
RESEARCH Open Access

Dynamic analysis of a class of neutral delay
model based on the Runge-Kutta algorithm
Hongying Luo

Abstract

In this paper, we study the dynamics of a class of second-order neutral delay nonlinear models. This study is applicable
to many fields, such as engineering, cybernetics, and physics. We use the Runge-Kutta algorithm and the Riccati
transform method. First, we give a neutral delay nonlinear model based on the Runge-Kutta algorithm. Then, we
study the dynamic characteristics of the neutral delay model and establish some new sufficient conditions for the
oscillation. The results of our research are new, and these results promote and improve the results already available.
The results are also verified by numerical experiments. The neutral delay nonlinear model has an important application
in engineering, cybernetics, and physics. Therefore, the study of this paper has great help and promotion to engineering,
cybernetics, and physics.
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1 Introduction
The Runge-Kutta algorithm is a more practical algorithm
built on the basis of mathematical support [1]. This algo-
rithm is an important implicit or explicit iterative method
for solving the solutions of nonlinear ordinary differential
equations [2]. Because of the high precision of the algo-
rithm, it is a kind of high-precision single-step algorithm
widely used in engineering [3]. However, some measures
need to be taken to suppress the deviation, so the imple-
mentation principle is more complex [4]. In recent years,
due to the widespread application of neutral delay differ-
ential equations in engineering cybernetics and physics
fields, a wide range of attention has been drawn from
scholars both at home and abroad [5–8]. With the further
improvement of the Runge-Kutta algorithm and the fur-
ther development of the neutral delay differential equation
theory, many scholars have studied the delay differential
equations and get some related results about oscillation
[9–14]. People use a series of techniques and methods,
such as calculation and reasoning, to study these equa-
tions and to obtain the oscillation conditions of the solu-
tion of the equation [10, 15–19]. How to get the
oscillation criterion of the neutral delay differential
equation model becomes the key and the difficult problem

[20, 21]. The Runge-Kutta algorithm and Riccati trans-
form provide an effective and practical method for us to
study the two-order neutral time-delay model.
In this paper, we study the dynamic characteristics of

a class of second-order neutral delay models by using
the Runge-Kutta algorithm. We have obtained some
new oscillation criteria for a class of second-order neu-
tral delay nonlinear differential equation models. These
results promote and improve the known results in the
literature.

2 Model and methodology
The vibration problems in engineering, cybernetics,
communication technology, physics, and other fields can
be represented by the neutral delay model differential
equation model. For a long time, the problem of dynam-
ics has been the concern of experts and scholars at
home and abroad. To this end, the experts also set up
some neutral delay model to study the vibration of en-
gineering, automatic control, communication technol-
ogy, and other practical problems. On the basis of the
existing literature, this paper studies a class of engineer-
ing control problems, that is, a class of second-order
neutral delay differential equations with the expression
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r tð Þϕα z0 tð Þð Þð Þ0 þ p tð Þϕα z0 tð Þð Þ þ f t; x σ tð Þð Þð Þ ¼ 0; t≥ t0:

ð1Þ
where z(t) = x(t) + c(t)x(τ(t)), φα(s) = |s|α − 1s and the
following conditions are satisfied:
(h1) ∃q(t) ∈ C[t0,∞), f(t, x) sgn x ≥ q(t)|x|β, α and β are

constants.

h2ð Þp tð Þ; r tð Þ∈C t0;∞½ �ð Þ; p tð Þ≥0; r tð Þ > 0;−1 < c tð Þ < 0

h3ð Þσ tð Þ∈C1 t0;∞½ �;Rð Þ; σ tð Þ > 0; σ 0 tð Þ > 0; σ tð Þ≤ t;
lim
t→∞

σ tð Þ ¼ ∞:

h4ð Þ
Z ∞

t0

R−1
α tð Þdt ¼ þ∞;R tð Þ ¼ E tð Þr tð Þ; E tð Þ

¼ exp
Z t

t0

p sð Þ
r sð Þ ds:

This model (1) has been widely used in engineering,
automatic control, communication technology, physics,
and other systems. By using Riccati transformation and
computational reasoning, some new vibration criteria for
two-order neutral delay differential Eq. (1) are obtained.
These results promote and improve some of the well-
known results.

3 Results and discussion
In this paper, in order to study the vibration of the sys-
tem (1), we will use the generalized Riccati transform
method to study Eq. (1).
Lemma 1 Assume that (h1)~(h4) holds, and x(t) is an

eventually positive solution of Eq. (2), then z(t) > 0, z′(t) >
0,or x(t)→ 0.
Proof We Suppose x(t) is an eventually positive solu-

tion of Eq. (2). If z(t) > 0, we have

R tð Þϕα z0 tð Þð Þð Þ0 þ E tð Þ f t; x σ tð Þð Þð Þ ¼ 0:

Then,

R tð Þϕα z0 tð Þð Þð Þ0≤0;
that is,

(R(t)|z′(t)|α − 1z′(t))′ ≤ 0.

z′(t) is eventually of one sign, that is, z′(t) > 0 or z′(t) < 0.
Otherwise, if there exists T, such that z′(t) < 0 for t ≥ T,
then for arbitrary positive K, we have

R tð Þ z0 tð Þj jα−1z0 tð Þ≤−R Tð Þ −z0 Tð Þð Þ ¼ −K < 0:

−z0 tð Þ≥ k
R tð Þ

� �1�
α
:

0 < z tð Þ≤z Tð Þ−K 1
α

Z t

T
R−1

α sð Þds→−∞:

Therefore, z′(t) > 0.
If z(t) < 0, then x(t) is bounded. Otherwise, if x(t) is un-

bounded, ∃ftng∞n¼1 , such that lim
n→∞

tn ¼ ∞ , let xðtnÞ
¼ max

s∈½T ;xn�
fxðsÞg; thus, tn ≥ τ(tn) ≥ T.

xðτðtnÞÞ≤ max
s∈½T ;xn�

fxðsÞg ¼ xðtnÞ
< − c(tn)x(τ(tn)) < x(τ(tn)).
Therefore, x(t) is bounded.
0≥ lim sup sup zðtÞ

t→∞

≥ lim sup xðtÞ
t→∞

þ lim inf cðtÞxðtÞÞ
t→∞

≥ð1−cÞ lim inf xðtÞ≥0
t→∞

.

Thus, lim
t→∞

xðtÞ ¼ 0.

Lemma 2 We suppose x(t) is an eventually positive so-
lution of Eq. (2), then
(1)z(t) > tz′(t);

(2)
zðtÞ
t is strictly decreasing eventually.

Proof Since (R(t)(z′(t))α)′ ≤ 0, then z′′(t) ≤ 0. Let g(t) =
z(t) − tz′(t); we get g′(t) = − tz′′(t) > 0 and we assert that
g(t) > 0 eventually. Otherwise, g(t) < 0, so

z tð Þ
t

� �0
¼ −

g tð Þ
t2

> 0:

Thus,
zðtÞ
t is strictly increasing.

zðσðtÞÞ
σðtÞ ≥ zðσðTÞÞ

σðTÞ ¼b > 0, t ≥ T.

We have z(σ(t)) ≥ bσ(t); thus,

0 < R(t)(z′(t))′

≤RðTÞðz0 ðTÞÞα− R t
T QðsÞz βðσðsÞÞds

≤R Tð Þ z0 Tð Þð Þα−bβ
Z t

T
Q sð Þσβ sð Þds→−∞:

Then, z(t) > tz′(t), and
zðtÞ
t is strictly decreasing

eventually.

Theorem 1 Assume that
R t
T ½ρðsÞQðsÞð σðsÞs Þβ

−

RðsÞðρ0ðsÞÞλþ1

ðλþ1Þλþ1ðmρðsÞÞλ �ds ¼ ∞ , then Eq. (2) is almost

oscillatory.
Proof We suppose x(t) is an eventually positive solu-

tion of Eq. (2); from Lemma 1, we have
z(t) > 0, z′(t) > 0, or x(t)→ 0.
We define the function
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w tð Þ ¼ R tð Þ z0 tð Þð Þα
z β tð Þ :

If β ≥ α, we have

w0 tð Þ ¼ R tð Þ z0 tð Þð Þαð Þ0
zβ tð Þ −

β

R 1
�
α tð Þ z tð Þ½ �β−αα wαþ1

α tð Þ

≤−Q tð Þ σ tð Þ
t

� �β

−
αm1

R 1
�
α tð Þw

αþ1
α tð Þ:

where m1 ¼ minf1; ½zðTÞ�β−αα g.
If β < α, we have

w0 tð Þ≤−Q tð Þ σ tð Þ
t

� �β

−
β

R
1
�
β tð Þ

z0 tð Þ½ �
β−α
β w

βþ1
β tð Þ

≤−Q tð Þ σ tð Þ
t

� �β

−
βm2

R
1
�
β tð Þ

w
βþ1
β tð Þ:

where m2 ¼ minf1; ½z0 ðTÞ�
β−α
β g.

Therefore, if β < α or β < α, we have

w0 tð Þ≤−Q tð Þ σ tð Þ
t

� �β

−
λm

R 1
�
λ tð Þ

w
λþ1
λ tð Þ

where λ =min {α, β}. Let AðtÞ ¼ λm
R 1

�
λðtÞ; we haveZ t

T
ρ sð ÞQ sð Þ σ sð Þ

s

� �β

ds≤−
Z t

T
ρ sð Þw0 sð Þds

−
Z t

T
ρ sð ÞA sð Þwλþ1

λ sð Þds

≤ρ Tð Þw Tð Þ−ρ tð Þw tð Þ þ
Z t

T
ρ0 sð Þw sð Þds−ρ sð ÞA sð Þwλþ1

λ sð Þ
h i

ds

≤ρ Tð Þw Tð Þ þ
Z t

T

λλR sð Þ ρ0 sð Þð Þλþ1

λþ 1ð Þλþ1 λmρ sð Þð Þλ ds

¼ ρ Tð Þw Tð Þ þ
Z t

T

R sð Þ ρ0 sð Þð Þλþ1

λþ 1ð Þλþ1 mρ sð Þð Þλ ds:

We have

Z t

T
ρ sð ÞQ sð Þ σ sð Þ

s

� �β

−
R sð Þ ρ0 sð Þð Þλþ1

λþ 1ð Þλþ1 mρ sð Þð Þλ
" #

ds≤ρ Tð Þw Tð Þ < ∞:

By the Lemma 1 and the Lemma 2 and the related the-
ory of equation oscillatory, we get Eq. (2) is almost
oscillatory.

4 Conclusions
In this paper, the second-order neutral delay nonlinear
model is studied by combining the Runge-Kutta algo-
rithm and the Riccati transformation method. We have

obtained the oscillation criterion of the second-order
neutral delay nonlinear differential equation model.
Most of the literature mainly studied the situation α ≥ β
[5–8, 13–21]. We not only studied the situation α ≥ β
but also studied the situation α < β. We generalize the
existing results and get the new oscillation criterion.
This second-order neutral delay differential equation de-

scribes the oscillation phenomena in the fields of engin-
eering, control, communication, physics, and other fields.
This indicates that oscillation in engineering, control and
communication technologies will cause internal damage.
We can predict the oscillation by the Runge-Kutta algo-
rithm and the Riccati transform, in order to avoid the
occurrence of oscillation in actual conditions such as en-
gineering, control, communication technology and so on.

Abbreviation
Eq: Equation
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