�\z0

⎛

⎝s =
T exp

(
−√

2(1 − η)σvi
)

ρrα(η−1)
z0

⎞

⎠ drz0

+ εL, (17)

where

LI�\z0 (s) = exp

⎛

⎝ −2λ
α − 2

N∑

k=1
wk

M∑

j=1
κj

Q∑

q=1
βq

×
r2−α
z0 sρ exp

(√
2σxj

)
δ

αη
2
q

(πλ)
αη
2 exp

(√
2ξukη

)

× 2F1

⎛

⎜
⎝1,

α−2
α

, 2− 2
α
,

−sρ exp
(√

2σxj
)

δ
αη
2
q

rαz0 (πλ)
αη
2 exp

(√
2ξukη

)

⎞

⎟
⎠

⎞

⎟
⎠

+ RNMQ.
(18)

Here, ζi and vi are the weights and abscissas for the
Gauss-Hermite quadrature of order L > 1. Similarly, wk
and uk are the weights and abscissas for the Gauss-Hermite
quadrature of order N > 1. κj and xj are the weights and
abscissas for Gauss-Hermite quadrature of order M > 1.
βq and δq are the weight abscissas for the Gauss-Laguerre
quadrature of order Q. Terms εL and RNMQ are the errors
of the approximations.
Proof: See Section 7.4.

4.3 Scheme 3: Partial compensation for path loss and
complete inversion of shadowing

In Scheme 3, path loss is partially compensated while the
shadowing is completely inverted. Therefore, the SIR at BS
serving MS z0 ∈ � can be written as

SIR = ρrα(η−1)
z0 gz0∑

z∈�\z0 Pzr
−η
z hz

, (19)

where g ∼ exp(1) is the power gain of the serving BS-
MS channel due to Rayleigh multipath fading. The uplink
coverage probability under this power control scheme is
given by the following theorem.

Theorem 3 In a single-tier Poisson cellular network with
the closest BS cell association and fractional path loss com-
pensation and complete shadow inversion power control,
the coverage probability is approximated by

Pc = 2πλ

∫ ∞

0
rz0exp

(−πλr2z0
)

× LI�\z0

(
Trα(1−η)

z0
ρ

)

drz0 , (20)

where,

LI�\z0 (s) = exp

⎛

⎝ −2λ
α − 2

N∑

k=1
wk

M∑

j=1
κj

Q∑

q=1
βq

×
r2−α
z0 sρ exp

(√
2σxj

)
δ

αη
2
q

(πλ)
αη
2 exp

(√
2ξuk

)

× 2F1

⎛

⎜
⎝1,

α−2
α

, 2− 2
α
,

−sρ exp
(√

2σxj
)

δ
αη
2
q

rαz0 (πλ)
αη
2 exp

(√
2ξuk

)

⎞

⎟
⎠

⎞

⎟
⎠

+ RNMQ.
(21)

Here, wk and uk are the weights and abscissas for the
Gauss-Hermite quadrature of order N > 1. κj and xj are
the weights and abscissas for the Gauss-Hermite quadra-
ture of order M > 1. βq and δq are the abscissas and weight
factors for the Gauss-Laguerre quadrature of order Q > 1.
Term RNMQ is the errors of the approximation.
Proof: See Section 7.5.

5 Numerical results
This section presents numerical and simulation results
and investigates the effect of power control factor, stan-
dard deviations of shadowing, and intensity of BSs on the
uplink coverage probability. In the numerical derivations
(Section 7), natural logarithm is used instead of loga-
rithm with base 10. Therefore, PDFs (24) and (30) are
scaled versions of the actual PDFs [2]. Thus, the stan-
dard deviations of shadowing in dB σdB and ξdB given
in the following figures are σdB = (10/ln10)σ dB and
ξdB = (10/ln10)ξ dB.
In Fig. 1, we compare analytical coverage probability

curves with the simulation results for three TPC schemes
and different degrees of shadowing. We observe that our
analytical expressions closely match the simulation results
and accurately capture the performance trends. Further,
lower σdB and ξdB (less severe shadowing) improve cover-
age. For analytical expressions, we use 30-points Hermite
quadratures and 15-points Gauss-Laguerre quadratures.
Figure 2 compares the coverage of the three TPC

schemes under various degrees of shadowing.When shad-
owing is less severe, they achieve similar performance. For
example, their coverage probabilities are more or less the
same when σdB = ξdB = 4 dB. This suggests that, in an
environment with less severe shadowing, TPC using path
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Fig. 1 Coverage probability vs SIR threshold for the three power control schemes under different degrees of shadowing. η = 0.5. λ = 0.5 BSkm−2,
α = 3.5

loss inversion is sufficient. Consequently, frequent chan-
nel state measurements such that they capture the varia-
tions due to shadowing are not essential for proper power
control. It is sufficient to capture channel state changes
due to path loss. However, as the shadowing increases,
the coverage probabilities differ significantly. At low SIR
thresholds, compensating for the aggregate effect of path
loss and shadowing (Scheme 2) improves coverage, espe-
cially for higher degrees of shadowing. However, at high
SIR thresholds, path loss inversion (Scheme 1) provides
better coverage compared to other two TPC schemes.

Fig. 2 Comparison of coverage of the three power control schemes
for different degrees of shadowing. η = 0.5. λ = 0.5 BSkm−2, α = 3.5,
σdB = ξdB

Of these three, Scheme 3 results in the lowest coverage.
This is because, although complete inversion of shadow-
ing (Scheme 3) improves the received signal strength of
the desired signal, it also increases the transmit powers of
interfering MSs, resulting in higher aggregate interference
power.
Figure 3 shows the coverage for different BS densities

and shadowing levels. We see that the BS density has no
impact on the coverage probabilities of Schemes 1 and 3,
but severity of shadowing does. A similar observation can
be made for Scheme 2, except for higher shadowing stan-
dard deviation values. For example, for σ̃ = ξ̃ = 12,
coverage slightly lowers as the BS intensity increases.
This is because increasing the intensity of BSs not only
increases the intensity of co-channel interfering users but
also increases the received signal power at the serving BSs
by bringing in BSs closer to their users. Reference [8] has
shown that with minimum path loss association and full
PLI power control (Scheme 1 with η = 1), uplink cover-
age is invariant of the BS density. Figure 3 corroborates
this claim also for fractional power control (η < 1) under
Schemes 1 and 3 for all shadowing levels and for lower
shadowing levels under Scheme 2.
Figure 4 shows the coverage probability of Scheme 1

for different values of η and different degrees of shadow-
ing. Clearly, the coverage is smallest when the path loss
is completely compensated. This is because higher value
of η helps the cell edge users meet their SIR target, but at
the cost of higher interference level in the network. This
also reduces the SINR experienced by cell center users.
Therefore, the spatially averaged coverage probability is
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Fig. 3 Coverage probability of the three power control schemes vs SIR threshold for different BS intensities and degrees of shadowing. η = 0.5. λ is
in BSs/km2,α = 3.5, σdB = ξdB

reduced. Therefore, careful choice of TPC parameters is
essential for proper designing of a cellular network. We
also observe that at high SIR threshold (T > 0 dB), the
η = 0 (no power control; eachMS transmits with the same
transmit power regardless of the path loss) results in bet-
ter coverage. Further, the variation of coverage with η is
similar for the two shadowing severities considered.
Figure 5 shows the coverage probability of Scheme 2 for

various values of η and two levels of shadowing. Note that
η = 1 represents complete compensation for path loss and
shadowing, resulting in a constant received power level
ρ at the serving BS. η = 0 represents no power control,
resulting in eachMS transmitting with constant power. At
low SIR thresholds, complete compensation provides the
highest coverage, while compensation for both path loss

Fig. 4 Variation of coverage of Scheme 1 vs SIR threshold for different
η values. λ = 0.5 BSs/km2, α = 3.5

and shadowing (η > 0) results in higher coverage com-
pared to that of no power control (η = 0). However, at
high SIR thresholds, η = 0 results higher coverage proba-
bility. Also, Fig. 5 shows that the performance gap widens,
when the shadowing standard deviation increases. There-
fore, we can conclude that at low SIR thresholds, complete
elimination of shadow fading and path loss improves cov-
erage, while at high SIR thresholds, power control reduces
the coverage probability.
Figure 6 shows the variation of coverage probability with

power control factor η for Scheme 3. When η = 1, both
path loss and shadowing are fully compensated for, result-
ing in a constant received power level ρ at the serving
BS for all the MSs regardless of the path loss and shad-
owing they experience. On the other hand, η = 0 only

Fig. 5 Coverage probability of Scheme 2 vs SIR threshold for different
η values. λ = 0.5 BSs/km2, α = 3.5, ρ = −30 dBm
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Fig. 6 Coverage probability of Scheme 3 vs SIR threshold for different
η values. λ = 0.5 BSs/km2, α = 3.5, ρ = −30 dBm

compensates for shadowing. This provides higher cover-
age probability for higher SIR thresholds, but not other-
wise. Also, as the compensation factor increases above 0.5,
coverage drops considerably. Therefore, we can conclude
that at low SIR thresholds, complete elimination of shad-
owing and partial compensation of path loss gives better
coverage, while at high SIR thresholds, inverting only the
effect of shadowing improves coverage.

6 Conclusions
Three uplink power control schemes for cellular networks
with path loss and composite Rayleigh-lognormal fading
have been investigated. They are fractional compensation
of (1) path loss only, (2) the combined effect of path loss
and shadowing, and (3) path loss and complete inversion
of shadowing. Approximate PDF and CDF expressions
have been derived for the transmit power and the cov-
erage probabilities. The results have been validated via
simulations.
This study leads to several observations. First, shad-

owing clearly has negative impact on network coverage.
Second, at low SIRs, compensating for the aggregate effect
of path loss and shadowing (Scheme 2) improves cover-
age compared to the other two schemes. However, at high
SIRs, inverting only path loss (Scheme 1) provides the best
coverage. Further, of the three, power control Scheme 3
gives the worst coverage. Third, previous research has
observed that the BS intensity has little effect on the cov-
erage, when minimum path loss association and full path
loss inversion power control (Scheme 1 with η = 1) is
used in uplink. We find the same holds true for Schemes 1
and 3 for all shadowing levels and η < 1. Further, it also
holds for Scheme 2 under light shadowing. However, in

all three schemes the extent to which path loss and shad-
owing are compensated has a significant effect on the
coverage probability. Therefore, proper selection of uplink
power control parameters is essential in cellular networks.
Future research may encompass investigation of the effec-
tiveness of power control schemes considered in this work
in a heterogeneous cellular network setup, which includes
different types of BSs and access points. In this setup, per-
formance trends may be significantly different due to the
use of different types of BSs with a range of capabilities
and antenna heights, different cell association policies,
and user offloading.

7 Proofs of lemmas and theorems
7.1 Proof of Lemma 2
When the aggregate effect of path loss and shadowing is
partially compensated, transmit power Pz is given by (2).
Using (2), the CDF of Pz can be written as

FPz(t) = Pr
(
ρ

(
r−αhzy

)−η
< t

)
,

= Ehzy

[

Pr
(

r <

(
t
ρ

) 1
ηα

h
1
α
zy|hzy

)]

,

0 < t < ∞. (22)

Using the PDF of r given in (4), (22) can be written as

FPz(t) = Ehzy

[

1 − exp
(

−πλ

(
t
ρ

) 2
αη

h
2
α
zy

)]

,

0 < t < ∞. (23)

The PDF of hzy is given by

fhzy(h) = 1√
2πξh

exp
(

− (ln(h))2

2ξ2

)

, 0 < h < ∞.

(24)

Substituting (24) in (23) and using the change of variable
u = ln(h)/

√
2ξ ,

FPz(t) = 1 − 1√
π

∫ ∞

−∞
exp

(

−u2 − πλ

(
t
ρ

) 2
αη

×exp
(
2
√
2ξu
α

))

du, 0 < t < ∞. (25)

Solving the integration in (25) by Gauss-Hermite
quadrature, we obtain (8). PDF of Pz (9) is obtained by
differentiating (8).
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7.2 Proof of Lemma 3
In this power control scheme, each MS transmits with
power given by (3). The CDF of the transmit power of MS
z ∈ �, Pz, can be derived as follows.

FPz(t) = Pr
(
ρrαηh−1

zy < t
)
,

= Ehzy

[

Pr
(

r <

(hzyt
ρ

) 1
αη |hzy

)]

. (26)

Using the PDFs of r given by (4), (26) can be written as

FPz(t) = Ehzy

[

1 − exp
(

−πλ

(hzyt
ρ

)2/αη
)]

. (27)

Substituting (24) in (27) and using the change of variable
u = ln(h)√

2ξ ,

FPz(t) = 1 − 1√
π

∫ ∞

−∞
exp

(

−u2 − πλ

(
t
ρ

)2/αη

×exp
(
2
√
2ξu

αη

))

du. (28)

Solving the integration in (28) by Gauss-Hermite
quadrature, we obtain (10). Now, by differentiating (10),
we can obtain (12).

7.3 Proof of Theorem 1
For power control Scheme 1, SIR at the BS serving MS z0
is given by (13). Therefore, the coverage probability can be
written as

Pc(T) = Pr (SIR > T) = Pr
(

hz0 >
TI�\z0

ρrα(η−1)
z0

)

, (29)

where I�\z0 = ∑
z∈�\z0 Pzr

−α
z hz is the total interfer-

ence power from all the co-channel MSs. Since composite
Rayleigh-lognormal fading is considered, hz0 ∼ exp(μ)

where μ ∼ lognormal(0, σ). Now, the PDF of hz0 can be
written as [2]

fhz0 (h) =
∫ ∞

0

1
μ
exp

(
− h

μ

)
1√

2πσμ

× exp
(

− (ln(μ))2

2σ 2

)

dμ. (30)

Substituting (30) in (29) introduces computational and
analytical difficulties. To overcome these challenges, we
use an approach similar to that proposed in [37]. Using
change of variable ln(h)/

√
2σ = v, (30) can be written as

fhz0 (h) = 1√
π

∫ ∞

−∞
exp

(
−√

2σv

−h exp
(
−√

2σv
)

− v2
)
dv. (31)

(31) has the form of Gauss-Hermite integration, which can
be approximated as

fhz0 (h) =
L∑

i=1

ζi√
π
exp

(
−√

2σvi

−h exp
(
−√

2σvi
))

+ OL, (32)

where ζi and vi are the weights and abscissas determined
by Hermite polynomial after L is chosen. L represents the
remainder terms that decrease to zero as L increases to
infinity.
Using (32), the complementary cumulative distribution

function (CCDF) of hz0 can be written as

Fhz0 (h) =
L∑

i=1

ζi√
π
exp

(
−h exp

(
−√

2σvi
))

+ O′
L, (33)

where O′
L is the error in the approximation due to OL in

(32). Substituting (33) in (29), Pc(T) can be written as

Pc(T) =
L∑

i=1

ζi√
π

× Erz0

⎡

⎣EI�\z0

⎡

⎣exp

⎛

⎝
−I�\z0T exp

(
−√

2σvi
)

ρrα(η−1)
z0

⎞

⎠

⎤

⎦

⎤

⎦

+ εL,
(34)

where εL is the error in the approximation due to O′
L of

(33). Using the definition of the Laplace transform, (34)
can be written as

Pc(T) =
L∑

i=1

ζi√
π

× Erz0

⎡

⎣LI�\z0

⎛

⎝s =
T exp

(
−√

2σvi
)

ρrα(η−1)
z0

⎞

⎠

⎤

⎦ + εL,

(35)
whereLI�\z0 (s) is the Laplace transform of the PDF of ran-
dom variable I�\z0 . Substituting the PDF of rz0 given by (4)
in (35), we obtain (14). LI�\z0 (s) can be derived as follows.

LI�\z0 (s) = E�,hz ,Pz

⎡

⎣exp

⎛

⎝−s
∑

z∈�\z0
Pzr−α

z hz

⎞

⎠

⎤

⎦

= E�,hz ,Pz

⎡

⎣
∏

z∈�\z0
exp

(−sPzr−α
z hz

)
⎤

⎦ ,

a= exp
(

−2πλ

∫ ∞

rz0
rz

×Ehz ,Pz
[
1 − exp

(−sPzr−α
z hz

)]
drz

)

, (36)
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where step (a) follows from the definition of probability
generating functional of PPP [32]. Consider I = Ehz ,Pz[
1 − exp

(−sPzr−α
z hz

)]
. Using the PDF of hz given by (32),

I can be written as

I = EPz

⎡

⎣1 −
M∑

j=1

κj√
π
exp

(
−√

2σxj
)

×
∫ ∞

0
exp

(
−hz

(
exp

(
−√

2σxj
)

+ sPzr−α
z

))
dhz

]

+ OM,

= EPz

⎡

⎣1 −
M∑

j=1

κj√
π

1

1 + sPzr−α
z exp

(√
2σxj

)

⎤

⎦

+ OM, (37)

where OM is the error due to using the approximate
expression (32). Substituting (6) in (37) and using the fact
that

∑M
j=1 κj = √

π ,

I = 2
√

πλ

αηρ
2
αη

M∑

j=1
κj

∫ ∞

0

P
2
αη

−1
z

1 + rαz
sPzexp

(√
2σxj

)

× exp
(

−πλ

(
Pz
ρ

) 2
αη

)

dPz + OM. (38)

Using the change of variable δ = πλ
(
Pz
ρ

) 2
αη , (38) can be

written as

I =
M∑

j=1

κj√
π

∫ ∞

0

exp(−δ)

1 + rαz (πλ)
αη
2

sρ exp
(√

2σxj
)
δ

αη
2

dy + OM. (39)

(39) can be approximated as a Gauss-Laguerre quadrature
sum as given below.

I =
M∑

j=1

κj√
π

Q∑

q=1
βq

1

1 + rαz (πλ)
αη
2

sρ exp
(√

2σxj
)
δ

αη
2q

+ OMQ, (40)

where βq and δq are the abscissas and weight factors
for the Gauss-Laguerre integration [36], Table (25.9), and
OMQ is the error in the approximation. Substituting (40)
in (36),

LI�\z0 (s) = exp

⎛

⎜⎜
⎜
⎜
⎝

− 2
√

πλ

M∑

j=1
κj

Q∑

q=1
βq

×
∫ ∞

rz0

rz

1 + rαz (πλ)
αη
2

sρ exp
(√

2σxj
)
δ

αη
2q

drz

⎞

⎟
⎟
⎟⎟
⎠

+ RMQ,

(41)

where RMQ is the error in the approximation. Solving (41),
we obtain (15) of Theorem 1.

7.4 Proof of Theorem 2
When power control Scheme 2 is employed, SIR at the
BS serving MS z0 ∈ � is given by (16). Therefore, the
coverage probability can be written as

Pc(T) = Pr
(

ĥz0 >
TI�\z0

ρrα(η−1)
z0

)

. (42)

The CCDF of ĥz0 can be obtained by replacing σ by
(1−η)σ in (33). Following approach similar to the deriva-
tion of (35), (42) can be written as

Pc(T) =
L∑

i=1

ζi√
π

× Erz0

⎡

⎣LI�\z0

⎛

⎝s =
T exp

(
−√

2(1 − η)σvi
)

ρrα(η−1)
z0

⎞

⎠

⎤

⎦

+ εL, (43)

where εL is the error in the approximation. Substituting
(4) in (43), we obtain (17). Following steps similar to the
derivation of (36), LI�\z0 (s) for power control Scheme 2
can be derived as follows.

LI�\z0 (s) = exp
(

−2πλ

∫ ∞

rz0
rz

× (
1 − EPz ,hz

[
exp

(−sPzr−α
z hz

)])
drz

)

.

(44)

Consider B = 1 − EPz ,hz
[
exp

(−sPzr−α
z hz

)]
. B is similar

to I given in (37), but with the PDF of Pz given by (9).
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Therefore, B can be written as

B = 2λ

αηρ
2
αη

N∑

k=1
wk

M∑

j=1
κjexp

(
2
√
2ξuk
α

)

×
∫ ∞

0

P
2
αη

−1
z

1 + rαz
sPz exp

(√
2σxj

)

× exp
(

−πλ

(
Pz
ρ

) 2
αη

exp
(
2
√
2ξuk
α

))

dPz

+ ONM. (45)

Here, ONM is the error term due to OM. Using the

change of variable δ = πλ
(
Pz
ρ

) 2
αη exp

(
2
√
2ξuk
α

)

B= 1
π

N∑

k=1
wk

M∑

j=1
κj

∫ ∞

0

e−δ

1 + rαz (πλ)
αη
2 exp

(√
2ξukη

)

sρ exp
(√

2σxj
)
δ

αη
2

dδ

+ONM. (46)

Solving the integral in (46) by Gauss-Laguerre
quadrature,

B= 1
π

N∑

k=1
wk

M∑

j=1
κj

Q∑

q=1
βq

1

1+ rαz (πλ)
αη
2 exp

(√
2ξukη

)

sρ exp
(√

2σxj
)
δ

αη
2q

+ONMQ. (47)

Here, βq and δq are the abscissas and weight factors for
the Gauss-Laguerre quadrature of order Q > 1. ONMQ is
the error in the approximation. Substituting (47) in (44)
and solving the integration, we obtain (18) of Theorem 2.

7.5 Proof of Theorem 3
When power control Scheme 3 is employed, SIR at the
BS serving MS z0 ∈ � is given by (19). Therefore, the
coverage probability can be written as

Pc(T) = Pr
[

gz0 >
TI�\z0

ρrα(η−1)
z0

]

a= 2πλ

∫ ∞

0
rz0exp

(−πλr2z0
)

× EI�\z0

[

exp
(

− I�\z0Tr
α(1−η)
z0

ρ

)]

drz0 . (48)

In (48), step (a) follows due to g ∼ exp(1) and using
the PDF of rz0 given in (4). Using the definition of the

Laplace transform, Pc(T) for power control Scheme 3 can
be written as

Pc = 2πλ

∫ ∞

0
rz0exp

(−πλr2z0
)

× LI�\z0

(
Trα(1−η)

z0
ρ

)

drz0 , (49)

where LI�\z0 (s) is the Laplace transform of the PDF of
aggregate interference I�\z0 . This concludes the derivation
of (20) of Theorem 3. Using steps similar to the derivation
of (36), LI�\z0 (s) can be written as

LI�\z0 (s) = exp
(

− 2πλ

×
∫ ∞

rz0

(
1 − EPz ,hz

[
exp

(−sPzr−α
z hz

)])
)

rzdrz.

(50)

ConsiderA = 1 − EPz ,hz
[
exp

(−sPzr−α
z hz

)])
.A is simi-

lar to I given in (37), but with the PDF of Pz given by (12).
Therefore,A can be written as

A = 2λ

ρ
2
αη αη

N∑

k=1
wk

M∑

j=1
κj

∫ ∞

0

P
2
αη

−1
z

1 + rαz
sPzexp(

√
2σxj)

× exp

⎛

⎜
⎝
2
√
2ξuk
αη

−
πλP

2
αη
z exp

(
2
√
2ξuk
αη

)

ρ
2
αη

⎞

⎟
⎠dPz

+ ONM, (51)

where ONM is the error in the approximation. Using the

change of variable δ = πλP
2
αη
z exp

(
2
√
2σui
αη

)
ρ

−2
αη ,

A = 1
π

N∑

k=1
wk

M∑

j=1
κj

×
∫ ∞

0

exp(−δ)

1 + rαz (πλ)
αη
2 exp(

√
2σuk)

sρ exp(
√
2ξxj)δ

αη
2

dδ + ONM. (52)

The integral in (52) can be approximated as a Gauss-
Laguerre quadrature sum as given below.

A= 1
π

N∑

k=1
wk

M∑

j=1
κj

Q∑

q=1
βq

1

1+ rαz (πλ)
αη
2 exp(

√
2σuk)

sρ exp(
√
2ξxj)δ

αη
2q

+ONMQ, (53)

where ONMQ is the error term due to ONM and repre-
senting integration in (52) as a Gauss-Laguerre quadra-
ture sum. Substituting (53) in (50), we obtain (21) of
Theorem 3.
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Endnote
1With a slight abuse of notation, we will use z to denote

both the location of MS and MS itself, similarly for BS y.
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