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Abstract

A new demapper is presented for communication channels that can be modeled with data-dependent noise on the
received symbols. This includes optical and satellite channels with various types of distortion. The demapper
incorporates the covariance information of the received symbol clusters to capture noise variation across the
constellation and any dependency between the in-phase and quadrature components. Two communication
scenarios are considered, and it is shown that the demapper is advantageous when a system is dominated by
distortion as opposed to thermal noise. Channel coding considerations are presented, and reductions up to 4 dB in
the required SNR are achieved.
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1 Introduction
Distortions in modern communication systems arise due
to hardware imperfections or inherent properties of the
channel, e.g., fading. As the trend towards spectrally effi-
cient modulation and large signal bandwidth continues,
distortions often become the main bottleneck in system
performance. A multitude of techniques exist to combat
various types of signal distortion including predistortion
at the transmitter [1, 2], equalization at the receiver [3],
and modulation schemes such as OFDM [4] and error-
correcting codes [5]. In this work, we focus on improved
demapping in the presence of distortion.
The demapping task is often posed as a maximum like-

lihood problem [6]. Alternatively, prior information was
incorporated for a posteriori probability (APP) demapping
in [7, 8], which was applied to iterative demapping and
decoding for bit interleaved coded modulation. Central to
both maximum likelihood and APP demapping is the con-
ditional distribution of the received signal given the trans-
mitted signal. Demapping with a Rayleigh distribution
from a fading channel for noncoherent orthogonal mod-
ulation was considered in [9]. A Poisson model is used
for maximum likelihood detection in optical communica-
tions [10]. For amplitude and phase-shift keying (APSK)
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modulation, however, demapping algorithms to date have
assumed additive white Gaussian noise, which has equal
variance for in-phase and quadrature components and
is independent of the transmitted signal [7, 11, 12].
Modern demapping algorithms for APSK modulation
incorporate the mean of the noise distribution as a shift in
the received symbol centroids, e.g., obtained by pilot sym-
bols [13, 14]; however, these works retain the assumption
of equal noise variance across the constellation.
To compensate for distortions during demapping, we

consider distortions that can be modeled at the sym-
bol level with data-dependent noise. That is, the received
symbols have a different noise distribution depending on
the transmitted symbol. This noise model is applicable to
systems such as NAND flash memory [15], pulse ampli-
tude modulation in optical communications [16], and
other nonlinear channel distortions [17, 18]. In the cur-
rent manuscript, we focus on general APSK modulation
schemes and apply a data-dependent noise model to cap-
ture imperfections in a satellite channel for two scenarios:
(i) a nonlinear power amplifier with predistortion at the
transmitter and (ii) phase noise at the receiver. The pro-
posed demapper incorporates the mean and covariance of
each symbol cluster to model noise variation across the
constellation and any asymmetry in the noise distribution.
This results in more accurate likelihood ratios, which can
be used directly for soft-decoding or to determine better
decision regions for hard-decoding.
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For a specific type of nonlinear distortion, it may be
possible to design a tailored compensation scheme to
improve performance. For example, we could search for
a channel coding scheme to achieve capacity using a
nonuniform distribution of symbols [19]. Alternatively,
the input symbols could be transformed by a nonlin-
ear function to create a uniform noise distribution at
the receiver, as was proposed for optical systems [16].
The motivation for our approach of demapping with a
general model is twofold. First, the generality means the
algorithm is applicable to a wide range of nonlinear distor-
tions, including those that are ill-characterized. Secondly,
the method is useful when modification to the trans-
mission pipleine is impractical or expensive, e.g., satellite
channels [20].
The remainder of the paper is organized as follows.

Section 2 describes two communication scenarios and a
unifying model based on data-dependent noise. Section 3
discusses methods to estimate the noise distribution and
how to exploit this information for demapping. Section 4
presents detailed simulation results to assess the per-
formance of the proposed demapper, and Section 5
concludes the paper.

1.1 Notation
Before proceeding, we briefly describe the notation used
throughout the paper. Random variables for channel
input, output, and noise are denotedwith capital letters,X,
Y, and Z, respectively. The corresponding realizations by
lowercase, x, y, and z. I(X;Y ) indicates the mutual infor-
mation betweenX and Y. Sets are denoted with script, e.g.,
S , I . Indices are typically i, j, or k. L values are labeled L,
La, and Le, for the a posteriori (APP), a priori, and extrin-
sic, respectively. Finally, N (μ,�) represents a Gaussian
distribution with mean μ and covariance �.

2 Systemmodel
In this section, we describe the system components
and present some examples of distortion. Subsequently,
a reduced channel model is presented for optimal
demapping.

2.1 Communication scenarios
We consider two communication scenarios depicted in
Fig. 1. In both cases, the information bits are encoded
with an error-correcting code (Encoder), mapped to sym-
bols (Mapper), and converted to a signal for transmission
(Tx Filter).

2.1.1 Scenario 1: nonlinear amplifier
In the first scenario, a predistorter is used to compen-
sate for the nonlinear power amplifier (PA). This situ-
ation is common in satellite communications involving
a traveling-wave tube amplifier (TWTA) [21] and wire-
less applications where power efficiency is important [2].
Imperfect compensation results in an overall system that
is nonlinear. For this work, the TWTA characteristics
are modeled with the memoryless model proposed by
Ghorbani and Sheikhan [22]. The signal predistortion
is implemented with a complex-valued polynomial [23],
such that the output signal, y, is

y(n) =
K∑

k=1

L∑

l=0
cl,kx(n − l)|x(n − l)|k−1, (1)

where x(n) is the input signal at sample n and cl,k are the
complex coefficients for delay l and order k.

2.1.2 Scenario 2: phase noise
The second scenario assumes a linear PA (and no predis-
tortion) but the addition of phase noise at the receiver. In
this case, the output, y, is

y(n) = x(n)ejφ(n) (2)

where the phase noise φ(n) is simulated using filtered
Gaussian noise to match a given power spectral density
mask [24]. Although phase noise is well studied and can
be compensated in other ways (e.g., [25, 26]), we use this
example to demonstrate the generality of our demapping
approach.

Fig. 1 System model. Block diagram of the baseband communication link. Two scenarios are shown by the dashed boxes, based on the source of
distortion: (top) distortion due to imperfect compensation of a nonlinear amplifier and (bottom) phase noise at the receiver. These distortions are
compensated with a demapper based on the mean and covariance the received symbols
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2.2 Motivating examples
The above system imperfections affect the location of
the received symbols. In addition to a shift in the cen-
troid of each cluster of symbols, the spread and shape
of the symbol clusters may also be modified, e.g., due
to nonlinear intersymbol interference (ISI). As motivat-
ing examples, we simulate scenarios 1 and 2 with a
64-APSK and 64-QAM constellation, respectively. The
additive noise had an Es/N0 of 26 dB and received sym-
bols are plotted in Fig. 2a and b (more simulation details
are given in Section 4). In scenario 1, the predistortion
in (1), combined with the nonlinear amplifier, results in
a small shift in centroid locations while the spread of the
symbols varies substantially across constellation points.
For example, symbols from the outer constellation ring
exhibit larger variation compared to the symbols from
the inner rings even though they experience the same
level of thermal noise; further, correlation between the
I and Q components leads to a non-isotropic distribu-
tion of symbol locations. Similarly for scenario 2, due

to the nature of phase noise in (2), outer constellation
points experience more degradation (Fig. 2b). These
effects can be quantified by calculating the covariance
matrix for each constellation point, as illustrated in
Fig. 2c, d.

2.3 Reduced channel model
The distortions above can be modeled with a general bit-
wise channel model suitable for demapping, as shown in
Fig. 3. Components between the mapper and demapper
are represented at the symbol level as a discrete time chan-
nel with data-dependent additive noise Z. The input to
the channel, X, is mapped from bits B1, . . . ,Bm by the
modulator and takes values from a finite alphabet (or con-
stellation), S = {x1, . . . , xM} withM = 2m. For simplicity,
we consider the I and Q components of a symbol as ele-
ments of a vector. Thus X, Y, and Z are in R

2. The output
Y is defined by the signal model,

Y = X + Z (3)

Fig. 2 Visualization of data-dependent noise. Scatter diagram of the received symbols (I/Q components) illustrating a nonlinear effects from
imprecise amplifier compensation for 64-APSK modulation and b phase noise from receiver oscillator instabilities for 64-QAM constellation. The
estimated covariance for each constellation point is depicted in c and d as ellipsoids at the 99% confidence level. Ideal symbol locations are marked
with a circle and estimated symbol centroids with a cross



Layton et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:123 Page 4 of 12

Fig. 3 Reduced channel model. A reduced channel model includes
input symbols X, output Y, and additive noise Z. Data-dependent noise
(i.e., Z dependent on X) is used to capture certain types of distortions
in a communication link. A group of equivalent bit channels is
defined by including a mapper to convert bits B1, . . . , Bm to a symbol
and a soft demapper to map a symbol to L values, L1, . . . , Lm

The noise is characterized by the conditional proba-
bility density function (PDF) of Z given X = xk for
k = 1, . . . ,M,

pZ|X(z|xk) = N (δk ,�k), (4)

where N (δk ,�k) denotes the bivariate Gaussian distri-
bution with mean δk and covariance �k ; the subscript k
emphasizes the dependency of the noise distribution on
the channel input xk . The conditional PDF of the channel
follows from the signal model,

pY |X(y|xk) = N (μk ,�k), (5)

where μk = xk + δk is the centroid of the received sym-
bol cluster for the kth constellation point. The role of the
demapper is to convert the received symbol Y into soft
information about the bits, denoted L1, . . . , Lm.
In this reduced channel model, the symbol covariance

�k captures the total uncertainty from two sources: (i) the
AWGN and (ii) the nonlinear distortion or phase noise.
We refer to the former as thermal noise, SNR, or Es/N0
and the latter as distortion. The reduced channel model is
a generalization of the common additive Gaussian noise
model used for demapping in QAM systems [7, 11], with
a non-diagonal covariance that depends on the transmit-
ted symbol. The extra degrees of freedom are useful to
represent general nonlinearities such as those described
in Section 2.1, while the Gaussian assumption keeps the
computations tractable during demapping.

3 Methods
This work proposes an improved demapper that uses
knowledge of the symbol clusters at the receiver. Demod-
ulation based on the received symbol centroids, μk , has
been proposed previously [13, 14]; however, this work
extends the concept to exploit the additional informa-
tion provided by the symbol covariances. Intuitively, for a
hard-decision demapper, constellation points with a larger
covariance should have a larger decision region to capture
the uncertainty. This intuition follows for a soft-decision
demapper based on log-likelihood ratios.

The a posteriori probability (APP) demapper produces
an L value, for each bit bi given a received symbol y =
(yI , yQ), defined as

Li = log
Pr(bi = 0|y)
Pr(bi = 1|y) (6)

= log

∑
x∈S0

i
p(y|x)p(x)

∑
x∈S1

i
p(y|x)p(x) + log

Pr(bi = 0)
Pr(bi = 1)

, (7)

where sets S0
i and S1

i are the constellation symbols with
bit i set to 0 and 1, respectively. The a posteriori L value,
Li, in (7) can be written as,

Li = Lei + Lai , (8)

where Lai is the a priori L value and Lei is the extrinsic L
value for the ith bit [7]. The extrinsic L value is further
expanded as,

Lei = log

∑
x∈S0

i
p(y|x) ∏

j∈Ii(x) e
−Laj

∑
x∈S1

i
p(y|x) ∏

j∈Ii(x) e
−Laj

, (9)

where Ii(x) is the set of bit indices where symbol x has
a bit value of 1 (excluding the current index). That is,
Ii(x) = {j ∈ {1, . . . ,m} | j �= i ∧ bj = 1}. For APP
demapping, the L value in (6)–(8) is used. However, in this
work, we also use the extrinsic L value, Lei , directly for two
purposes: first, to compute the maximum achievable rate
in Section 4.1; secondly, to exchange soft information in
iterative demapping and decoding in Section 4.4.
The extrinsic L values in (9), and corresponding a pos-

teriori L values in (8), depend on the conditional distribu-
tion or likelihood, p(y|x). For the reduced channel model
in (5), the likelihood is a bivariate Gaussian with a PDF
defined by

p(y|xk) =
exp

(
− 1

2 (y − μk)
T�−1

k (y − μk)
)

2π
√|�k| , (10)

where | · | denotes the determinant of a matrix. The mean
μk and covariance �k for k = 1 . . . ,M can be estimated
from the received symbols, elaborated below. The key
distinction between the proposed demapper and existing
methods is the use of the symbol-dependent covariance
matrix �k .

3.1 Covariance estimation
In a practical system, a necessary step for the proposed
demapping scheme is to estimate the covariance of each
symbol cluster. A simple method to estimate the symbol
distribution is to use known pilot symbols inserted in the
transmitted frame. The received pilots, yi, can be grouped
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according to the kth constellation point and the sample
mean and covariance used as the unbiased estimates of the
distribution parameters,

μk ≈ 1
N

N∑

i=1
yi (11)

�k ≈ 1
N − 1

N∑

i=1
(yi − μk)(yi − μk)

T . (12)

For a low number of pilots, improved results are pos-
sible using multiple frames or biased shrinkage estimates
[27]. The estimates above are appropriate for the reduced
channel model in Section 2.3. Improved estimates may
be possible incorporating prior information from a more
detailed nonlinear model; however, in this work, we keep
the model general to widen the potential applications.
In the absence of pilot symbols, “blind estimation” of

the centroids and covariances must be performed using
the received symbols. A fixed set partitioning can be used
to group symbols prior to calculation of the centroids
[13, 28]. A two-step adaptive set partitioning was pro-
posed in [14]. Alternatively, we conjecture that a proba-
bilistic approach with soft boundaries would be optimal.
We pose the problem as estimating the parameters of
a Gaussian mixture model (GMM) from samples of the
underlying distribution, where the mixture weights are
equal and set to 1/M. That is, we consider the received
symbols as the samples from the distribution,

p(y|θ) = 1
M

M∑

k=1
N (y;μk ,�k) (13)

where the goal is to estimate the unknown means and
covariances θ = [μ1,�1, . . . μM,�M]T from N received
symbols y1, . . . , yN . These parameters can be estimated
efficiently using the expectation-maximization (EM) algo-
rithm [29, 30]. The advantage of this algorithm is that
hard decisions about the transmitted symbols are not per-
formed; instead, it computes “soft labels,” denoted γi,k ,
which are posterior probabilities that the kth constellation
point was transmitted given the received symbol yi. These
are then used to weight the sample mean and covari-
ance calculations. That is, after initialization, the following
steps are repeated until convergence:

E-step The posterior probabilities for the transmit sym-
bols γi,k are computed using Bayes’ rule and the
current parameters θ [30].

M-step The parameters θ are re-estimated using the cur-
rent transmit probabilities γi,k as,

μk ≈ 1
Ñk

N∑

i=1
γi,kyi (14)

�k ≈ 1
Ñk

N∑

i=1
γi,k(yi − μk)(yi − μk)

T , (15)

where Ñk = ∑
i γi,k is the effective number of

symbols assigned to cluster k.

We briefly compare the blind GMM algorithm and
the pilot-based method through simulation. The sym-
bol covariances were estimated from each algorithm after
the nonlinear distortion in Scenario 1. The true covari-
ance was calculated using all the received symbols and
knowledge of the transmitted symbols. The normalized
mean squared error (NMSE) between the estimated and
true covariance was calculated for various levels of dis-
tortion at an SNR of 25 dB. Figure 4 illustrates that
the GMM algorithm is more accurate for low levels of
distortion since accurate assignment of symbols to con-
stellation points can be performed. After assignment, the
large number of symbols is used to reduce the error in
the estimates. However, as the distortion increases, the
cluster boundaries begin to overlap and the accuracy of
the covariances decrease. Likewise, the performance of
the GMM algorithm degrades for lower SNR. In practice,
communication systems without pilots typically have low
modulation orders and relatively high SNR—a situation
where we expect the GMM algorithm to perform well.

Fig. 4 Covariance estimation. Normalized mean square error (NMSE)
for different covariance estimation methods. Various levels of
nonlinear amplifier distortion were tested for scenario 1 with 64-APSK
modulation at an SNR of 25 dB
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Estimation using 60 or 120 pilot symbols per constella-
tion point results in a relatively constant error of 6 or 3%,
respectively, for varying levels of distortion.
This demonstrates that the demapper is applicable to

practical systems with or without pilots, using sample
means and covariances in the former and blind GMM-
based estimation in the latter case.

4 Simulation results
All simulations were performed in MATLAB (The Math-
works, Natick, MA). Information bits were generated with
equal probability with a pseudorandom number generator
before coding and modulation. We implemented the cod-
ing strategy defined by the Consultative Committee for
Space Data Systems (CCSDS), consisting of serial concate-
nated convolutional codes (SCCC) at the transmitter and
a turbo decoder at the receiver [31]. Various puncturing
strategies are used to define different code rates. A sym-
bol rate of 250 Msym/s was used for all simulations. After
modulation, the signal was synthesized with four times
oversampling and a root-raised-cosine transmit filter with
a rolloff of 0.35. Complex Gaussian noise was added to
simulate thermal noise before the signal was processed by
the receive modules.
We compare two demappers: (i) a standard demapper,

which assumes circularly symmetric noise with a con-
stant covariance across constellation points and (ii) the
proposed covariance-based demapper. Both demappers
account for the mean of the symbol-dependent noise
distribution using estimates of the cluster centroids. How-
ever, the proposed demapper also utilizes the covariance
of each symbol cluster. Since the proposed demapper
is a generalization of the standard APSK demapping
algorithm, this comparison allows us to quantify the
improvement obtained by using the covariance informa-
tion. The means and covariances are estimated using
120 known pilot symbols per constellation point. Using
CCSDS frames, this represents a 6% reduction in data
rate for a 64 order modulation. Simulations below pro-
cessed 50 frames (∼107 bits) through the full system
model, including distortions, using different demapping
algorithms.
Details specific to the two distortion scenarios are elab-

orated below.

4.0.1 Scenario 1: nonlinear amplifier
A memoryless model was used to simulate a nonlinear
power amplifier [22], where the model parameters were
fit to data measured from an X-band TWTA. The level
of distortion is controlled by the amplifier backoff, which
is the average power of the input signal relative to the
amplifier saturation point. A complex-valued polynomial
with order 9 was used for predistortion, extracted using
an indirect learning strategy with least squares [32]. We

consider 64-APSK and 128-APSK constellations. Since the
CCSDS standard is limited to modulation orders up to
64, we extended the CCSDS framework to include a 128-
APSK constellation from the DVB-S2X standard [33]. The
symbols are distributed in four or five constellation rings.
There is no phase noise in this scenario.

4.0.2 Scenario 2: phase noise
A linear transmission channel is used, but phase noise is
considered at the receiver. Phase noise was simulated at
baseband using the phase noise mask from the receiver
link in the DVB guidelines for the professional service
scenario [34]. Different levels of phase noise were simu-
lated by shifting the entire mask to achieve a given level
(in dBc/Hz) at a frequency offset of 100 Hz from the car-
rier frequency [24]. Rectangular 64-QAM and 128-QAM
schemes were simulated.

4.1 Maximum achievable rate
Independent of the demapping algorithm, the maxi-
mum achievable rate for the reduced channel model in
Section 2.3 is given by the mutual information between
the received and transmitted symbols. For a uniform input
distribution, the mutual information is

I(Y ;X) = 1
M

∑

x∈S

∫
p(y|x) log p(y|x)

p(y)
dy. (16)

The mutual information could be computed efficiently
using an approximation to the entropy of a Gaussian mix-
ture, e.g., [35], although a loss in accuracy is expected for
high modulation orders. Instead, we calculate the maxi-
mum rate by numerical integration of (16) over R2 using
a grid of 1000× 1000 points. The integrand in (16) can be
easily evaluated since the PDFs are known from (10). This
maximum rate is independent of the demapper and serves
as a benchmark for different demapping algorithms.
The achievable rate using a specific demapper can

be computed from the mutual information between the
extrinsic L values in (9) and the transmitted bits for
the equivalent bit channels depicted in Fig. 3. In this case,
the rate was calculated using the area property of the
extrinsic information transfer (EXIT) chart [36]. Specif-
ically, a binary erasure channel was simulated as the
extrinsic channel to provide varying amounts of a priori
information to the demapper. For a given SNR and dis-
tortion level, the reduced channel model was simulated
with∼ 107 bits to compute the demapper’s EXIT function
using the extrinsic L values in (9). The function was evalu-
ated at 100 levels of a priori information between 0 and 1.
The achievable rate for the demapper was computed with
the mean (area) of the resulting EXIT function [36].
Figure 5 illustrates the maximum achievable rate for

the proposed covariance-based demapper and the stan-
dard demapper. The nonlinear channel in scenario 1 was
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Fig. 5Maximum rate. Maximum achievable rate for different
demappers for the nonlinear channel in scenario 1. The achievable
rate for the proposed covariance-based demapper (solid line) and
standard demapper (dashed line) is compared to the theoretical limit
obtained from the symbol-level channel model (dots). Rates are
plotted for 64-APSK and 128-APSK modulation schemes for an input
power of -3 dB relative to amplifier saturation

simulated with an amplifier backoff of 3 dB for two mod-
ulation schemes at various SNR levels. The achievable
rate for the proposed demapper matches the theoretical
maximum derived from the symbol-level channel model,
demonstrating the optimality of the demapper. In con-
trast, the achievable rate of the standard demapper is
reduced when the SNR is high. At high SNR, the symbol
scattering is directional and mainly due the nonlinear dis-
tortion so knowledge of the covariance matrices is crucial
to achieve maximum performance. It is also evident that
there is a larger gain for the higher-order 128-APSK mod-
ulation. Note that the maximum rate for both modulation
schemes is below the corresponding number of bits, even
for infinite SNR, due to the fixed level of distortion.
To examine the effect of the distortion level on the

demapper performance, we calculated the mutual infor-
mation for SNR values between 5–30 dB and distortion
levels defined by input powers between -10 and -2 dB.
We define the gain as the difference in the achievable rate
between the proposed demapper and the standard demap-
per. Figure 6 plots the achievable rate gain for a 128-APSK
modulation scheme for different pairs of SNR values and
distortion levels. We see that there is a gain in regions
with high distortion and high SNR. This is expected since
the symbol distributions are less isotropic, captured by the
covariance of each cluster. We refer to this region as “dis-
tortion dominated.” Conversely, regions with low SNR or
low distortion have relatively circular and constant sym-
bol covariances, so the gain is minimal. We refer to this
region as (thermal) “noise dominated.” Themaximum gain

Fig. 6 Gain in maximum rate. Gain in maximum achievable rate when
using the proposed demapper for the nonlinear channel in scenario 1
using 128-APSK modulation. The gain is shown for various levels of
distortion (controlled by the input power) and SNR values

is 0.16 bits per channel use, obtained when there is severe
distortion and minimal noise.
Very similar plots for the case of phase noise in sce-

nario 2 were generated (not shown for space limitations),
where we consider the AWGN as thermal noise and phase
noise as distortion. Analogous to the nonlinear channel,
a large amount of phase noise creates very asymmetric
covariances, which become the dominate source of error
for sufficiently high SNR.
We remark that this analysis is ideal in the sense that the

reduced channel model perfectly represents the received
symbols. In a practical system, the bivariate Gaussian
is an approximation of the effects of several communi-
cation components. We examine this approximation in
more detail in the Appendix. In the next sections, we
demonstrate that the superior performance of the pro-
posed demapper is maintained for practical systems with
non-Gaussian PDFs.

4.2 Bit error rates
We have shown a substantial gain in the maximum
achievable rate when operating in a distortion dominated
regime, where the symbol noise varies across the constel-
lation. In this section, we examine how this gain translates
to system performance by computing the bit error rate
(BER) for different coding schemes.
As an initial experiment, we compute the BER using

the proposed and standard demappers to make hard deci-
sions about the transmitted bits. The BER in Fig. 7 is
for an uncoded system under scenario 1 with a nonlinear
amplifier at input power of -5 and -3 dB for two differ-
ent constellations. The proposed demapper incorporating
symbol covariances lowers the uncoded BER in distor-
tion dominated regions, when the SNR is high. The BER



Layton et al. EURASIP Journal onWireless Communications and Networking  (2018) 2018:123 Page 8 of 12

Fig. 7 Uncoded BER. Bit error rate (BER) of uncoded transmission for
the standard (dashed line) and proposed (solid line) demapper for a
nonlinear amplifier under different input powers and modulation
schemes

increases for a denser constellation (e.g., 128-APSK) or a
higher level of distortion (input power of -3 dB). It is also
clear that an “error floor” exists for each scheme, due to
the fixed level of distortion.
The uncoded simulations reenforce the common theme

that demapping using the symbol covariance is advan-
tageous for high SNR when the system is dominated by
distortion. However, when error-correction is used, the
threshold of the code also plays a significant role. Figure 8
illustrates the BER of a coded system for the same setup
as Fig. 7. Notice that there is minimal improvement in
the BER for 64-ASPK modulation with coding, despite a

Fig. 8 Coded BER. Bit error rate (BER) using SCCC and turbo decoding
for the standard (dashed line) and proposed (solid line) demapper for
a nonlinear amplifier under different input powers and modulation
schemes

large reduction in BER for the uncoded case. To explain
this, imagine decoding with a hard decision demapper.
Although the proposed demapper reduces the errors at
high SNR, the code can already correct for this number
of errors (in the order of 10−2), so further reduction is
unnecessary. In other words, the information gain from
the proposed demapper occurs at SNR values above the
threshold of the code. Conversely, higher order schemes,
such as 128-APSK, inherently require a higher SNR to
achieve the same level of error, so the proposed demapper
becomes beneficial. Thus, the performance of the coded
system will be substantially improved for 128-APSKmod-
ulation with covariance-based demapping, as shown in
Fig. 8.
The performance of the entire system with the pro-

posed demapper depends on the modulation scheme,
level of distortion, and the SNR threshold of the code.
Figure 9 presents the required SNR to achieve a BER
of 10−6 when error-correction is used for the nonlin-
ear amplifier in scenario 1. As the nonlinear distor-
tion increases, the covariance-based demapper provides
more accurate L values, which improves the decoder
performance so it can operate at reduced SNR com-
pared to the traditional demapper. The reduction in
SNR is more pronounced as the spectral efficiency
increases, e.g., by increasing the code rate or modu-
lation order. This highlights the interplay between the
quality of the demapper output and the errors after
decoding. It is also worth noting that the required SNR
increases smoothly with the distortion level, which acts
to balance the increased uncertainty due to nonlinear
distortion by reducing the uncertainty due to thermal
noise.

Fig. 9 SNR threshold. Required SNR to achieve a BER of 10−6 with
coding using the standard (dashed line) and proposed (solid line)
demapper for a nonlinear amplifier with different distortion levels
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Figure 10 plots the required SNR to achieve a BER of
10−6 for a coded system with phase noise, described in
scenario 2. When we consider the phase noise as a dis-
tortion, separate from thermal noise, all the trends above
are maintained. This demonstrates the utility of the pro-
posed demapper for any system that can be modeled with
data-dependent noise.

4.3 Effect of the number of pilot symbols
The robustness of the demapper to imperfect mean and
covariance estimates is investigated by varying the num-
ber of pilot symbols. We calculated the SNR required to
achieve a BER of 10−6 with a varying number of pilots
for the coded system with the nonlinear amplifier in
scenario 1. Figure 11 demonstrates that increasing the
number of pilots leads to improved performance until
the required SNR reaches a plateau, at which point fur-
ther improvements in the mean and covariance estimates
do not improve the BER performance. For 128-APSK
modulation, more pilots are required to reach optimal
performance, due to the increased number of parame-
ters to be estimated. Apart for a very low number of
pilots, the performance is relatively stable and a graceful
performance degradation is observed for decreasing num-
ber of pilots, demonstrating a reasonable robustness to
inaccurate covariance estimation.

4.4 Iterative demapping and decoding
In this section, we demonstrate that the proposed demap-
per can also benefit applications with iterative demap-
ping and decoding [7]. Iterative demapping methods are
strongly dependent on the chosen bit labeling, e.g., a
Gray mapping exhibits little performance gain with joint

Fig. 10 SNR threshold. Required SNR to achieve a BER of 10−6 with
coding using the standard (dashed line) and proposed (solid line)
demapper for different levels of receiver phase noise. The figure
displays the phase noise level at 100 Hz from the carrier

Fig. 11 Varying number of pilots. Required SNR to achieve a BER of
10−6 with coding using the proposed demapper for a varying
number of pilot symbols for a nonlinear amplifier under different
input powers and modulation schemes

demapping and decoding [37]. To provide a suitable
example, we consider a coded system with phase noise
described in scenario 2, with a 128-QAM constellation
and a randomly generated bit labeling. With this bit label-
ing, the demapper will benefit from a priori information
passed back from the decoder each iteration. We use
the EXIT chart [36] to visualize iterations between the
demapper and decoder in Fig. 12. The simulation was
conducted close to the threshold of the turbo code, with
an Es/N0 of 25 dB, and phase noise of −43 dBc/Hz
at a frequency offset of 100 Hz. The standard demap-
per generates less accurate L values, and consequently,
the mutual information captured in the EXIT function
is lower. This results in the iterative receiver terminat-
ing when the demapper’s EXIT function intersects with
that of the decoder (Fig. 12a). The proposed demapper, on
the other hand, has a higher EXIT function, which allows
for successful decoding using the a priori information
generated from previous iterations (Fig. 12b). Successful
decoding is achieved after two iterations. It is interesting
to note that the turbo code is suboptimal in this example
and below the maximum achievable rate, which could be
obtained by designing a code/decoder to match the EXIT
function of the demapper [38]. Nonetheless, this example
demonstrates a clear advantage of the proposed demap-
per for iterative demapping and decoding. As with all joint
demapping approaches, however, the performance gain
will depend on the bit labeling and the particular coding
scheme.

4.5 Computational complexity
The proposed demapper using a bivariate Gaussian model
requires more computation than the standard demapper
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ba

Fig. 12 Iterative demapping. EXIT chart and calculated trajectory for iterative demapping and decoding using a the standard demapper and b the
proposed demapper for a 64-QAM system with phase noise. The increased EXIT function for the proposed demapper allows iterations between the
turbo decoder and the demapper to achieve successful decoding

using a circularly symmetric Gaussian model. The likeli-
hood computation in (10) requires a squaredMahalanobis
distance of the form (y − μ)T�−1(y − μ). Assuming pre-
computed constants, the likelihood calculation requires
seven multiplications. For a circularly symmetric Gaus-
sian, this reduces to a Euclidian distance and the like-
lihood requires four multiplications. However, the extra
computational cost must be placed in context of the over-
all demapper and the receiver in general.
We conducted performance tests for our MATLAB

implementation using both models, and there was less
than 1% increase in execution time for demapping of
100 frames using the bivariate Gaussian model compared
to the circularly symmetric Gaussian model. The cost
of the extra multiplications is not significant compared
to the other calculations required for demapping, e.g.,
the products and exponentials in (9). The demapper also
represents a fraction (< 2%) of the computational cost
for the whole receiver module, where the turbo decoder
consumes much more of the execution time. This demon-
strates that the improved performance of the proposed
demapper is at the expense of only a mild increase in
computation.

5 Conclusions
This paper has presented a new demapper based on
the symbol mean and covariance at each constellation
point. The proposed demapper improves performance
when the communication link is dominated by asym-
metric distortions as opposed to thermal noise. The
demapper is optimal since it can attain the maximum
theoretical rate given by the data-dependent channel
model. Depending on the coding scheme and level of
distortion, substantial reductions were demonstrated in

the SNR required for near error-free transmission in
practical systems.

Appendix
The proposed demapper works on the assumption that
the conditional PDF for each constellation point is ade-
quately represented by a bivariate Gaussian of the in-
phase and quadrature components. In this section, we
explore this assumption in more detail. We approach
this investigation from the perspective of model selection
[39], which addresses the question of whether a bivariate
Gaussian is a “better” model than a circularly symmet-
ric Gaussian. We use the Akaike information criterion

Fig. 13 Goodness of fit. The true PDF (left), bivariate Gaussian fit
(middle), and circularly symmetric Gaussian fit (right). A constellation
point from the third ring (bottom) and fourth ring (top) of a 64-APSK
constellation under nonlinear amplification with an input power of
-3 dB relative to amplifier saturation. Corresponding values of Akaike
information criterion (AIC) are displayed for each model (scaled by
10−7), where lower values represent a preferred model
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(AIC) to compare the two models [39]. The AIC provides
a trade-off between the goodness of fit of a model and the
number of parameters in the model.
Figure 13 depicts the true PDF using a histogram of

108 simulated symbols partitioned into 104 bins. These
symbols are used to fit a bivariate Gaussian model and
a circularly symmetric Gaussian model, and the AIC for
each model is displayed. The bivariate Gaussian model
provides a better fit (lower AIC) than the circularly sym-
metric version even after penalizing the extra degrees
of freedom. The bivariate Gaussian model had a lower
AIC for all points in the constellation although the dif-
ference between the models is smaller for points in the
inner rings since these points have less distortion. For
example, the AIC for a constellation point in the outer
ring is − 2.61 × 107 for the bivariate Gaussian compared
to − 2.26 × 107 for the circularly symmetric Gaussian.
It is important to consider that our ultimate goal of

modeling the PDF is to efficiently compute likelihoods to
provide to the decoder. In addition to fitting the true PDF
better, the results in this manuscript demonstrate that L
values from the bivariate Gaussian model enable more
accurate decoding than the standard circularly symmetric
Gaussian.
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