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Abstract

With the wide application and rapid development of Intelligent Transportation System (ITS), the floating car has
been widely used in the collection of traffic information, which is also very important in the application of the
wireless sensor networks. In addition to the high-frequency floating car, energy-saving low-frequency floating car
has attracted great attention, but the low-frequency GPS data have a poor effect on map matching. Taking
consideration of the distance, direction, speed, and topology of road and vehicle, we propose a global map
matching algorithm with low-frequency floating car data based on the matching path. The proposed algorithm
preprocesses the floating car data and road network data to determine the potential points and sections by
constructing the error region. Then, we calculate the potential matching path graph with the analysis of time and
space. Finally, we can obtain the matching result by parallel computing with section division methodology. The
experiment results demonstrate that the proposed map-matching algorithm can improve the running time and
matching accuracy compared with the existing methods.
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1 Introduction
In the application of the wireless sensor networks, traffic
information from the senor is very important to control
the traffic congestion. With the rapid development of
economy, traffic congestion are getting worse, and at the
same time, more and more technology has been applied
to the traffic management, where the Intelligent Transpor-
tation System (ITS) is a significant method [1]. ITS is a
real-time, efficient, and comprehensive transportation
management system which integrates advanced electronic
technology and information technology. ITS makes a new
way of interaction among three main traffic systems: car,
road, and traffic, which can reduce traffic congestion to
improve the traffic capacity [2, 3]. The implementation of
ITS system depends on the accurate and real-time traffic
information.
At present, most of the traffic information is collected

by floating car [4], which can acquire the vehicle’s pos-
ition, speed, direction, and other information directly with
low monitoring cost and high efficiency. The floating car

is an advanced method to obtain the traffic information.
The floating car utilizes the vehicle GPS device to collect
the vehicle position data information, then send the data
information to the processing center with the wireless
communication transmission technology. In the process-
ing center, the map matching methodology is used to
match the collected information and map information to
obtain real-time traffic condition [5].
However, due to the complex city geographical features,

when facing the viaduct, culverts, high-rise buildings, and
other terrains, the positioning accuracy of floating car
would be significantly reduced. In order to provide more
accurate positioning data, it is necessary to process the
corresponding correction to the data acquired by the
floating car, where the map matching is the key technol-
ogy to achieve this goal [6, 7].
Map matching is also called map-aided positioning

technology, which is based on the pattern recognition
theory. We set the positioning information obtained by
the positioning device as the objects to be matched and
set the geographic information in electronic map as the
matching template. With the calculation of similarity* Correspondence: lidanhust@hust.edu.cn
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between the objects to be matched and the matching
template, we can choose the correct vehicle travel
matching path according to such similarity [8]. The
map-matching technology is normally implemented in
the field of traffic control. At present, most of the
map-matching algorithms mainly aim at the
high-frequency GPS data.
In practical applications, due to energy consumption

and economic consideration, the data acquired by floating
cars are low-frequency GPS data whose sampling time
interval is more than 2 min. The sampling time interval of
high-frequency GPS data is less than 2 min; two collected
adjacent positioning points are generally located in a sec-
tion of the road. For the low-frequency GPS data, with the
increase of sampling time interval, in the complex city
road network condition, the vehicle may pass through
multiple complex sections, the matching effect and the
matching efficiency will be affected greatly. To solve this
problem, considering the distance, direction, speed, con-
nectivity, and other factors, we propose a map-matching
algorithm with the low-frequency floating car data, which
can improve the accuracy and efficiency of map matching
to select the correct matching path rapidly.
The paper is organized as follows. In Section 2, we give

the related work. The proposed map-matching algorithm
with the low-frequency floating car data is presented in
Section 3. Experiment simulation and result analysis are il-
lustrated in Section 4 and conclusion remarks in Section 5.

2 Related work
Traditional map-matching algorithm is simple and fast,
but with the construction and development of urban
traffic, the urban road and the traffic condition are more
and more complex, the traditional map-matching algo-
rithm would produce inaccurate matching results.
Therefore, many experts have an in-depth analysis and
research about map-matching algorithm.
Bernstein and Kornhauser presented a geometric match-

ing algorithm, mainly including the matching of point to
point and point to the curve [9]. Geometric matching algo-
rithm is the foundation to the map-matching algorithm.
Taylor proposed road reduction filter (RPF) algorithm,
aiming at the map matching with positioning device GPS,
which can improve the matching of point to the curve and
curve to curve and the matching accuracy with differential
GPS correction [10]. Greenfield proposed a map-matching
algorithm based on network topology, which has used
weighted method to fitting out multiple matching factors,
and then selected the matching section. The experiments
have demonstrated the significance of such algorithm [11].
Alt used Fréchet distance to measure the similarity be-
tween the trajectory composed of positioning points and
the road to be matched, where the similarity can be used
as the standard to choose the matching path [12].

However, the complexity of the algorithm is a little high.
Brakatsoulas improved such algorithm by replacing the
Fréchet distance with the weak Fréchet distance, which can
reduce the algorithm complexity [13].
Peng Fei put forward a map-matching technology based

on probability and statistics, which can establish a confi-
dence region based on the received positioning points to
determine the matching sets quickly to improve the
matching efficiency [14]. Gao Jian introduced a dynamic
filtering technology into direct and indirect modes, which
can process sections with shape and sections without
shape efficiently. Such algorithm can achieve good effect
in the simulation experiments [15]. Sinn Kim presented
an adaptive fuzzy neural network map-matching algo-
rithm. The algorithm calculated C-measure value for each
positioning point, where C-measure considered the factor
of distance and direction to indicate the probability of a
vehicle traveling on a road section [16]. According to the
characteristics of the floating car, Wang Xiaomeng pre-
sented a map-matching algorithm based on hidden Mar-
kov chain. This algorithm has many improvements
compared with a traditional model: introducing heading
variable into the calculation of emission probability and
using the path distance to build the road transfer matrix
of the activities range within the floating car moving
scope. With these improvements, such map-matching al-
gorithm has both high matching accuracy and high
matching efficiency [17].
The current map-matching algorithms mainly aimed

at vehicle positioning data with high frequency. There is
few study of low-frequency data map matching. In 2013,
Yao Enjian presented a real-time map-matching algo-
rithm with low-frequency floating car data, called the
piecewise fuzzy matching algorithm. The algorithm di-
vided low-frequency positioning data collected by float-
ing car at a fixed time interval (5 min). Considering the
connectivity between two periods, the last locating point
in the previous period has been taken as the starting
point of the next period. Then the matching path can be
calculated for each time period and connected to obtain
the matching path for the floating car track [18]. In
2015, Shen Jingwei proposed a map-matching algorithm
based on improved activity on edge (AOE) network with
low-frequency floating car. The vertices in the graph
were all the positioning points of the positioning points,
and the edge weight was the path length of the potential
points. The shortest path from the start to the end of
the AOE graph was the matching path of the floating
car track [19]. The experimental results showed that the
algorithm has obvious advantages both at running time
and matching accuracy compared with the global match-
ing algorithm based on weak Fréchet distance.
However, with the analysis, we can find that in the cal-

culation of floating car matching path, edge weight
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calculation only considers the shortest path, making no
use of other information which would affect the floating
car track matching results, such as the direction of the
floating car, the velocity of floating car, and the distance
between the positioning points and the potential points.
Our proposed map-matching algorithm will make full
use of the information gathering by floating car to im-
prove the matching effect highly.

3 Map-matching algorithm
The whole framework of the proposed map-matching al-
gorithm is shown in Fig. 1, which consists of four mod-
ules: The first one is the GPS data and road network
data preprocessing, which can sift out the redundant
data and abnormal data collected by floating car and
construct the topology structure and grid partition, illus-
trated in Section 3.1; the second one is the selection of
potential road sections and potential points, which can
filter out the potential road sections according to error
region built by the theory of probability and statistics,
the vehicle’s speed, and the angle of vehicle direction
and road direction, illustrated in Section 3.2; the third
one is the time-space analysis for positioning points, cor-
responding potential points, and potential matching seg-
ments to obtain the potential matching path map of

floating vehicle trajectory, illustrated in Section 3.3; the
fourth one is the results matching, where one matching
path of potential matching path map is the matching
path of the floating vehicle, illustrated in Section 3.4.
Before illustrating these four modules in detail, we

firstly define the map-matching problem.
Defining the trajectory T of GPS, T is a series of or-

derly GPS positioning pointsp1, p2, …, pn, and the infor-
mation contained in each GPS positioning point can be
expressed as (pi. lat, pi. lng, pi. time, pi. v, pi. β), corre-
sponding to the longitude, latitude, time, the instantan-
eous velocity, and the moving direction angle of
positioning point, respectively.
Defining the road network G(V, E), G(V, E) can be rep-

resented with a directed graph; V is a collection of start-
ing point, ending point, intersection point, and shape
point in a road network; and E is a collection of section
in road network. Each section e is a directed edge, which
can be expressed as a (e. id, e. v, e. l, e. start, e. end), cor-
responding to the serial number of section, the speed
limit, the length of the road, the starting point, and the
ending point of the section, respectively.
Defining the path P, the given two points vi and vj on

the network, P is a collection of connected sections
starting from vi and ending in vj.

Fig. 1 The framework of map matching algorithm
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Then the map-matching problem can be defined as
follows: with the road network G and untreated GPS tra-
jectory T, it is to solve the actual path of T in G.

3.1 Data preprocessing
3.1.1 GPS data preprocessing
As the urban road network condition is very complex,
when floating car drives in a tunnel, under the overpass
or meet with larger building block, it will cause the devi-
ation of GPS data. In addition, the vehicle low-speed
driving or parking, caused by the traffic congestion or
vehicle failure, will produce a lot of redundant data.
These abnormal data and redundant data will seriously
affect the effective execution of map-matching algo-
rithm. Therefore, before matching the GPS positioning
points, we preprocess the GPS data as follows:

1. Delete the data according to the space limit;
2. Delete the data according to the speed limit

threshold;
3. Delete the data according to the static data drift.

When the speed is slow or the vehicle stops, the posi-
tioning point theoretically should be in dense distribution
along the road or gathered at a point. But because of the
GPS positioning deviation, it will make the positioning
point present as a random fluctuation phenome taking a
point as the center, as shown in Fig. 2. Since these points
are close to each other, they can be filtered out according
to the distance. If the velocity of the floating car in current
locating point is low (v < 3 m/s) and the distance between
the current positioning point and the previous positioning
point is less than the threshold, we can ignore the current
positioning point and take the previous positioning point
as the current positioning point.

3.1.2 Network data preprocessing
For road information, in addition to the storage of
nodes, shape point, and road section, we also need to
store the connection information between them, namely
the topology information. To build a network topology
relationship, we need to consider the relationship be-
tween nodes, relationship between node and section

node, and link relationship between section and section.
Figure 3 is a simple road network, including four paths:
R1, R2, R3, and R4. These paths are divided by nodes
into eight sections, sections A, B, C, D, E, F, G, and H,
where the purple dot presents the road intersection
node, and the blue dot presents the shape point in the
section.
We can build the road topology according to the fol-

lowing steps:

1. Reading the road R1, finding the starting point, end
point of R1, and the intersection points with other
roads, numbering these nodes following the
sequence starting from number 1, then generating
the node link table. Taking into account the road
direction, one-way street only takes a row of re-
cords in the table, while two-way street takes two
rows of records.

2. Processing road R2~R4 as R1 in turn. If road nodes
have serial number, we can use the existing serial
number, if not, order number in sequence and add
them to the node links table.

3. Sorting the node link table according to the starting
point of the section to obtain a new node link table.

4. Merging all records with the same starting point
number in the node link table to build the
topological relations between nodes and nodes, and
nodes and links.

5. For two-way road section, finding out the associated
sections with similar starting point or end point
from the node link table. For one-way road section,
finding out the associated sections with the similar
end point in the node link table. Then merging the
same section to obtain the topological relations be-
tween sections.

After building the road network topology, we process the
road network with grid partition to associate each grid with
the sections in each grid area, which can help the rapid fil-
tering out potential sections of positioning points. Due to
the high accuracy of current GPS positioning, the actual lo-
cation of the floating car should be in the road section
within 100-m distance to the positioning point. Therefore,
we choose D = 100 m as the length of grid side. Taking the
length and width of electronic map as L and W, respect-
ively, we divide the electronic map with the square whose
side is D into the number of M*N grids; therefore, M = ⌈L/
D⌉, and N = ⌈W/D⌉. We can number the gird in the elec-
tronic map from top to bottom, from left to right in se-
quence. Assuming that the latitude and longitude
coordinates of the positioning point is (x, y), the latitude
and longitude coordinates of the point which is located in
the upper left in the electronic map is (x0, y0), then the grid
id of the positioning point can be calculated like this:

road

locating point
parking state

Fig. 2 Random fluctuations phenomenon
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id ¼ n−1ð Þ �M þm
n ¼ dis x0; y0ð Þ; x; y0ð Þð Þ=Dd e
m ¼ dis x0; y0ð Þ; x0; yð Þð Þ=Dd e

ð1Þ

where dis is the Euclidean distance between two
points. Considering the positioning point on the edge
of the grid, the positioning point’s potential road sec-
tion is fixed within nine grids centered with the posi-
tioning point grid. After grid partition, we need to
filter out the road sections in these nine grids, which
can improve the efficiency of filtrating the potential
road section greatly.

3.2 Selection of potential sections and potential points
3.2.1 Determination of error region
After grid partition, taking all road sections in nine
grids centered to the positioning point grid as the
potential road sections, which would lead to too
many potential road sections. Taking advantage of the
theory of probability and statistics to construct the
error region of the positioning point can further re-
duce the number of the potential sections. Because of
the existence of various errors, all possible locations
obtained by the vehicle GPS receiver present normal
distribution in an area. According to the theory of
probability and statistics, we can build an error model
with the data obtained by positioning sensor, to gain
the confidence region of vehicle real position. Ac-
cording to the variance and covariance parameters of
GPS receiver, the error confidence region can be de-
fined as the ellipse form as below:

a ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

σ2x þ σ2y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x−σ2y
� �2

þ 4σ2xy

r !vuut ð2Þ

b ¼ σ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

σ2x þ σ2
y þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x−σ2y
� �2

þ 4σ2xy

r !vuut ð3Þ

ϕ ¼ π
2
−
1
2

arctan
2σxy

σ2x−σ2y

 !
ð4Þ

In the above three formulas, a is the long semi-axis of
the error ellipse, b is the short semi-axis error of the
error ellipse, and ϕ is the angle between the long
semi-axis and the north direction; σx and σy are the
standard deviation of positioning point in the direction
of north and east, which can be available in the output
message of the GPS receiver; σxy is the covariance; and
σ0 is called the extended factor. When the shape is kept
constant by adjusting the value of σ0, the error ellipse
can be magnified and reduced to get different confidence
level. When σ0 = 1, the confidence level is 39%; when σ0
= 2.15, the confidence level is 95%; and when σ0 = 3.30,
the confidence level is 99% [20]. The center of the error
ellipse is set as the positioning point.

3.2.2 Determination of potential sections and potential
points
After getting the error region of the positioning point,
the potential road section of the positioning point can
be quickly screened out by judging whether the sections
in the positioning point grid and the surrounding grid
are located in the error region of the positioning point.
The process of determination of potential sections and
potential points is illustrated in Fig. 4. The potential
points corresponding to the positioning points are the
projection points on the corresponding potential sec-
tions. We select the projection points according to the
following method: if the projection point of the GPS po-
sitioning point in the potential section is located in the
potential section, select the projection point as the po-
tential point of GPS positioning point and if the projec-
tion point of GPS positioning point in the potential
section is located in the potential section’s extension
line, select the nearest node of the potential section to
GPS positioning point as the potential point. Taking into
account the angle between the direction of the floating

1 2 3 4

65

78 G

A B

F

C

E

D R4
R2H

R1

R3

Fig. 3 Sample of road network
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car and the direction of the potential section, the poten-
tial section can be selected twice, in order to reduce the
number of invalid candidates. According to the research
results of Ochieng et al. [21], when the speed v of the
floating car is less than 3 m/s, the direction angle θ will
become unstable. Therefore, the rules for potential sec-
tion to be screened out twice are as follows:

1. When v ≥ 3m/s, the direction angle was limited to θ
< 30°.

2. When v < 3m/s, the direction angle was limited to θ
< 120°.

When two nodes n1(x1, y1), n2(x2, y2) on a potential
section are known, the direction angle а of the potential
section can be calculated according to formula (5):

a ¼

π
2
− arctan

y2−y1
x2−x1

� �� �
� 180

π
; x2−x1 > 0

3π
2
− arctan

y2−y1
x2−x1

� �� �
� 180

π
; x2−x1 < 0

180 ; x2−x1 ¼ 0 y2−y1 < 0
0 ; x2−x1 ¼ 0 y2−y1≥0

8>>>>>><
>>>>>>:

ð5Þ
The direction angle β of the floating car can be ob-

tained directly from the information of the positioning
point. It can be concluded that the angle θ between the
direction of the vehicle and the potential section can be
calculated as:

θ ¼ α−βj j ; α−βj j≤180
360− α−βj j ; α−βj j > 180

�
ð6Þ

The screening process is shown in Fig. 5, and in the
error region, we can obtain three potential sections L1,
L2, and L3, where the floating car speed of positioning
point P is 6 m/s.
When we process the secondary screening according

to the direction angle, since the angle between the direc-
tion of road L3 and the positioning point P is larger than

30°, L3 will be rejected from the potential sections. The
final potential sections of point P are L1 and L2, and the
corresponding matching points are c11 and c21 , respect-
ively. With the secondary screening, the invalid potential
sections are discarded, which can reduce the number of
potential points corresponding to the positioning point.

3.3 Analysis of time and space
The analysis of time and space is the core module of the
proposed map-matching algorithm. By considering the
time and space factors in the map matching, we can cal-
culate the matching path map of the floating vehicle tra-
jectory from the potential sections. Time and space
analysis is based on the following three rules:

1. If there is no direct connection between two
positioning points, the actual route of the floating
car tends to choose the shortest path between the
two positioning points. Taking the taxi as the
research object of the floating car, under the urban
road network, it will choose the shortest route.

2. The actual route of a floating car tends to be
straight rather than circuitous.

3. The speed of a floating car obeys the speed limit of
the road network.

3.3.1 Analysis of space
In the space analysis, we calculate the observation prob-
ability of each potential point and the transition prob-
ability between potential point pairs based on distance,
direction, and topology connectivity. Observation prob-
ability represents the possibility that potential points
would be matching points based on the distance be-
tween the positioning point and the potential point, the
angle between the direction of the vehicle, and the road
direction of the potential point. The transition probabil-
ity represents the possibility of the path between poten-
tial point pairs as the actual path of two adjacent
positioning points.

1. Observation probability

Within the 
Error Region

Initial Positioning 
Point

Choosing the 
Projecting Point

Second Screening

Determining of Potential Sections and 
Points 

Fig. 4 Determining of potential sections and points

L1

L3

L2

P

1
1c

2
1c

3
1c

v

Fig. 5 Selection of potential points
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The observation probability is defined as a probability
that positioning point Pi matches to the potential point

c ji . Our proposed calculation of observation probability
not only considers the distance between the positioning
point and the potential point, but also takes into account
the angle between the direction of the floating car and
the direction of the potential road section, which can
improve the accuracy of the observation probability.
Generally, the distance between positioning point Pi

and potential point c ji obeys the normal distribution with

a mean value of 0. The angle θ j
i between the floating

car’s direction on positioning point Pi and the direction
of the potential road Lj obeys the exponential distribu-

tion. Therefore, the probability function of distance d j
i is

expressed as formula (7), and the probability function of

direction angle θ j
i is expressed as formula (8).

f d c ji
� �

¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

d
j
ið Þ2

2σ2 ð7Þ

f θ c ji
� �

¼ λe−λθ
j
i ð8Þ

In formula (7), σ is the standard deviation of the nor-

mal distribution that distance d j
i is satisfied with. In for-

mula (8), λ is the parameter with the exponential

distribution that direction angle θ j
i is satisfied with. Tak-

ing into account the distance and direction angle, the
observation probability can be calculated by the
weighted method:

N cji
� �

¼ wd f d c ji
� �

þ wθ f θ c ji
� �

ð9Þ

In formula (9), wd and wθ are the weighting factors of

the distance d j
i and direction angle θ j

i , respectively,
meeting the condition of wd + wθ = 1. When the instant-
aneous speed v of the positioning point is less than 3 m/
s, the direction of the vehicle becomes unstable at this
time. The rules for determining wd and wθ are as
follows:

(a) When v < =3 m/s, ignoring the direction angle, take
wd = 1, wθ = 0.

(b) When v > 3 m/s, in order to determine the weight
wd and wθ of the observation probability, we select
different wd and wθ to process map matching.
Comparing the accuracy of the map matching with
different values, the higher the matching accuracy
is, the better the value reflects the geometric
relationship. Therefore, we choose the value of wd

and wθ as the value when the matching accuracy is
the maximum.

If the observation probability does not take into ac-
count the topological connectivity among the road sec-
tions of the potential points corresponding to the
adjacent positioning points, mis-matching will occur.
Figure 6 shows an example of mis-matching; if matching
points are selected only by the observation probability
value of potential matching point, the value of Nðc1i Þ is
the maximum, then the matching point of pi is c1i . How-
ever, if considering the previous and next point pi-1 and
pi + 1, then we find that the correct matching point is c2i
of pi. Because if the matching point of pi is c1i , the ve-
hicle must arrive on pi, starting from pi - 1, then return
to pi + 1, which is contrary to the previous rule 2.

2. Transition probability calculation

For the GPS location of two adjacent points pi - 1 and
pi, their corresponding potential points are csi−1 and cti ,
respectively, and the transition probability V ðcsi−1→ctiÞ
from csi−1 to cti is defined as the coincidence degree be-
tween the real path and the shortest path. Consider the
following conditions:

(a) When two potential points csi−1 and cti are located on
the same section or adjacent sections, the topological
relation is determined, then V ðcsi−1→ctiÞ ¼ 1.

(b) Transfer probability is mainly to analyze the
topology from csi−1 to cti , then we should take the
distance from csi−1 to cti as the standard of
measurement. Therefore, transfer probability V ðcsi−1
→ctiÞ is always in the range (0, 1].

Based on the above analysis, the transition probability
is calculated as formula (10):

V csi−1→cti
� 	 1; in the same or adjacent sections

d i−1;sð Þ→ i;tð Þ
w i−1;sð Þ→ i;tð Þ

; others

8<
:

ð10Þ

In formula (10), d(i − 1, s)→ (i, t) is the Euclidean distance
between csi−1 and cti , and w(i − 1, s)→ (i, t) is the shortest
path from csi−1 to cti .

Fig. 6 An example of mis-matching
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3. Space analysis function

With the observation probability and transition prob-
ability, the space analysis function can be defined as
follows:

Fs csi−1→cti
� 	 ¼ N cti

� 	 � V csi−1→cti
� 	 ð11Þ

Formula (11) shows the possibility of a vehicle from pi - 1
moving to p

i
. Therefore, the distance between the posi-

tioning point and the potential point, the instantaneous
velocity of the positioning point, and the topology of the
potential points are all utilized. Based on the space ana-
lysis, for any two adjacent positioning points pi - 1 and pi,
the potential points csi−1 and cti construct a series of
weighted potential paths.

3.3.2 Analysis of time
In most cases, the proposed algorithm can identify the
actual path from the potential paths. However, there are
still some situations where we cannot effectively calcu-
late the actual path only by the space analysis.
As shown in Fig. 7, the thick line is a main road, the thin

line next is an auxiliary road, we can get Fsðc1i−1→c1i Þ
¼ Fsðc2i−1→c2i Þ with the space analysis. However, if the
average speed from pi - 1 to pi is 80 km/h, considering the
road speed limit, we can select the path from c1i−1 to c1i as
the matching path.
Given two GPS positioning points pi-1 and pi, the cor-

responding potential points are csi−1 and cti , respectively,
the shortest path from csi−1 to cti can be expressed as a
series of sections e1, e2, …, ek, the average vehicle speed
in the shortest path can be expressed as:

vi−1→i ¼

Xk
u¼1

lu

Δti−1→i
ð12Þ

In formula (12), lu is the length of the road section eu,
Δti − 1→ i = pi. t − pi − 1. t, and Δti − 1→ i is the time interval
of pi and pi - 1. Note that each section ei has a specific

speed limit which can be used to measure the correl-
ation between the average speed of the vehicle and the
path speed limit. For the vector ðvi−1→i; vi−1→i;…; vi−1→iÞ
and (e1. v, e2. v,…, ek. v), the time analysis function can
be defined as formula (13):

Ft csi−1→cti
� 	 ¼

Xk
u¼1

eu:v � vi−1→ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
u¼1

eu:vð Þ2
vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
u¼1

vi−1→ið Þ2
vuut

ð13Þ

3.4 Result matching
With the analysis of time and space, we can obtain the
initial trajectory. However, if obtaining the accurate
matching path results, we should process the result
matching. We propose a segment partition method to
accelerate the process of obtaining matching path.

3.4.1 Acquisition of matching path
With the analysis of time and space, it can generate a po-
tential map GT(VT, ET) for the floating car trajectory T :
p1→ p2→…→ pn. VT is a set of potential points corre-
sponding to all the GPS positioning points on the T. ET is a
collection of edges, where each edge represents the shortest
path between two adjacent GPS positioning points corre-
sponding to the potential points. GT(VT, ET) is shown as

Fig. 8, where each node is related to Nðc ji Þ and the weight
of each edge is related to V ðcsi−1→ctiÞ and Fsðcsi−1→ctiÞ.
Combining formula (11) and formula (13), the

space-time function can be defined as below:

F csi−1→cti
� 	 ¼ Fs csi−1→cti

� 	 � Ft csi−1→cti
� 	 ð14Þ

The potential matching path of trajectory T can be
expressed as Pc : c

q1
1 →cq22 →…;→cqnn . From the above ana-

lysis, we can find that the weight of each edge in the graph
can be calculated with formula (14). The bigger the sum of
the edge weights on the potential matching path is, the
higher the possibility of being the matching result is. The
total weight of each potential matching path is represented
as FðpcÞ ¼

Pn
i¼2 Fðcsi−1i−1→csii Þ . We can search for a path

from the potential matching paths to meet the maximum
of F(Pc), where the found path is the matching path of T.
Formally, the best matching path P of trajectory T can be
expressed as:

P ¼ arg maxpc F Pcð Þ ; ∀Pc∈GT VT ;ETð Þ ð15Þ

3.4.2 Sections division
From the process that obtainss the matching path, our pro-
posed map-matching algorithm is a global map-matching
algorithm. Only after calculating the cumulative weight of

Fig. 7 Example of time analysis
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all the potential points in the track T, we can obtain the
best matching path. When the trajectory T contains a large
number of positioning points or the need for online
matching, the processing efficiency of the algorithm may
be in difficulty in meeting the actual requirements. In order
to improve the algorithm efficiency, our paper proposes a
method of section dividing the potential matching path
graph GT(VT, ET). After division, the matching path can be
calculated in parallel for each section can calculate the
matching path with the proposed methodology.
In the actual matching process, we find that the position-

ing point corresponding to the potential point is unique
sometimes by using the error region, direction angle, and
other factors to filtering out the potential points. For ex-
ample, as shown in Fig. 9, where P3 has only one potential
point c13. In this case, the matching path of GT(VT, ET) def-
initely pass c13. Thus, the map can be divided by a series of
single potential point. And the topological relationship be-
tween the potential points in the adjacent segment bound-
ary is determined. After division, the potential matching
path graph in Fig. 8 will be divided into three sections as
shown in Fig. 9. The division of the potential matching path
graph not only can reduce the execution time of the

algorithm, but also does not affect the accuracy of the
map-matching algorithm.

3.5 Time complexity analysis of the proposed algorithm
This section firstly analyzes the time complexity of the
map-matching algorithm, and then optimizes the algo-
rithm according to the analysis results. N is used to indi-
cate the number of positioning points in the trajectory
T, M represents the number of road sections, and K rep-
resents the maximum number of potential points of
each positioning point.
The establishment of potential matching path graph

GT(VT, ET) requires the observation probability of each
potential point. The weight ET of each edge needs to cal-
culate the transition probability and process time ana-
lysis. After the establishment of GT(VT, ET), it is
necessary to search for the critical path. The following is
a detailed analysis for each calculation step:

1. The time complexity of observation probability: The
maximum of all positioning points is nk, and the
complexity of calculating the probability of each

Fig. 8 Potential graph GT(VT, ET)

Fig. 9 Division graph with a single potential point
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potential point is O(1), so the time complexity is O
(nk).

2. The time complexity of transfer probability and
time analysis: The number of the shortest paths
that need to be computed in the potential matching
path graph is (n-1)k2. The time complexity with
Dijkstra algorithm to calculating the shortest path is
O(v2), where v is the number of segment endpoints
in the road network (only counting once for
repeating), then v = m + 1, then the time complexity
can be expressed as O((m + 1)2). Therefore, the time
complexity of calculating the transition probability
and process of time analysis is O(nk2m2).

3. The time complexity of matching path
computation: Because each edge of the potential
matching path graph should be visited once, and
the number of edges is nk2, then the time
complexity of the matching path computation is O
(nk2).

Based on the above analysis, the time complexity of
our proposed algorithm is O(nk2m2 + nk2 + nk). Consid-
ering that the number of potential matching points for
each GPS positioning point is a small positive integer,
the time complexity of the matching algorithm can be
approximated as O (nm2). The number m of urban road
network is generally large, so the running time of the
proposed algorithm would be a little big. In order to re-
duce the running time of our proposed algorithm, we
can optimize the computation of shortest path.
Firstly, considering the calculation process of Dijkstra

algorithm, s is used to indicate the starting point, t is the
end point, the array path represents the distance from
the starting point to other points, and the set S stores
the set of points in shortest path. The optimization steps
are shown as follows:

1. Setting the initial value of the set S as empty,
path[s] = 0, and the value of other points in the
path as positive infinity;

2. Searching for the point whose path value is the
smallest one which is not in the set S, and then
adding it to the set S, and use it to update the path
value of the surrounding points;

3. If t is not in the set S, repeat step (2) until t is
involved in the set S, and the process ends.

In the step (2), to search for the point whose path
value is the smallest, normally the Dijkstra algorithm
traverse the points not in the S, the complexity is O(v2).
Here we can optimize the algorithm with the minimum
heap algorithm, where the time complexity of the mini-
mum heap algorithm is O(vlog v) to reduce the time
complexity of the algorithm. Therefore, the total time

complexity of the proposed map-matching algorithm is
reduced from O(nm2) to O(nmlogm). Besides, with the
section division, the processing of difference sections
can be done in parallel, which is helpful to improve the
computational efficiency of the proposed algorithm.

4 Experiments simulation and results analysis
4.1 Experimental data
For the road network data, due to the limitations of the
actual conditions, the experiment uses the electronic
map of Wuhan in 2016, as shown in Fig. 10. The net-
work data is extracted with Coordinate Extractor, a
plug-in unit of MapInfo software. The Network’s parti-
tion is divided by Grider Maker, which is also a plug-in
unit of MapInfo software. The data is transferred and
stored in the form of text files.
For the floating car data, data are acquired from a

Wuhan company’s vehicle in 2016, where the GPS sam-
pling time interval is 1 s. We select 20 groups of the
floating vehicle trajectory data.
For matching result visualization, the map-matching

results are output to the text file. Then we use the desk-
top GIS system of MapInfo to display the matching re-
sults in the electronic map.

4.2 Experimental simulation results
In order to measure the matching effect of the proposed
map-matching algorithm for trajectory data of different
sampling frequencies, we do the sample on each GPS tra-
jectory data with the interval of 30, 60, 90, 120, 150, and
180 s, respectively, as the data to match. Then we pre-
process these data and select the initial potential road and
the potential points. The data in Table 1 present the short-
est path information among part of potential points of the
vehicle 1. The first line indicates the number of the short-
est path of the potential points for vehicle 1. The second
line indicates the shortest path information of two poten-
tial points, where the first and the second number repre-
sent the ID of potential points, For example, 00 means the
ID 0 potential point corresponding to the ID 0 positioning
point, the third number indicates the number of sections
in the shortest path, the following numbers are the ID of
the corresponding sections, and the last number repre-
sents the length of the shortest path.
Then we process the analysis of the time and space

and result matching to obtain the corresponding GPS
matching path. Table 2 shows the matching results of
the positioning points of vehicle 1. The first number
represents the ID of the positioning point, the second
number indicates the ID of matching section, and the
third and the fourth numbers indicate the longitude and
latitude corresponding to the positioning point.
Finally, we can import the matching result data into

MapInfo, and the GPS trajectory and the matching results
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Fig. 10 Wuhan’s electronic map (2016)

Table 1 Shortest path between some potential points

ID of
potential
points

ID of
potential
points

No. of
sections

ID of the
section

ID of the
section

ID of the
section

ID of the
section

ID of the
section

ID of the
section

ID of the
section

Length of the
shortest path

00 10 5 366206807 366206805 366206803 366206801 366206700 1045

00 11 6 366206807 366206805 366206803 366206801 366200490 366200492 1494

01 10 7 366200485 366200487 366200488 366206489 366206490 366206689 366206700 1587

01 11 6 366200485 366200487 366200488 366206489 366200490 366200492 1248

02 10 6 366206808 366206807 366206805 366206803 366206801 366206700 1376

02 11 7 366206808 366206807 366206805 366206803 366206801 366200490 366200492 1794

10 20 5 366206700 366206701 366206703 366209263 366209264 985

11 20 6 366200492 366200495 366200496 366200497 366209263 366209264 1183

20 30 5 366209264 366209265 366209266 366209268 366209269 873

20 31 6 366209264 366209265 366209266 366209268 366209269 366209387 997

20 32 5 366209264 366209265 366209266 366209268 366209269 366209375 366209376 1034

30 40 6 366209269 366209387 366209388 366209389 366209397 366209398 1432

31 40 5 366209387 366209388 366209389 366209397 366209398 1147

32 40 6 366209376 366209377 366209378 366209379 366209380 366209397 366209398 1391

40 50 6 366209398 366209399 366209340 366209341 366204751 366204752 897

40 51 7 366209398 366209399 366209340 366209341 366204751 366204752 1268

40 52 7 366209398 366209399 366209340 366209341 366204751 366204752 366207948 1325
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are presented in the electronic map, as shown in Fig. 11,
where the black flag represents GPS positioning point of
floating car, and blue pushpin represents the correspond-
ing matching point.

4.3 Analysis of experimental results
The map-matching algorithm can be evaluated with
two factors: running time and matching accuracy.
The running time is the execution time of the algo-
rithm in the actual environment. The matching accur-
acy can be measured with two aspects: one is the
correct matching ratio of positioning point, called AN;
the other is the length accuracy ratio AL which is the
ratio of the matching path length to the actual path
length. And the calculation of AN and AL can be de-
fined as follows:

AN ¼ Nr

N
ð16Þ

AL ¼ Lr
L

ð17Þ

where Nr is the number of correct matching points,
N is the total number of positioning point, Lr is the
matching path length, and L is the actual driving
length. We compare our proposed algorithm with the
global matching algorithm based on weak Fréchet dis-
tance and the piecewise fuzzy matching algorithm
over the running time and matching accuracy.

4.3.1 Measurement with running time
The running time of the algorithm is an important
factor to measure whether the algorithm is practical
when processing map matching for massive floating
car data. In order to evaluate the running time of the

proposed algorithm, we compare the running time
among the proposed algorithms, the global matching
algorithm based on weak Fréchet distance [13], and
the piecewise fuzzy matching algorithm [18]. The
sampling time interval of the low-frequency floating
car data is 120 s. Taking a different number of posi-
tioning points for matching, the running time results
of three algorithms are shown in Fig. 12. The experi-
mental results show that the running time of the pro-
posed algorithm is very close to the piecewise fuzzy
matching algorithm, and it is better than the match-
ing algorithm based on weak Fréchet distance. When
the number of matching points increase, the compu-
tation time of the matching algorithm based on weak
Fréchet distance increases exponentially, but our pro-
posed algorithm is almost stable. It indicates that the
algorithm proposed in this paper is of good time
efficiency.

Table 2 Matching results of some positioning points

ID of positioning point ID of matching section Longitude of positioning point Latitude of positioning point

0 366206807 114.358441 30.553367

1 366206700 114.356113 30.569899

2 366209264 114.353145 30.568725

3 366209269 114.351401 30.567776

4 366209398 114.353752 30.566152

5 366205279 114.331283 30.534245

6 366201550 114.31978 30.521132

7 366204597 114.316972 30.53325

8 366207911 114.317846 30.537486

9 366206532 114.322305 30.546413

10 366203691 114.318968 30.542636

11 366202502 114.334065 30.539663

12 366205010 114.324027 30.531073

Fig. 11 Matching result
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4.3.2 Matching accuracy
We take a sample of 20 sets of floating vehicle data with
different sampling intervals and consider the average
matching accuracy of these 20 sets of data as the final
matching accuracy. We compare the matching accuracy
among the proposed algorithms, the global matching algo-
rithm based on weak Fréchet distance, and the piecewise
fuzzy matching algorithm with the factor at different sam-
pling intervals. We mainly compare the correct matching
ratio of positioning point AN, as shown in Fig. 13, and the
length accuracy ratio AL as shown in Fig. 14.
We can find that our proposed algorithm is superior

to the other two algorithms in terms of accuracy. With
the increase of the sampling time interval, the accuracy
of three matching map-matching algorithms would de-
crease then. When the sampling interval is 180 s, AN of
the proposed algorithm is still as high as 83% and AL is
81%. These results demonstrate that the proposed
map-matching algorithm is able to make full use the
low-frequency floating car data and obtain high match-
ing accuracy with building the optimized map-matching
model combined with the network data.

5 Conclusions
In this paper, based on the analysis of low-frequency float-
ing car data and the research of existing map-matching al-
gorithms, we propose an optimized map-matching
algorithm based on matching path with low-frequency
floating car data. The proposed algorithm takes full consid-
eration of the factors such as vehicle distance, direction,
speed, and road topology. Firstly, we preprocess the GPS
data and road network data to determine the potential
points and sections by constructing the error region. Then,
we calculate the potential matching path graph with the
analysis of time and space. Finally, we can obtain the
matching result by parallel computing with sections div-
ision methodology. With the contrast experiment in run-
ning time and matching accuracy, we can find out when
the sampling time of the floating car data is 120 s and the
number of positioning point is 400, the running time of
our proposed algorithm can be within 2 s, which is of high
efficiency. Meanwhile, when the sampling interval is 180 s,
the correct matching ratio of positioning point of the pro-
posed algorithm is up to 83%, and the length matching ac-
curacy ratio is up to 81%, which is more accurate than
other algorithms.
With the construction of the city in the future, the

road will be more and more three-dimensional. In the
future, the map-matching algorithm will expand to the
three-dimensional map matching.
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