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Abstract

The paper outlines a new approach to the signal reconstruction process in multivariable wireless communications
tasks. A new solution is proposed using the so-called Smith factorization, which is efficiently used in the synthesis of
control systems described by polynomial matrix notation. In particular, the so-called polynomial S-inverse is used,
which, together with the applied degrees of freedom, creates a potential for the improvement of the operation of
wireless data communications systems comprising different numbers of inputs/antennas and outputs/antennas.
Simulations performed in the Matlab environment indicate the practical applicability of the proposed solution.
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1 Introduction
In mobile wireless communications, increasing attention
is paid to the quality and quantity of data transmitted in a
given unit of time. A higher capacity of the radio channel
of MIMO (multi-input/multi-output) systems, i.e., sys-
tems comprising multiple inputs/antennas and multiple
outputs/antennas, is gradually replacing the traditional
SISO (single-input/single-output) approach [1]. This is
confirmed by the widely used WiMAX, WiFi 802.11n,
DVB-T, or LTE/LTE advanced standards, the majority
of which use the OFDM (orthogonal frequency division
multiplexing) technology [2–5]. Therefore, an increased
capacity of these systems requires the use of a large
number of subcarriers and a parallel data transmission
mechanism. An intriguing alternative can be therefore
seen in systems based on different numbers of transmit-
ting and receiving antennas, where, unlike in the SISO and
square MIMO systems (identical numbers of inputs and
outputs), the so-called non-uniqueness is present, thus
creating viable possibilities of improving the efficiency
of the non-square wireless communications systems. It
should be emphasized that the drawback observed here in
the form of inter-channel interference (ICI) is eliminated
by applying the so-called SVD (singular value decompo-
sition) form in the signal reconstruction process [6–8],
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dedicated solely to the traditional analysis based on a
parameter matrix calculus [9–11]. On the other hand,
in the approach based on the polynomial matrix calcu-
lus [12–14], the aforementioned dysfunction is eliminated
by using the PSVD (polynomial SVD) [15–17]. Unfor-
tunately, all mentioned approaches to the signal perfect
reconstruction [18–20], also those including the Smith
decomposition method [21], have not so far included the
so-called degrees of freedom [22]. Therefore, they were
solely related to a certain “optimal” solution associated
with the application of the minimum-norm/least-squares
inverses to an Eigen matrix obtained from the factoriza-
tion process [11]. What is important is that even though
the above methods involve an infinite number of pairs
of precoder-equalizer, our degrees of freedom should be
understood in terms of usage of the different inverses
to Eigen matrix under a unique precoder-equalizer pair.
It will be shown that former cases are quite inappropri-
ate for the polynomial matrix description [16], and the
Smith factorization method proposed here outperforms
the classical solutions remarkably.

1.1 Method
In this paper, a new analytical solution to the signal perfect
reconstruction is presented. Not only does this approach
in discrete-time domain, dedicated to non-square sys-
tems, eliminates parasitic effects in the form of ICI and
ISI (inter-symbol interference), but also it efficiently uses
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the highly expectedmechanism of non-uniqueness, which
considerably improves the “robustness” of wireless com-
munications. The approach proposed herein is based on
the so-called Smith form of non-square polynomial matri-
ces, which is the foundation of the polynomial S-inverse
[22, 23].

2 System representation
We carry out the analysis of the wireless data commu-
nications system with NT-transmitter antennas and NR-
receiver antennas described by the (discrete) polynomial
matrix in the form of C

(
z−1) [16]

CNR×NT

(
z−1) =

Lc−1∑

n=0
cnz

−n, (1)

where (Lc-1) is the order of the FIR (finite impulse
response) matrix C

(
z−1).

The deterministic signal reconstruction process is per-
formed here in accordance with the difference equation

R(t) = C
(
q−1) S(t), (2)

where the vector of transmitted signals S(t) and the vec-
tor of received signals R(t) have the dimensions NT and
NR, respectively (see Section 4). Note that the symbol
t denotes a discrete-time domain, whereas q−1 is the
backward shift operator corresponding to z−1 one.
In the new perfect reconstruction approach presented

in this paper, a number of different inverses are used; they
are described in detail in the next section.

3 Inverses of non-square polynomial matrices
Due to the non-square form of CNR×NT

(
z−1), the authors

suggest using new inverses of non-square polynomial
matrices [22–25] in the signal reconstruction process [22].
We start with the classical minimum-norm right and
least-squares left inverses known as T-inverses in the
polynomial case.

3.1 T-inverses
For the polynomial matrix C

(
q−1) = c0 + c1q−1 + . . . +

cmq−m of full normal rank, the unique minimum-norm
right T-inverse is defined as

CR
0

(
q−1) = CT (

q−1)
[
C

(
q−1)CT (

q−1)
]−1

, (3)

while the unique least-squares left T-inverse is in the
following form

CL
0
(
q−1) =

[
CT (

q−1)C
(
q−1)

]−1
CT (

q−1) . (4)

3.2 τ -inverses
The non-unique right τ -inverse of the polynomial matrix
C

(
q−1) is defined as (NR < NT)

CR (
q−1) =

{
INT +

[
βs

(
q−1)

]R

0

[
C

(
q−1)

−β
(
q−1)

]}−1 [
βs

(
q−1)

]R

0
,

(5)

where polynomial matrices β
(
q−1) and βs

(
q−1) are

defined in References [22, 23]. On the other hand, the non-
unique left τ -inverse takes the following form (NR > NT)

CL (
q−1) =

{
INT +

[
βs

(
q−1)

]L

0

[
C

(
q−1)

−β
(
q−1)

]}−1 [
βs

(
q−1)

]L

0
.

(6)

The aforementioned forms
[
βs

(
q−1)

]R

0
and

[
βs

(
q−1)

]L

0
stand for the minimum-norm right and least-squares left
T-inverses of polynomial matrix βs

(
q−1), respectively,

while INT is the identity NT-matrix.

3.3 σ -inverses
A generalization of the polynomial τ -inverses is the so-
called right

CR (
q−1) =

{
INT +

[
β

(
q−1)

]R

0

[
C

(
q−1)

−β
(
q−1)

]}−1 [
β

(
q−1)

]R

0
,

(7)

and left

CL (
q−1) =

{
INT +

[
β

(
q−1)

]L

0

[
C

(
q−1)

−β
(
q−1)

]}−1 [
β

(
q−1)

]L

0
,

(8)

non-unique σ -inverses implementing the degrees of free-
dom in the form of an arbitrary matrix polynomial
β

(
q−1).
It should be emphasized that the new forms of polyno-

mial right and left σ -inverses (including also the param-
eter cases) are given in References [24, 26] as follows:

CR (
q−1) = βT (

q−1)
[
C

(
q−1) βT (

q−1)
]−1

, (9)

CL (
q−1) =

[
βT (

q−1)C
(
q−1)

]−1
βT (

q−1) . (10)

Crucial non-unique S-inverses are presented below.
They are effectively used when designing robust commu-
nications systems.

3.4 S-inverses
Non-unique polynomial S-inverses are associated with the
so-called Smith factorization of the polynomial matrix
C

(
q−1) to obtain

C
(
q−1) = U

(
q−1) �

(
q−1)V

(
q−1) , (11)
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where U
(
q−1) and V

(
q−1) are unimodular polynomial

matrices, and the unique matrix polynomial �
(
q−1) of

dimension NR × NT includes the eigenvalues of C
(
q−1).

The right and left S-inverses are defined as

CR (
q−1) = V−1 (

q−1) �R (
q−1)U−1 (

q−1) , (12)

CL (
q−1) = V−1 (

q−1) �L (
q−1)U−1 (

q−1) , (13)
respectively, where (non-)unique right and left inverses
of the polynomial matrix �

(
q−1) include the degrees of

freedom. Note that the parameter counterpart of the S-
inverse strictly dedicated to state-space systems has been
given in Reference [25].

Remark 1 It should be noted that all of the abovemen-
tioned inverses are reduced to the regular one C−1 (

q−1) in
case of NR = NT.

4 New approach to signal reconstruction process
MIMO wireless communications systems, including mul-
tiple transmitter and receiver antennas, are becom-
ing more and more common, and they even replace
traditional SISO solutions by offering high transmis-
sion/reception channel capacity improvement. Multivari-
able systems ensure not only an increase in capacity
but also, importantly, improvement without loss of the
required technological parameters of the received signal.
An intriguing case here is an approach implementing dif-
ferent numbers of transmitting and receiving antennas. In
such non-square systems, we can find the non-uniqueness
of the obtained solution, which has a positive impact
on the whole signal reconstruction/recovery process. By
selecting appropriate degrees of freedom of inverses, we
can considerably influence the robustness and energy of
the received signal (in the case of the control theory see
Reference [26]). In the authors’ opinion, the new method
can eliminate the parasitic impact of the natural environ-
ment in the context of the applied inverses of non-square
polynomial matrices. Such operations directly improve
the signal transmission rate while maintaining approved
quality standards. Of course, the entire signal perfect
reconstruction process only occurs in case of NR > NT,
since we have full information about the transmitted
signal.
It is important that the proposed approach to per-

fect reconstruction of signal is based on the polynomial
matrix calculus. The solutions used so far were based
on the parameter matrix calculus, using unique inverses
with the so-called Hermitian conjugates of certain (full
rank) non-square matrices [27]. Unfortunately, this cal-
culus does not include the aforementioned degrees of
freedom, thus making it considerably more difficult to
adjust to the detrimental impact of the environment on
the data transmission process.

Remark 2 It should be emphasized that the unique right
and left inverses including the Hermitian conjugates are
not applicable in the time-domain signal perfect recon-
struction approach presented here [23].

To illustrate the discussed problems, let us analyze the
stochastic process of perfect reconstruction of signal and
rewrite Eq. (2) to the form

R′(t) = C
(
q−1) S(t) + ζ(t), (14)

where ζ(t) is the uncorrelated zero-mean Gaussian white
noise at (discrete) time t.
Then, let us perform the non-unique Smith factoriza-

tion of C
(
q−1) and, at the same time, eliminate ICI and

ISI parasitic effects

R′(t) = U
(
q−1) �

(
q−1)V

(
q−1) S(t) + ζ(t), (15)

where the polynomial matrices U
(
q−1) and V

(
q−1) are

the “equalizer” and the “precoder,” respectively [22].
After using the S-inverse, the perfect reconstruction of

signal for the selected NR > NT takes the following form

S(t) = V−1 (
q−1) �L (

q−1)U−1 (
q−1)R′(t)

−V−1 (
q−1) �L (

q−1)U−1 (
q−1) ζ(t),

(16)

where the symbol “L” stands for the (non-)unique left
inverse of matrix polynomial �

(
q−1).

Of course, Eq. (16) can be rewritten in the following
form

S′(t) = V−1 (
q−1) �L (

q−1)U−1 (
q−1)R′(t), (17)

with S′(t) = S(t) + V−1 (
q−1) �L (

q−1)U−1 (
q−1) ζ(t)

being a stochastic NT-input vector.
Taking into account the above considerations, for NR >

NT, we obtain [28]

�L (
q−1) =

[
DNT×NT

(
q−1) MNT×(NR−NT)

(
q−1)

]
, (18)

where the polynomial matrices M
(
q−1) and D

(
q−1)

include significant degrees of freedom and transmission
zeros (if any in the C

(
q−1) [23]), respectively. In case of

absence of transmission zeros, we have D
(
q−1) = INT .

Finally, based on the pilot knowledge, the optimal
degrees of freedom ofM

(
q−1) are chosen according to the

square performance index

Mopt(q
−1) = arg min

M(q−1)

N−1∑

t=0

{[
S′(t)−S(t)

]T[
S′(t)−S(t)

]}
,

(19)

where N denotes the number of samples.
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Remark 3 �L (
q−1) can also be obtained by using poly-

nomial σ -inverses in two parallel forms

�L (
q−1) =

{
INT +

[
β

(
q−1)

]L

0

[
�

(
q−1)

−β
(
q−1)

]}−1 [
β

(
q−1)

]L

0
,

(20)

�L (
q−1) =

[
βT (

q−1) �
(
q−1)

]-1
βT (

q−1) , (21)

where
[
β

(
q−1)

]L

0
=

[
βT (

q−1) β
(
q−1)

]−1
βT (

q−1) while
β

(
q−1) includes the degrees of freedom [24].

Remark 4 If we apply the unique left T-inverse directly
toC

(
q−1) or�

(
q−1), we will obtain no degrees of freedom.

Remark 5 It should be pointed out that in square sys-
tems, i.e., systems having equal numbers of transmitting
and receiving antennas, there are also no degrees of free-
dom. Therefore, the optimization cannot efficiently elimi-
nate the impact of noise on the whole signal reconstruction
process.

Remark 6 We start our optimization task in the Mat-
lab environment with the degrees of freedom included in
the parameter matrix; a more general case is based on the
matrix polynomial.

Remark 7 Now, it is clear that in the deterministic case,
we immediately obtain the perfect reconstruction of signal
according to the following formula

S(t) = CL (
q−1)R(t), (22)

where CL (
q−1) denotes the abovementioned polynomial

matrix S-inverse of full normal rank C
(
q−1).

Remark 8 It should be emphasized that in the determin-
istic case of the signal perfect reconstruction as mentioned
in Remark 7, the left inverse of C

(
q−1) is not determined;

due to the elimination of ISI and ICI drawbacks, the S-
inverse has been applied. Therefore, assuming that R(t) =
C

(
q−1) S(t), the stochastic recovery task as presented in

Eq. (16) can be rewritten in the following form

S(t) + V−1 (
q−1) �L1 (

q−1)U−1 (
q−1) ζ(t)

= V−1 (
q−1) �L (

q−1)U−1 (
q−1)R(t)

+V−1 (
q−1)�L2 (

q−1)U−1 (
q−1) ζ(t),

(23)

where �L1 (
q−1) �= �L2 (

q−1), in general, under any
�L (

q−1).

Remark 9 Since our new polynomial method of perfect
signal reconstruction does not correspond to the Moore-
Penrose inverse, we must consider them separately.

Remark 10 The aforementioned signal recovery may be
impossible after using the unique T-inverses in case of
non-square systems (previously known as minimum-norm
right/least-squares left inverses); these inverses may signif-
icantly destabilize the whole signal reconstruction process
due to the existence of so-called unstable control zeros [22].
The whole signal reconstruction process is always destabi-
lized in case of the existence of unstable transmission zeros
which are the modes of the fundamental system matrix
C

(
q−1) [22, 23].

Remark 11 Note that the entire task of signal recon-
struction should be understood in terms of an adaptive
process, where the said degrees of freedom are selected
cyclically with a period adjusted by the designer.

What is important is that the solution based on the poly-
nomial matrix calculus (along with non-zero degrees of
freedom, i.e., at M

(
q−1) �= 0), is a new approach so far

unknown in the field of the modern signal reconstruction.
The application of left inverses in Eq. (16) improves the
capacity/robustness of the wireless communications net-
work in terms of the elimination of the parasitic impact
of noise. Of course, it is possible by choosing appropri-
ate components/degrees of freedom of matrix M

(
q−1) of

Eq. (18) according to the criterion (19). The same can be
achieved as a result of applying non-unique type τ - and σ -
inverses. An adequate selection of the degrees of freedom
βs

(
q−1) and β

(
q−1) that are not relative to the propa-

gation environment C
(
q−1) can provide a greater degree

of independence of the parasitic effects (see Eqs. (20) and
(21)). Finally, we can strongly note that an alternative to
the applied Smith decomposition can be offered by the use
of the PSVD method implementing the non-zero degrees
of freedom, whose derivation is either based on the use
of the PEVD (polynomial EVD) approach [29, 30], or one
that is obtained in a direct manner [31]. This intriguing
proposal is briefly described in the next section.

5 PSVD vs. Smith decomposition-based approach
In Reference [16], the authors applied a successful polyno-
mial singular value decomposition. As stated earlier, the
currentmethods in the wireless telecommunications stud-
ies use zero degrees of freedom. Hence, the idea of the
use of a new non-zero degrees of freedom was conceived
with the purpose of limiting the impact of the noise on
the process of data transfer. The same paradigm can be
applied in the signal reconstruction process based on the
PSVD method, which is worth further research. However,
the methods basing on SVD and PSVD decompositions
cannot be directly compared with the newmethod applied
for signal recovery. The reason for this can be associ-
ated with different dynamic parameters of the propagation
environments derived as a result of using SVD and PSVD
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on one hand and a method applying polynomial S-inverse
on the other hand. In the former case, we merely obtain
an approximation of the dynamic properties of the prop-
agation environment, whereas the latter approach implies
that an accurate dynamics of this environment is obtained.
Appendix offers an outline of the working characteris-
tics of the signal reconstruction methods for a non-square
system comprising two transmitting antennas and four
receiving ones.
The paradigm of the new intriguing method is ana-

lytically confirmed by a more general first polynomial
part of the next section containing simulation examples,
whereas the second parameter part contains the results
of complex optimization runs using the genetic algorithm
mechanism.

6 Results and discussion
Let us analyze the wireless telecommunications system
with no transmission zeros, including two transmitter
antennas NT = 2 and three receiver antennas NR = 3.
Assuming that the matrix obtained by the pilot identifica-
tion and describing the dynamics of the parasitic impact
of the environment on the signal reconstruction process
takes the following form

C
(
q−1) =

⎡

⎣
− 0.3 + 0.5q−1 0.6
1 − 0.8q−1 + 0.4q−2 1 − 0.5q−1

0.9 − 0.3q−1 0.8

⎤

⎦ . (24)

After using the Smith factorization ofC
(
q−1), we obtain

U
(
q−1)=

⎡

⎣
− 0.8 2.2 − 1.6q−1 . . .

− 1.3−0.6q−1 0.3−0.3q−1 − 0.5q−2 . . .
− 1 0 . . .

. . . 2.2 − 1.6q−1

. . . − 0.6 − 0.3q−1

. . . 0

⎤

⎦, (25)

V
(
q−1) =

[ − 0.9 + 0.3q−1 − 0.8
− 0.4 0

]
, (26)

and containing no transmission zeros

�
(
q−1) =

⎡

⎣
1 0
0 1
0 0

⎤

⎦ . (27)

Now, in accordance with the signal perfect reconstruc-
tion as presented in Eq. (16), for the received signal
R′(t) = [

R′
1(t)R′

2(t)R′
3(t)

]T (due to its complexity, vector
R′(t) blurred by a zero-mean white noise ζ(t) is not given
here), we obtain the vector of the transmitted signal

S(t) =
[

0 − 2.3
− 1.3 2.5 − 0.8q−1

] [
1 0 M1

(
q−1)

0 1 M2
(
q−1)

]

×
⎡

⎣
0 0 . . .

0.6 + 0.3q−1 −1 . . .

0.3 − 0.3q−1 − 0.5q−2 − 2.2 + 1.6q−1 . . .

. . . − 1

. . . 0.8 − 0.8q−1

. . . 2.5 − 3.2q−1 + 1.4q−2

⎤

⎦

⎡

⎣
R′
1

R′
2

R′
3

⎤

⎦

−
[

0 − 2.3
− 1.3 2.5 − 0.8q−1

] [
1 0 M1

(
q−1)

0 1 M2
(
q−1)

]

×
⎡

⎣
0 0 . . .

0.6 + 0.3q−1 − 1 . . .

0.3 − 0.3q−1 − 0.5q−2 − 2.2 + 1.6q−1 . . .

. . . − 1

. . . 0.8 − 0.8q−1

. . . 2.5 − 3.2q−1 + 1.4q−2

⎤

⎦ ζ(t).

(28)

Finally, for the determined value ζ(t) =[ 0.1 −
0.2 0.2]T and the degrees of freedom of matrix M(q)
=

[
343712

841(1996 q2−2023q+521)
14944(-38348 q2 + 15109 q)

707281(1996 q2−2023q+521)

]
=

[M1(q)M2(q)]T, selected as a result of analytical calcula-
tions, the reconstructed vector S(t) is S(t) =[ 3 + 3i −
3 − i]T (corresponding to the two points of 16-QAM
constellation of transmitted signal S(t)). Note that in our
simulation example, there is �L (

q−1) = �L1 (
q−1) =

�L2 (
q−1), see Remark 8.

To better describe the advantages of the method pro-
posed, complex tests were carried out by using the
authors’ OFDM technology simulator running in theMat-
lab environment [28]. For this purpose, 103776 bits of ran-
dom input data from 64-QAM constellation were trans-
ferred by means of the IQ-modulated signal through the
single carrier systemwith thematrixC

(
q−1) as in Eq. (24).

For the assumed rigorous tolerance, the special parameter
matrices M

(
q−1) were obtained using the genetic algo-

rithm according to the performance index (19). Thus, we
have different degrees of freedom for each of the SNRs,
not presented in this paper due to space limitation. It is
evident that the new method outperforms the classical
one, where zero degrees of freedom associated with the
application of minimum-norm/least-squares inverses to
�

(
q−1) a polynomial matrix can be find. This statement

is confirmed in Fig. 1.
In addition, two simulation tests were performed cover-

ing propagation environments described by the following
matrices

C
(
q−1)=

⎡

⎣
− 0.75 + 0.6q−1 0.9

0.56−0.01q−1+0.02q−2 0.83−0.75q−1

0.83 − 0.25q−1 0.6

⎤

⎦, (29)
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Fig. 1 Perfect reconstruction process: BER vs. SNR

and

C
(
q−1) =

⎡

⎣
− 0.5 + 0.4q−1 0.9

1 − 0.6q−1 + 0.2q−2 1 − 0.6q−1

1 − 0.4q−1 0.6

⎤

⎦ , (30)

respectively.
Figure 2 presents the results obtained for single carrier

system given by Eq. (29), whereas Fig. 3 for single carrier
system as in Eq. (30).

7 Conclusions
In this paper, the new approach to the process of per-
fect reconstruction of signals is presented. The new
solution is based on polynomial matrix calculus, mainly
the so-called left S-inverse of the polynomial matrix.
Errors generated in the process of signal reconstruc-
tion are compensated by the appropriate selection of
components/degrees of freedom of the non-zero matrix

M
(
q−1). Simulation tests carried out in the Matlab envi-

ronment have indicated a considerable implementation
potential of the innovative approach proposed in this
paper to the tasks of efficient signal recovery in non-
square MIMO telecommunications systems. It should be
emphasized that the new method still outperforms the
typical one in case of presence of noise with uniform
distribution.

Appendix
Method based on PSVD
The matrix applied to described the dynamics of the
propagation environment assumes the form

C
(
q−1) =

⎡

⎢
⎢
⎣

1.5q−1 − 3
− 3q−2 − 1.5q−1

1.5q−1 −3
− 3q−2 − 1.5q−1

⎤

⎥⎥
⎦ . (I.1)

Fig. 2 Perfect reconstruction process: BER vs. SNR
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Fig. 3 Perfect reconstruction process: BER vs. SNR

Following PSVD factorization, we receive

C
(
q−1) = U(q)�(q)V†(q), (I.2)

where

U(q) =

⎡

⎢⎢
⎣

0.5 q 0.5 q2
− q−1 0.5 − q−2 0.5
0.5 q − 0.5 − q2
− q−1 0.5 q−2 − 0.5

⎤

⎥⎥
⎦ ,�(q) =

⎡

⎢⎢
⎣

q 0
0 1
0 0
0 0

⎤

⎥⎥
⎦

and V†(q) = VH(1/q∗) =
[
3q−2 0
0 − 3q−1

]
.

Evidently, U(q)U†(q) = U†(q)U(q) = 2.5I4 and V(q)
V†(q) = V†(q)V(q) = 9I2, where In denotes n-identity
matrix, and both U(q) and V(q) are paraunitary matrices.
Let us consider a deterministic process of perfect signal

reconstruction

R(t) = C
(
q−1) S(t), (I.3)

where R(t) and S(t) are the vectors of the received
and transmitted signals, respectively. By consideration of
Eq. (I.2) and application of the precoder V(q) and equal-
izer U†(q) structures (for an example see Reference [15]),
we receive

R′(t) = U†(q)U(q)�(q)V†(q)V(q)S(t). (I.4)

Unfortunately, R′(t) �= R(t).

Method based on SVD
By the analogy to the case of PSVD for R(t) = CS(t),
where C is a parameter matrix, we receive

R′(t) = U†U�V†VS(t), (II.5)

where V and U† denote the precoder and equalizer struc-
tures, respectively, fulfilling the condition of unitarity.
In this case, also R′(t) �= R(t).

Method based on polynomial S-inverse
Taking into consideration that

C
(
q−1) = U

(
q−1) �

(
q−1)V

(
q−1) , (III.6)

where U
(
q−1) and V

(
q−1) are unimodular matrices

obtained as a result of applying Smith factorization,
Eq. (I.3) can be written in the following form

R(t) = U
(
q−1) �

(
q−1)V

(
q−1) S(t). (III.7)

By solving Eq. (III.7) in respect to S(t), we receive the
actual error-free transmitted signal S(t) in accordance
with the relation

S(t) = V−1 (
q−1) �L (

q−1)U−1 (
q−1)R(t), (III.8)

where superscript “L” denotes every non-unique left
inverse of matrix polynomial �L (

q−1).
Finally, let us remark that we cannot directly com-

pare the two methods of signal recovery, i.e., approaches
involving respective (P)SVD and Smith factorization
mechanisms. The reason for this was associated, for
example, with the lack of causation phenomenon in the
precoder and/or equalizer structures (see Eq. (I.4), where,

e.g., U(q) =

⎡

⎢
⎢
⎣

0.5 q 0.5 q2
− q−1 0.5 − q−2 0.5
0.5 q − 0.5 − q2
− q−1 0.5 q−2 − 0.5

⎤

⎥⎥
⎦, whereas for the

case when, e.g., q2 constitutes a double feed-forward, i.e.,
we have y(t) = u(t + 2)).
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