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Abstract

This paper presents an ensemble learning particle swarm optimization (ELPSO) algorithm for real-time indoor
localization based on ultra-wideband (UWB). Indoor localization problem can be formulated as an optimization
problem to predict the target. The proposed algorithm expands the original PSO into ELPSO under superbest guide,
which is a parameter employed to identify the top gbest by learning from three individual algorithms and updated
asynchronously. The performance of the proposed ELPSO is evaluated by using the CEC2005 benchmark and
compared with each individual algorithm and other state-of-the-art optimization algorithms. The feasibility of the
proposed ELPSO is demonstrated in both 2D and 3D UWB indoor localization system generating promising results.
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1 Introduction
With the popularization of smart devices and the devel-
opment of mobile Internet, there is an increasing de-
mand for indoor positioning. Indoor localization-based
services can support many application scenarios, such as
public security and emergency response and positioning
navigation. Diverse technologies have been developed
for precise indoor localization. Localization technology
based on Global Position System (GPS) and maps have
been widely used. But GPS location signals are not able
to penetrate buildings; they are unable to work indoors.
In order to overcome the GPS positioning defects and
realize the accurate positioning in the complex indoor en-
vironment, many practical indoor localization schemes are
introduced, such as infrared, WIFI, Bluetooth, ZigBee,
ultrasound, radio frequency identification (RFID), and
ultra-wideband (UWB). Infrared [1] is limited by its prop-
erties and vulnerable to the external environment; the po-
sitioning accuracy can only be up to 5 m. WIFI [2],
Bluetooth [3], and ZigBee [4] can only locate the area
of about a few tens of meters, and its positioning ac-
curacy can only reach 3 m, unable to meet the indoor
mobile positioning demand. Ultrasonic [5] indoor

positioning is affected by narrowband transducers
with poor accuracy. RFID [6] technology can only be
identified, unable to locate in real time, and position-
ing accuracy is around 5 m. UWB [7] technology is a
non-carrier communication technology. It uses the
narrow-pulse signal of nanosecond or nanosecond to
transmit data, which makes the ultra-wideband signal
to have a high time resolution, achieving high posi-
tioning accuracy with low power consumption and
low system complexity. It also has advantages of low
power consumption, excellent anti-multipath effect, re-
liable security, and low system complexity. Consequently,
UWB technique is particularly suitable for reliable and ac-
curate indoor real-time positioning; this paper designs a
wireless indoor positioning system based on ultra-
broadband technology. While UWB is quite suitable, it
still suffers from limitations of accuracy, especially in 3D
indoor localization.
To address this problem, one straightforward solution

is to improve ranging algorithms or positioning algo-
rithms from hardware prospects. However, lots of obsta-
cles like multipath fading, shadowing effect, or scattering
characteristics cannot be overcome. Meanwhile, the cost
in network construction and equipment installation will
also increase dramatically. In this case, we try to trans-
form indoor localization problem into an optimization
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problem, and then, we find that this problem can be op-
timized by particle swarm optimization (PSO) algorithm.
PSO is a widely recognized optimization algorithm moti-
vated by animal social behaviors. A group of particles,
regarded as a swarm, fly and search in a limited range at
a certain speed, aiming to find the optimal point
cooperatively. Due to its simple implementation and
excellent performance, PSO has been popularly applied
to solve real-time scheduling or engineering problems.
In this paper, we propose a two-step location and
optimization method for UWB indoor positioning.
Figure 1 illustrates the major difference between the
proposed algorithm and existing work. Our key obser-
vation is that it is hard to achieve perfect performance
directly under traditional communication methods. Essen-
tially, the main difficulty arises from the large gap between
measured target and true target due to the limitation of
hard devices and environmental barriers. The goal of our
work is to bridge the gap by progressive optimization after
communication measure. In the location step, we calcu-
late the distance from bases to target by two-way ranging
(TWR) and use TODA to estimate the target position. In
the optimization step, we model the target area based on
the pre-measured location and allocate multiple particles
into the area to mine confident candidates. We then use
ensemble learning particle swarm optimization (ELPSO)
to fine-tune the measured target, resulting in a more

precise target position after optimization. In our proposed
ELPSO algorithm, three different kinds of PSO variants,
namely global PSO (GPSO), local PSO (LPSO), and bare
bones PSO (BBPSO), are hybridized to complement each
other. GPSO is used to accelerate convergence speed.
LPSO is used to ensure rich population diversity. BBPSO
is used to avoid complex parameter adjustments.
The proposed ELPSO algorithm addresses the

drawbacks from prior work in three aspects: (1) Our
algorithm attempts to achieve the global optimal from
multiple populations with super best guide. This strat-
egy aims at drawing advantages and potential charac-
teristics together from different PSO algorithms,
leading to an ensemble approach for progressive
optimization in UWB indoor localization system. (2)
Our location step uses UWB technique to predict the
indoor target position in real time. This step aims at
estimating an initial position within a certain margin
of error, providing more discriminative searching
space for ELPSO. (3) Our optimization step using
ELPSO fine-tunes the measured location such that it
can find the optimal with the highest precision,
especially for 3D indoor localization.
We make the following three contributions in this

work:

� We propose to use progressive optimization for
UWB indoor localization by ELPSO. We show that
this strategy is crucial for good performance.

� Our hardware communication-based method helps
filter the target area, and our progressive
optimization step helps find the most likely
optimal point among the modeling area for
indoor positioning task.

� We present detailed evaluations for ELPSO and
performance both in 2D and 3D UWB indoor
positioning. Experimental results demonstrate that
our ELPSO algorithm performs favorably against the
state-of-the-art evolutionary computation methods.
Our two-step location and optimization method
achieves promising accuracy on UWB indoor
positioning, surpassing the initial performance
obviously.

The reminder of this paper is organized as follows.
Section 2 presents related work about particle swarm
optimization and indoor positioning, followed by a de-
tailed description about ELPSO algorithm in Section 3.
In Section 4, we apply the proposed strategy into indoor
positioning scenarios, i.e., both two dimensions and
three dimensions. Moreover, we evaluate both ELPSO al-
gorithm and its application in UWB indoor positioning
by extensive experiments in Section 5. Finally, a conclu-
sion is given in the last section.

Fig. 1 Comparison of our approach with existing UWB indoor
localization methods. Most methods use one-step distance calculating
to locate the target directly. We propose a two-step location and
optimization approach. We first filter out the area of the target located
in according to traditional communication method, and then mine
confident candidates and optimize the objective for precise localization
by ELPSO
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2 Related work
2.1 Particle swarm optimization
Particle swarm optimization (PSO) is a population-level
intelligent algorithm firstly proposed by Kennedy and
Eberhart in 1995 [8, 9], which is originally from artificial
intelligence and evolutionary computation theory, fol-
lowing birds’ searching behavior to achieve the global
optimum through collective collaboration. The research
of PSO is an integration of various disciplines such as arti-
ficial life, evolutionary computation, swarm intelligence,
biology, and social psychology. Imagine a group of birds
searching for food at random, suppose there is one and
only one piece of food in a particular area, and none of
the birds know where the food is. But they know how far
they are from food. The simplest and most effective strat-
egy to find food is to search the region around the nearest
bird. We can model this optimization problem mathemat-
ically. Given a flock of birds, say N birds, each bird is
abstracted as a particle with no mass, volume but position
and velocity, which corresponds to the population of N
particles and extends to D dimensional space. The pos-
ition of the particle i in the N dimensional space is repre-
sented as the vector Xi = [xi

1, xi
2,…, xi

D], and the velocity
is expressed as vector Vi = [vi

1, vi
2, …, vi

D]. Each particle
has a fitness value determined by the evaluation function
and knowing its personal best position (pbest) so far and
the current location Xi, which is the personal experience
from itself. In addition, each particle has been kept known
the best location (gbest) found by the entire population so
far, which is the global experience from other peers. The
particle determines the next movement by the best
experience from its own or peers, then updating the
corresponding velocity and location.
In the progress of particle swarm optimization re-

search, scholars have made a lot of outstanding work in
both theoretical study and practical application. Accord-
ing to research focus and trend in recent years, the
theoretical study of PSO could mainly be divided into
four categories, namely single objective continuous space
optimization problem, multiple objectives continuous
space optimization problem, single objective discrete
space optimization problem, and multiple objectives
discrete space optimization problem.
For single objective continuous space optimization

problem [10], on the one hand, the movement behaviors
or patterns of particle swarm and individual particle are
carried on the thorough discussion. Lu et al. [11] studied
the movement behavior of particle swarm based on co-
operative control framework. Bonyadi and Michalewicz
[12] studied the movement patterns of individual particle
and suggested that two influencing factors of particle’s
movement are the correlation among continuous posi-
tions and the range of movement. On the other hand,
traditional theoretical research has also been extended.

Bonyadi and Michalewicz [13, 14] made specific analysis
on the stability, local convergence, and transformation
sensitivity of PSO. Helwig et al. [15] analyzed the influ-
ence of different boundary handling techniques on PSO.
For multiple objectives continuous space optimization

problem, Zhan et al. [16] proposed a co-evolutionary
technique for multiple objectives optimization problem.
Subsequently, Hu et al. [17, 18] proposed a two-stage
multiple objectives PSO algorithm based on parallel
unit coordinate system. In addition to the uncon-
strained optimization problem, there is also work in-
volved in the multiple objectives optimization problem
under constrained condition [19].
It is worth noting that discrete space optimization

problem has aroused widespread study interest especially
in the algorithm proposals for specific applications
because many applications encountered in real world are
combinatorial optimization problems, which can be
characterized into discrete space optimization problem.
However, the related representative work is not very abun-
dant. For single objective discrete space optimization
problem, Wu et al. [20] proposed a discrete PSO algo-
rithm for covering array generation in the application
of software combination test. For multiple objectives
discrete space optimization problem, Gong et al. [21]
proposed a decomposition-based multi-objective discrete
PSO algorithm for complex network clustering.
The theoretical research of particle swarm optimization

is rather extensive; meanwhile, applications of PSO are
also deeply penetrating into various domains such as
industrial engineering, machinery, communication,
and bioscience. For instance, there are many applica-
tions about power [22–24], electromagnetic [25, 26],
and antenna [27–29] in the field of industrial engineer-
ing. The most popular applications in machinery are tra-
jectory optimization [30], defect classification [31, 32], and
scheduling problems [33, 34]. Applications in com-
munication consist of routing optimization [35],
wireless communication system optimization [36],
filter design optimization [37], etc. Relatively, there are
very limited study or applications in biology [38], arti-
ficial intelligence [39, 40], and some other crossing
fields [41–43]. In this work, we focus on the area of
artificial intelligence and propose a novel PSO algorithm
applied in UWB indoor localization.

2.2 Indoor positioning
Traditional indoor localization principles can be di-
vided into three categories: geometry-based principle,
fingerprint-based principle, and image-based principle.
Based on the principle of geometry, indoor position-
ing technology can divided into WIFI [1], Bluetooth
[2], ultra-wideband [3], optical communication [4],
and ultrasonic positioning [5]. The principle is to
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calculate the current position of the target by measur-
ing the distance between the target and several fixed
base stations. This kind of technology needs to be up-
dated in real time. Based on the fingerprint principle,
indoor positioning technology can be divided into
WIFI fingerprint localization [7] and geomagnetic
localization [44], and its principle is to collect some
physical eigenvalues of different positions in the room
in advance, and then drawing the fingerprint map, fi-
nally locates the eigenvalue of the target measured
directly, and compares with the fingerprint maps. This
kind of technology needs to be collected in advance and
updated regularly. Based on the image principle, indoor
positioning technology can be divided into laser SLAM

positioning [45] and machine vision positioning [46], and
its principle is to model the indoor scene with laser radar
or camera and then using machine vision matching algo-
rithm to estimate location. This kind of technology
requires a large amount of computation for specific sce-
narios. In the past decades, many approaches have been
developed based on the above principles. We observe
substantial applications of these approaches in indoor
localization. However, there are not yet perfect
solutions to balance accuracy, installation and oper-
ation, and ease of use. Our work involves artificial
intelligence, electronic communication, and evolution-
ary computation. Examples include 2D and 3D UWB
indoor positioning.

Fig. 2 ELPSO pipeline
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3 Ensemble learning particle swarm optimization
3.1 PSO variants employed in ELPSO
In the proposed ELPSO algorithm, GPSO, LPSO, and
BBPSO are employed. The population is divided into
three subpopulation groups in equal. When searching
for the global optimum in a hyperspace, the particles
benefit from guiding rules flying and searching more
effectively and efficiently. In term of the typical PSO,
the rules are the mechanisms of learning from a parti-
cle’s historical best experience and its neighborhood’s
best experience. Based on the manners of choosing the
neighborhood’s best experience, PSO algorithms are
originally categorized into GPSO (global version) and
LPSO (local version). For GPSO, a particle takes the
best particle’s experience in global as the neighbor-
hood’s experience. For LPSO, a particle’s neighborhood
experience is chosen from the best particle in experi-
ence among particles in its local neighborhood defined
by a topological structure. Beyond that, bare bones PSO
(BBPSO) was proposed to improve precision while re-
ducing the complexity of parameter tuning. In compari-
son with GPSO and LPSO, BBPSO cancels the velocity
item. Moreover, its position of the particle is directly
obtained by random sampling of the Gaussian distribu-
tion. Integrating the above three algorithms together
enables our ELPSO algorithm preserves the diversity of
population while discouraging premature convergence
synchronously.

3.2 ELPSO with super best guide
As mentioned above, our ELPSO algorithm includes
GPSO, LPSO, and BBPSO. For guiding rules, we add an
ensemble learning component that learns from different

subpopulations’ social experience named as superbest.
The superbest are selected from all three gbest and
updated asynchronously. The corresponding velocity for
each PSO variant also adopt new update rule. The new
rule is as follows:

vi ¼ w� vi þ c1 rand1i � pbesti−Xið Þ þ c2 rand2i
� gbesti−Xi
� �þ c3 rand3i � superbesti−Xið Þ

ð1Þ

where c1 = 1.49445, c2 = 0.747225, and c3 = 0.747225.
pbest is its own cognitive experience; gbest is its social
component; the best experience found so far by its own
subpopulation and super best is the best social experi-
ence from the whole population. The flowchart of
ELPSO is shown in Fig. 2.

4 UWB indoor localization method using ELPSO
4.1 UWB indoor localization system design
A lot of advances are developed for indoor wireless
localization. A potential one is UWB technology by
utilizing a narrow pulse to estimate the position of a
tag. Only transmitted base-band pulse or an AM-
modulated pulse can be used in a UWB-based sys-
tems. The system proposed in this paper consists of
an active tag, four base stations, a router, a location
server, and several display terminals. The system with
four base stations can theoretically cover the range of
tens of thousands of square meters. Increasing the
number of base stations, the positioning scene can be
expanded further. The tag sends an ultra-wideband
signal in a fixed time slot; each base station intercepts
this signal, calling the ranging algorithm to get the

Fig. 3 System structure. The system consists of active tags, four base stations (A, B, C, and D), a router, a location server, and several display
terminals. The tags send an ultra-wideband signal in a fixed time slot; each base station intercepts this signal, calling the ranging algorithm to get
the distance between base stations and the tags
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distance between base stations and the tag. After that,
the distance information is transmitted in a wireless
way to the location server through a router. Finally,
the location server calls the localization algorithm to
locate the tag and sends real-time positioning results
to the terminals for display. Time of arrival (ToA) or
time difference of arrival (TDoA) algorithm is usually
used to triangulate its position. The structure of in-
door positioning system proposed in this paper is
shown in Fig. 3.

4.2 Ranging algorithm
Distance ranging is the first step in ultra-wideband po-
sitioning. Two-way ranging (TWR) [47] can be used to
calculate the distance by determining the flight time of
signals between two objects. The distance between
base stations and tag is achieved by the speed of radio
waves multiplied by the time of signal flight. However, the
clock offset can cause a larger margin of error [48, 49];
we design the ranging algorithm based on TWR as fol-
lows. Firstly, we adopt the ultra-wideband wireless trans-
ceiver module DWM1000 produced by company
DecaWave [50] in our system. Then, given two
DWM1000 modules denoted by device A and device B re-
spectively, device A can initiate ranging requests as the

initiator of the distance ranging. Device B can listen and
respond the radio message from device A as a responder.
The ranging process is listed as Fig. 4.
When device A sends a radio message to device B

and records its sending time stamp as t1, device B re-
ceives the message and sends a reply to device A
after a particular delay of treplyB. Device A receives
the reply and records the receiving time stamp as t2.
To reduce the error caused by the clock offset, device
A sends a radio message to device B again in a spe-
cific delay treplyA and records its own sending time
stamp as t3, and finally, device B receives the mes-
sage and records a receiving time stamp as t4. In this
way, using t1 and t2, device A can calculate its round
trip time troundA; using t0 and t4, device B can calcu-
late its round trip time troundB. So the time of flight
(TOF) can be calculated by formula 1.

TOF ¼ troundA−troundB þ treplyA−treplyB
4

ð2Þ

If the speed of radio waves in the air is equal to the
speed of light c, the distance R between A and B can be
calculated by the following formula:

Fig. 4 Two-way ranging process. Device A and device B are two DWM1000 modules. Device A initiates ranging requests while device B listens
and respond the radio message from device A
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R ¼ c� TOF ¼ c� troundA−troundB þ treplyA−treplyB
4

ð3Þ

4.3 Localization algorithm
At present, time difference of arrival (TDoA) [51] is
often used to realize ultra-wideband positioning. Assum-
ing that there are four fixed base stations in the three-
dimensional space, the position of the tag is (x, y, z), the
position of the ith base station is (xi, yi, zi), and the
distance between the tag and the base station is Ri (i = 1,
2,…, N, N = 4). The three-dimensional positioning distri-
bution diagram based on TDOA is shown in Fig. 5.
The specific calculation process of TDOA localization

algorithm is as follows. Firstly, the arrival time between
the tag and each base station can be obtained from ran-
ging algorithm illustrated previously; the difference be-
tween every two arrival times is TDOA measured value.
Then, we can calculate the difference between the tag
and every two base stations according to TDOA mea-
sured value. Multiple TDOA measured values of dis-
tance differential equations constitute a two-surface
system for the target position. Finally, the measured pos-
ition of the tag can be obtained by solving the equation
system.

4.4 ELPSO-based system implementation
System implementation includes hardware and software.
In the hardware implementation part, the circuit is
designed for the base stations and the tag. And the

ultra-wideband ranging communication program is com-
pleted. The base stations and the tag all adopt the
STM32103RC chip as the control unit and DWM1000
module as the ultra-wideband wireless transceiver. Each
base station has an extra Wi-Fi module called ESP8266

Fig. 5 3D positioning based on TDOA. Points A, B, C, and D are
represented as four fixed base stations, the tag sends an ultra-wideband
signal in a fixed time slot, and each base station intercepts this signal,
calling the ranging algorithm to get the distance between base stations
and the tags

Fig. 6 The tag. The tag adopts the STM32103RC chip as the control
unit, and it contains DWM1000 module as the ultra-wideband
wireless transceiver

Fig. 7 Base stations. The base stations adopt the STM32103RC chip
as the control unit, and each base station has an extra Wi-Fi module
called ESP8266, which is used to connect with the server
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than the tag, which is used to connect with the server.
For ultra-wideband ranging communication program,
transmission data rate is set to 110 kbps, the center fre-
quency of channel is 3993.6 MHz, and the bandwidth is
499.2 MHz. The details of tag and base stations are
shown in Figs. 6 and 7. In the software implementation
part, based on the Android platform, the location server

program was designed and the indoor positioning app
was developed. The working scenes can be updated
through Wi-Fi network automatically.

5 Experimental results and discussion
A set of experiments was conducted to verify the per-
formance of the proposed algorithm ELPSO and its
application in UWB indoor localization. The competitors
consist of three individual PSO embedding in ELPSO
and another four famous PSO variants in the literature.
Moreover, both 2D and 3D real-time test prove effect-
ive in UWB indoor localization using evolutionary
computation strategy.

5.1 Experimental results for ELPSO
To demonstrate the efficiency of the proposed ELPSO,
the competitors are listed in Table 1 in details. Also, we
applied 14 benchmark functions listed in Table 2 in this
section. These functions (CEC2005) https://www.lri.fr/
~hansen/cec2005.html are widely used to evaluate PSO
algorithms. To be fair, for all eight PSO algorithms, the

Table 1 PSOs compared

Algorithm Parameter settings Reference

GPSO ω 0.9~0.4, c1 = c2 = 2.0, V_MAXd = 0.2 × range [52]

LPSO ω 0.9~0.4, c1 = c2 = 2.0, V_MAXd = 0.2 × range [53]

BBPSO ω 0.9~0.4, c1 = c2 = 2.0, V_MAXd = 0.2 × range [54]

FIPS χ = 0.729, ∑ci = 4.1, V_MAXd = 0.2 × range [55]

HPSO-TVAC ω 0.9~0.4, c1 2.5~0.5, c2 0.5~2.5,
V_MAXd = 0.2 × range

[56]

CLPSO ω 0.9~0.4, c = 1.49445, m = 7,
V_MAXd = 0.2 × range

[57]

OPSO ω 0.9~0.4, c1 = c2 = 2.0, V_MAXd = 0.2 × range [58]

ELPSO ω 0.9~0.4, c = 2.0, G = 5, V_MAXd = 0.2 × range –

Table 2 Functions tested

Test function D Search space fmin Acceptance Name

Unimodal 30 [− 100,100]D 0 0.01 Sphere

30 [− 10,10]D 0 0.01 Schwefel’s P2.22

30 [− 10,10]D 0 100 Rosenbrock

30 [− 1.28,1.28]D 0 0.01 Quadric noise

Multimodal 30 [− 500,500]D − 12,569.5 − 10,000 Schwefel

30 [− 5.12,5.12]D 0 50 Rastrigin

30 [− 32,32]D 0 0.01 Ackley

30 [− 600,600]D 0 0.01 Griewank

30 [− 50,50]D 0 0.01 Generalized
Penalized

30 [− 50,50]D 0 0.01

Rotated 30 [− 500,500]D − 12,569.5 − 8000 Rotated Schwefel

30 [− 5.12,5.12]D 0 100 Rotated Rastrigin

30 [− 32,32]D 0 1 Rotated Ackley

30 [− 600,600]D 0 0.1 Rotated Griewank
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Table 3 Performance for ELPSO and other PSOs

Functions GPSO LPSO FIPS HPSO-TVAC CLPSO OPSO BBPSO ELPSO

f1 Mean 1.69 × 10−31 4.48 × 10−14 5.55 × 10−14 2.55 × 10−33 2.54 × 10−12 5.33 × 10−18 1.90 × 10−53 5.15 × 10−38

Std. Dev 4.55 × 10−31 4.00 × 10−14 2.26 × 10−14 5.55 × 10−33 8.84 × 10−13 3.86 × 10−18 3.69 × 10−53 9.64 × 10−38

Rank 4 6 7 3 8 5 1 2

f2 Mean 1.30 × 10−21 1.97 × 10−10 1.48 × 10−8 8.44 × 10−20 3.59 × 10−8 1.76 × 10−10 1.52 × 10−29 7.44 × 10−22

Std. Dev 1.83 × 10−21 9.85 × 10−11 4.04 × 10−9 8.21 × 10−20 9.21 × 10−9 1.52 × 10−10 2.24 × 10−29 5.49 × 10−22

Rank 3 6 7 4 8 5 1 2

f3 Mean 36.94197 22.39326 24.71584 19.28725 14.1712 41.60198 37.72958 1.83494

Std. Dev 25.53545 10.8901 0.24099 4.70946 10.72737 28.6714 40.18926 6.57884

Rank 6 4 5 3 2 8 7 1

f4 Mean 0.00851 0.01911 0.00377 0.05747 0.00595 0.05798 0.0102 0.01484

Std. Dev 0.00328 0.00481 8.57 × 10−4 0.02237 0.00153 0.02131 0.00349 0.00391

Rank 3 6 1 7 2 8 4 5

f5 Mean − 10,000.1 − 9594.07 − 9280.09 − 10,931.9 − 12,569.5 − 10,336.8 − 12,218.8 − 12,569.5

Std. Dev 479.961 376.9293 906.5758 374.6448 0 501.6225 185.7255 0

Rank 6 7 8 4 1 5 3 1

f6 Mean 29.72935 33.18402 38.25496 6.80555 7.61 × 10−5 6.08918 1.19395 0

Std. Dev 8.41469 6.85435 8.58552 2.67412 7.16 × 10−5 2.28549 1.1124 0

Rank 6 7 8 5 2 4 3 1

f7 Mean 1.34 × 10−14 1.18 × 10−7 1.09 × 10−7 8.54 × 10−14 5.29 × 10−7 5.87 × 10−9 8.12 × 10−15 4.28 × 10−15

Std. Dev 2.90 × 10−15 9.11 × 10−8 2.75 × 10−8 4.70 × 10−14 1.54 × 10−7 1.89 × 10−9 2.13 × 10−15 7.11 × 10−16

Rank 3 7 6 4 8 5 2 1

f8 Mean 0.00837 0.00227 2.19 × 10−6 0.00325 1.23 × 10−8 0.00118 0.00404 0

Std. Dev 0.00996 0.00432 1.10 × 10−5 0.00419 1.86 × 10−8 0.00277 0.00721 0

Rank 8 5 3 6 2 4 7 1

f9 Mean 0.00415 1.74 × 10−15 3.70 × 10−16 1.77 × 10−29 1.03 × 10−13 1.27 × 10−19 1.61 × 10−32 1.57 × 10−32

Std. Dev 0.02073 3.08 × 10−15 2.52 × 10−16 8.17 × 10−30 6.16 × 10−14 1.14 × 10−19 1.43 × 10−33 0

Rank 8 6 5 3 7 4 2 1

f10 Mean 0.00176 1.78 × 10−13 5.55 × 10−15 2.44 × 10−28 2.17 × 10−12 1.06 × 10−18 1.43 × 10−32 1.35 × 10−32

Std. Dev 0.00411 2.55 × 10−13 2.42 × 10−15 1.08 × 10−28 1.11 × 10−12 6.37 × 10−19 3.94 × 10−33 2.47 × 10−34

Rank 8 6 5 3 7 4 2 1

f11 Mean − 8840.69 − 9880.77 − 7430.41 − 8515.69 − 9377.81 − 9700.32 −10,697.7 − 10,597.2

Std. Dev 1114.708 1240.53 1303.977 1818.807 870.6272 1423.02 1652.89 2096.313

Rank 6 3 8 7 5 4 1 2

f12 Mean 56.75235 49.65696 118.3976 32.59482 77.63228 73.04538 42.86277 56.53254

Std. Dev 13.11957 11.62829 19.42732 9.56176 10.19121 19.79576 11.10137 14.19207

Rank 5 3 8 1 7 6 2 4

f13 Mean 1.72364 1.23822 1.34 × 10−7 5.71977 9.49 × 10−6 1.45 × 10−8 7.84 × 10−15 4.28 × 10−16

Std. Dev 0.77477 0.66329 3.72 × 10−8 1.51541 2.58 × 10−5 6.46 × 10−9 1.62 × 10−15 7.11 × 10−16

Rank 7 6 4 8 5 3 2 1

f14 Mean 0.01496 0.00202 3.89 × 10−9 0.01201 2.98 × 10−5 0.00118 2.96 × 10−4 5.47 × 10−9

Std. Dev 0.01319 0.00506 9.01 × 10−9 0.01348 3.32 × 10−5 0.00327 0.00148 1.60 × 10−8

Rank 8 6 2 7 3 5 4 1

Average rank 5.79 5.57 5.50 4.64 4.79 5.00 2.93 1.71

Final rank 8 7 6 3 4 5 2 1
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population size is the same, equal to 40; the maximum
number of function evaluations (FEs) is set to 2 × 105.
Note that the number of FEs is equally divided into
three parts for three swarms used in ELPSO. To
eliminate statistical errors, the test for each algorithm
and each function will repeat 25 times independently for
achieving average results to compare.

The performance for ELPSO algorithm compared with
other competitors are shown in Table 3. The mean and
the standard deviation of the solutions are provided. It
can be observed that the ELPSO achieves the best solu-
tion on functions f3, f5, f6, f7, f8, f9, f10, and f13. Although
FIPS performs best on the noise function (f4) and
HPSO-TVAC yields the best solution on the rotated
Rastrigin’s function (f12), the ELPSOs can also achieve
comparable results on these two functions. Table 3 also
ranks the algorithms on performance in terms of the

Fig. 8 2D indoor localization configuration. In this experiment,
there are 36 targets supposed to localize in two-dimensional
space, which are represented by black pentagonal stars. Then,
we achieve 36 promising position measured by communication
method mentioned in Section 4. The measured results are
denoted by white pentagonal stars. The specific location
coordinates are listed in Table 4

Fig. 9 2D indoor localization modeling and optimization. After the
initial measurement, for every target, we first establish the search
space based on the corresponding measured target; then, we
optimize the measured target by our proposed ELPSO algorithm to
achieve the optimal localization, which is represented by the red
pentagonal stars. The specific location coordinates are listed
in Table 4

Fig. 10 Results of 10 iterations for 2D indoor localization. We
illustrate the optimized position for each target after 10 iterations,
which is denoted by the red dots. It can be found that the locations
are not optimal because the ELPSO algorithm have not
converge yet

Fig. 11 Results of 20 iterations for 2D indoor localization. We
illustrate the optimized position for each target after 20 iterations,
which is denoted by the red dots. It can be find that the locations
are approaching optimal; the ELPSO algorithm converges quickly
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mean solution accuracy. It can be observed that ELPSO
offers the highest performance overall.
Experimental comparisons verify that the sbest param-

eter indeed help the ELPSO perform better than the
traditional PSOs and most existing improved PSO vari-
ants on almost all test functions in solving global
optimization problems. The ELPSO offer not only a
better performance in global optimization, but also a
finer-grain search ability, owing to the sbest parameter

that could preserve and utilize the most useful informa-
tion from three different swarms based on different
characteristics.

5.2 Experimental results for 2D UWB localization
In the second phase of the experiments, we model the
search space based on every measured target through
traditional UWB localization method elaborated in
Section 4. Suppose a square area 10 m × 10 m, there are

Table 4 Performance of 2D indoor localization using ELPSO

Targets Target position Measured position Measure error Optimized position Error after optimization

1 (− 4.50, − 4.50) (−5.0447, − 4.6286) 0.55965 (− 4.50, − 4.50) 9.96174E−12

2 (− 4.50, − 3.50) (− 4.8778, − 2.6532) 1.6172 (− 4.50, − 3.50) 2.92107E−11

3 (− 4.50, − 2.50) (− 4.6396, − 3.1304) 2.23051 (− 4.50, − 2.50) 1.15305E−13

4 (− 4.50, − 1.50) (− 3.6902, − 0.5405) 2.39119 (− 4.50, − 1.50) 7.77746E−12

5 (− 4.50, − 0.50) (− 4.6223, − 1.2778) 4.19499 (− 4.50, − 0.50) 2.08048E−13

6 (− 4.50, 0.50) (− 4.9839, 0.3174) 5.48691 (− 4.50, 0.50) 1.62034E−12

7 (− 4.50, 1.50) (− 4.3102, 1.0244) 5.82964 (− 4.50, 1.50) 4.33788E−12

8 (− 4.50, 2.50) (− 4.2943, 2.9224) 6.80743 (− 4.50, 2.50) 2.60556E−13

9 (− 4.50, 3.50) (− 5.0565, 2.7348) 8.59065 (− 4.50, 3.50) 7.72499E−14

10 (− 4.50, 4.50) (− 4.9066, 4.1376) 9.41363 (− 4.50, 4.50) 1.96826E−11

11 (− 3.50,4.50) (− 3.6517, 4.5157) 8.15168 (− 3.50,4.50) 3.32919E−12

12 (− 2.50, 4.50) (− 3.3290, 4.0250) 7.84337 (− 2.50, 4.50) 1.22653E−12

13 (− 1.50, 4.50) (− 0.8980, 3.5584) 5.47947 (− 1.50, 4.50) 7.78704E−13

14 (− 0.50, 4.50) (0.3577, 4.9607) 4.16783 (− 0.50, 4.50) 9.69029E−12

15 (0.50, 4.50) (0.4772, 4.6571) 4.02585 (0.50, 4.50) 3.98315E−13

16 (1.50, 4.50) (0.9746, 4.4177) 3.52639 (1.50, 4.50) 8.19715E−14

17 (2.50, 4.50) (3.4262, 4.5936) 1.0779 (2.50, 4.50) 7.04791E−12

18 (3.50, 4.50) (3.5423, 3.9632) 1.09791 (3.50, 4.50) 2.70726E−12

19 (4.50, 4.50) (4.4778, 4.7481) 0.24911 (4.50, 4.50) 3.14245E−12

20 (4.50, 3.50) (4.8583, 3.2910) 1.37425 (4.50, 3.50) 6.21847E−12

21 (4.50, 2.50) (4.2349, 3.4760) 1.99055 (4.50, 2.50) 2.44775E−11

22 (4.50, 1.50) (3.5755, 2.2703) 2.21383 (4.50, 1.50) 1.7763E−11

23 (4.50, 0.50) (5.3266, 1.0924) 4.86279 (4.50, 0.50) 5.11463E−14

24 (4.50, − 0.50) (3.6974, − 0.9763) 4.22436 (4.50, − 0.50) 3.14801E−13

25 (4.50, − 1.50) (4.1707, − 1.1405) 5.68209 (4.50, − 1.50) 1.42503E−11

26 (4.50, − 2.50) (3.7731, − 2.0575) 6.28869 (4.50, − 2.50) 3.71205E−12

27 (4.50, − 3.50) (3.7135, − 3.1925) 7.22008 (4.50, − 3.50) 1.00981E−12

28 (4.50, − 4.50) (4.4883, − 3.9419) 9.00566 (4.50, − 4.50) 6.37406E−12

29 (3.50, − 4.50) (3.9301, − 3.6926) 8.46865 (3.50, − 4.50) 2.06266E−12

30 (2.50, − 4.50) (3.2818, − 4.8317) 7.78891 (2.50, − 4.50) 1.27315E−12

31 (1.50, − 4.50) (1.8975, − 5.1044) 6.42598 (1.50, − 4.50) 2.85797E−12

32 (0.50, − 4.50) (− 0.4389, − 4.0119) 4.09031 (0.50, − 4.50) 3.02775E−12

33 (− 0.50, − 4.50) (− 0.500, − 4.5402) 4.00025 (− 0.50, − 4.50) 1.20355E−13

34 (− 1.50, − 4.50) (− 0.6906, − 4.2803) 3.81578 (− 1.50, − 4.50) 4.35941E−14

35 (− 2.50, − 4.50) (− 2.2647, − 3.7811) 2.34809 (− 2.50, − 4.50) 1.13464E−12

36 (− 3.50, − 4.50) (− 2.8890, − 4.3466) 1.61827 (− 3.50, − 4.50) 1.04629E−12
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four base stations A(xA,yA) = (− 5, 5), B(xB,yB) = (5, 5),
C(xC,yC) = (− 5, − 5), and D(xD,yD) = (5, − 5) located in it.
The configuration of 2D indoor localization is shown in
Fig. 8. All the positions of targets are supposed uniform
distribution; we test 36 targets in this paper.
For every target, the steps of optimization are as follows:
Step 1: Swarm initiation—there are three swarms used

in ELPSO algorithm; the total number of particles is N,
indexed by i = 1.... N, D = 2;

Step 2: Position measuring—according to the TWR al-
gorithm and improved TODA algorithm presented in
Section 4, we can initially measure the position of tag to
base station;
Step 3: Searching space—based on the measured pos-

ition in the previous step, creating a spherical space with
a radius of 50 cm. N particles are all included in this
space; both moving space and search space of all parti-
cles should not exceed this range;
Step 4: Fitness calculation—after achieving the dis-

tance L from each particle to each base station, given
the measured distance R from target to each base

Fig. 12 3D indoor localization configuration. In this experiment, there
are 36 targets supposed to localize in three-dimensional space, which
are represented by black pentagonal stars. Then, we achieve 36
promising position measured by communication method mentioned
in Section 4. The measured results are denoted by white pentagonal
stars. The specific location coordinates are listed in Table 5

Fig. 13 3D indoor localization modeling. After the initial
measurement, for every target, we first establish the search
space based on the corresponding measured target similar to
2D configuration. The only difference is that we model the
searching space in three dimensions this time, which is denoted
by a green sphere. The swarm are initiated and randomly
distributed in this sphere

Fig. 14 3D indoor localization optimization. After modeling, we
optimize the measured target by our proposed ELPSO algorithm to
achieve the optimal localization, which is represented by the red
dots. The specific localization coordinates are listed in Table 5

Fig. 15 Results of the three kinds of iteration times for 3D indoor
localization. We illustrate the optimized position for each target after
three kinds of iteration times, which is denoted by different color
dots. It can be found that the locations are approaching optimal
after 20 iterations; the ELPSO algorithm converges quickly

Cai et al. EURASIP Journal on Wireless Communications and Networking  (2018) 2018:125 Page 12 of 15



station, for the i_th particle and the j_th target, here,
we have the fitness function listed as follows:

f Pið Þ ¼ LiA−R
j
A

� �2
þ LiB−R

j
B

� �2
þ LiC−R

j
C

� �2
þ LiD−R

j
D

� �2

ð4Þ

When f = 0, Pi achieved the optimal solution, i.e., Pi
exactly located in the position of target. The

corresponding modeling and optimization of 2D in-
door localization are shown in Fig. 9. We find that
the fitness function could approach convergence after
20 iterations, which appeals to the demand of real
time. The results after 10 iterations and 20 iterations
for 2D indoor localization are shown in Figs. 10 and 11,
respectively. The corresponding experimental results are
listed in Table 4. It can be found that after optimization,
the positioning accuracy is obviously improved. This is

Table 5 Performance of 3D indoor localization using ELPSO

Targets Target position Measured position Measure error Optimized position Error after optimization

1 (− 4.50,− 4.50,3.60) (− 4.8963,− 3.9034,2.7739) 1.195549 (− 4.5001,− 4.4999,3.6000) 1.36E−07

2 (− 4.50,− 3.50,3.40) (− 3.7988,− 3.2387,3.1449) 0.222615 (− 4.4997,− 3.4998,3.4010) 4.47E−07

3 (− 4.50,− 2.50,3.20) (− 5.4980,− 3.1084,4.1273) 10.21776 (− 4.4999,− 2.4997,3.2001) 4.79E−07

4 (− 4.50,− 1.50,3.00) (− 4.5462,− 0.8003,2.2173) 10.38149 (− 4.4999,− 1.5000,3.0001) 9.33E−07

5 (− 4.50,− 0.50,2.80) (− 4.2680,− 1.1158,3.4165) 14.95691 (− 4.4999,− 0.4999,2.7997) 2.81E−08

6 (− 4.50,0.50,2.60) (− 5.0689,0.0609,2.3528) 31.26613 (− 4.4995,0.4998,2.6004) 8.35E−07

7 (− 4.50,1.50,2.40) (− 4.4801,1.9412,3.0769) 36.41482 (− 4.4999,1.4999,2.3998) 1.02E−06

8 (− 4.50,2.50,2.20) (− 3.8865,2.6628,2.7892) 41.16078 (− 4.5004,2.4999,2.2002) 6.60E−07

9 (− 4.50,3.50,2.00) (− 4.4704,2.5495,1.8709) 64.44693 (− 4.5003,3.5000,1.9997) 3.14E−07

10 (− 4.50,4.50,1.80) (− 4.4249,5.4920,1.1801) 81.02231 (− 4.4992,4.5003,1.8004) 7.19E−08

11 (− 3.50,4.50,1.60) (− 4.3540,5.3446,1.2056) 79.2619 (− 3.4990,4.5001,1.6009) 3.73E−08

12 (− 2.50,4.50,1.40) (− 1.5197,5.4871,2.3420) 38.0984 (− 2.4999,4.4997,1.3999) 3.49E−07

13 (− 1.50,4.50,1.20) (− 1.8102,3.5861,0.7940) 40.8185 (− 1.5000,4.5004,1.2001) 6.35E−08

14 (− 0.50,4.50,1.00) (− 1.3398,4.7150,0.9666) 34.15083 (− 0.4997,4.5001,1.0001) 1.06E−07

15 (0.50,4.50,0.80) (0.9290,4.7708,− 0.1517) 13.73123 (0.4999,4.5010,0.8008) 1.54E−07

16 (1.50,4.50,0.60) (0.8956,5.4528,0.2310) 14.03577 (1.5003,4.4998,0.6007) 2.97E−07

17 (2.50,4.50,0.40) (2.1190,3.5713,1.0994) 7.02079 (2.5003,4.5007,0.4004) 2.14E−07

18 (3.50,4.50,0.20) (3.4177,5.3572,− 0.7132) 2.739887 (3.5000,4.4999,0.2004) 2.48E−07

19 (4.50,4.50,0.00) (3.5646,4.8827,0.0601) 1.024956 (4.5001,4.5003,0.0000) 4.13E−08

20 (4.50,3.50,0.20) (3.5194,4.2055,0.2805) 0.504606 (4.4999,3.5004,0.1998) 5.50E−07

21 (4.50,2.50,0.40) (5.1754,2.1557,1.0299) 7.673302 (4.5002,2.4997,0.3994) 2.57E−07

22 (4.50,1.50,0.60) (4.7668,2.1279,0.9010) 11.15713 (4.5005,1.5004,0.6002) 1.33E−07

23 (4.50,0.50,0.80) (5.3860,− 0.0327,0.5229) 24.2334 (4.4998,0.4998,0.8001) 5.92E−07

24 (4.50,− 0.50,1.00) (3.6574,− 0.8015,1.9427) 18.26336 (4.5001,− 0.5000,1.0011) 9.60E−07

25 (4.50,− 1.50,1.20) (4.3772,− 1.7886,0.9126) 34.70706 (4.5003,− 1.4994,1.2003) 4.18E−07

26 (4.50,− 2.50,1.40) (4.0502,− 1.8335,0.5315) 44.10311 (4.4997,− 2.5002,1.3995) 3.88E−07

27 (4.50,− 3.50,1.60) (4.7995,− 2.5315,1.2096) 69.97281 (4.4996,− 3.5003,1.6000) 2.74E−07

28 (4.50,− 4.50,1.80) (3.6330,− 3.5897,1.1721) 67.36877 (4.4997,− 4.5002,1.8001) 6.72E−07

29 (3.50,− 4.50,2.00) (3.4149,− 4.9324,1.7673) 62.88624 (3.4992,− 4.4994,1.9989) 7.84E−07

30 (2.50,− 4.50,2.20) (3.4877,− 5.2365,1.8627) 64.46026 (2.4996,− 4.4999,2.1998) 1.28E−07

31 (1.50,− 4.50,2.40) (1.9432,− 4.4983,2.8564) 41.72338 (1.4996,− 4.5004,2.4001) 3.70E−07

32 (0.50,− 4.50,2.60) (− 0.2560,− 4.0642,3.0258) 18.38233 (0.5002,− 4.5002,2.5993) 5.78E−07

33 (− 0.50,− 4.50,2.80) (− 0.7117,− 3.5567,2.5600) 15.29884 (− 0.4996,− 4.5003,2.8004) 1.17E−07

34 (− 1.50,− 4.50,3.00) (− 1.6642,− 4.2216,2.1823) 8.787994 (− 1.4999,− 4.4998,2.9990) 2.54E−08

35 (− 2.50,− 4.50,3.20) (− 2.7616,− 4.6484,3.3791) 3.076307 (− 2.4997,− 4.5002,3.2005) 1.58E−07

36 (− 3.50,− 4.50,3.40) (− 3.9609,− 5.4706,4.3427) 2.121412 (− 3.4999,− 4.5001,3.3997) 1.68E−07
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due to the use of ELPSO to optimize indoor positioning
accuracy.

5.3 Experimental results for 3D UWB localization
3D UWB indoor localization is an extension of 2D. Simi-
larly, suppose a cube region 10 m × 10 m × 10 m, there
are four base stations A (xA, yA, zA) = (0, 0, 10), B (xB, yB,
zB) = (0,10, 10), C (xC, yC, zC) = (10,10, 10), and D (xD, yD,
zD) = (10, 0, 10) located in it in the same. The configur-
ation of 3D indoor localization is shown in Fig. 12. The
36 target positions (x, y, z) are uniformly distributed dur-
ing the test. For every target, the optimization step is
consistent with the two-dimensional case.
The corresponding modeling and optimization of 3D in-

door localization are shown in Figs. 13 and 14, respectively.
Note that the fitness function could also approach conver-
gence after 20 iterations, as shown in Fig. 15. The corre-
sponding experimental results are listed in Table 5, which
indicate that our indoor location method can overcome
the problem of inaccurate 3D positioning.

6 Conclusions
In this paper, we propose the ELPSO, a particle swarm
optimization algorithm composed of three variants of PSO
under super best guide. The ensemble learning strategy
proposed in this paper follows the philosophy that a particle
learns not only from its own experience and its neighbors’
experience, but also from other swarms’ experience. This
new learning strategy helps a particle construct a more
promising and efficient guidance searching space, especially
for optimizing indoor localization problem. It is thus ap-
plied to both the 2D version and the 3D version of UWB
indoor localization. For testing the performance of ELPSO,
comprehensive experimental tests have been undertaken
on widely used benchmark CEC2005. The results demon-
strate a high effectiveness of the ELPSO, which significantly
outperforming other existing PSO algorithms on most of
the functions tested; for testing the performance of ELPSO
applied in UWB indoor localization, 2D and 3D versions of
UWB indoor localization tests have been conducted. The
experimental results show that ELPSO plays an important
role in UWB indoor localization, and the positioning accur-
acy is remarkably improved after our optimization process.
Future work will be continued to apply this kind of learning
strategy into other indoor localization techniques.
The authors promise that all the experiments’ data

and results in this article will be true and valid.
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