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and its application in image scrambling
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Abstract

This paper proposes a new image scrambling algorithm based on the periodic characteristics of the Josephus ring.
The algorithm composes the pretreatment part of the entire image encryption system and scrambles the rows and
columns of the plain image. The Josephus scrambling algorithm is adjustable by using three kinds of parameters:
step, m0, and n. Different values affect the size of the periodic value of the Josephus ring. In this paper, we focus on
the method of determining the period of the Josephus cycle when the parameters are set and the Josephus rule
space under arbitrary parameters. Because the Josephus ring is a mathematical problem, we analyze it using the
group theory of modern algebra. After the Josephus scrambling, the plain image is encrypted. Because a CA is
suitable for image encryption, the encryption part adopts a CA encryption algorithm using a one-dimensional,
four-neighbor CA, which has chaotic behavior at the rules of 9d62 (hex). Finally, the number of pixels change rate,
the unified averaged changed intensity test, and correlation detection are carried out on the experimental results.
The results show that the use of the Josephus scrambling algorithm greatly improves the security of the entire
encryption system.
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1 Introduction
The remarkable growth in computational power has
made the use of digital images over open networks
more popular than ever before. However, this wide-
spread use and the growth of the amount of data are
also a great challenge for the security design of image
encryption algorithms, especially for such private im-
ages as medical images [1, 2]. Traditional encryption
methods such as the Data Encryption Standard, the
International Data Encryption Algorithm (DES) [3],
and the Advanced Encryption Standard (AES) [4] are
not suitable for image encryption; those methods in-
cluding chaotic encryption method perform poorly
due to their low efficiency [5]. Therefore, improving
the security and efficiency of image encryption algo-
rithms has become a key issue.
It is known that a cellular automaton (CA) can be

used to encrypt images efficiently [6–11], and using
an image scrambling algorithm can make the entire

encryption system safer and more reliable [12–14]. In
computer science and mathematics, the Josephus
problem is a theoretical problem related to a certain
counting-out game [15]. The scrambling algorithm
becomes an important part of the entire encryption
system if the particular periodic characteristics of the
algorithm are based on a Josephus ring [16–18].
The proposed algorithm is a row and column

scrambling method based on transformation se-
quences. A plain image’s row and column configur-
ation is called the original sequence, and new
sequences are generated by particular times of a Jose-
phus cycle. The following is a brief introduction to
the Josephus ring and Josephus problem.
The Josephus ring is a classic problem in mathem-

atics: A known number of individuals (designated 1,
2, 3, ..., n) sit around a round table. One by one,
players call out numbers in increments of 1 beginning
at the one whose serial number is m0. The number X
is the step number in the game, when someone’s
number is X they leave the table. The next player
then counts from 1 again; this rule is repeated until
only one player remains. The problem is to determine
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in advance what the serial number of the last player
will be in a sequence of length n. Usually, we assign
a number from 0 to n − 1 as a solution to such a
problem. For a digital image, the final column num-
ber is f(n) + 1: it is also the original problem’s
solution:

f 1ð Þ ¼ 0
f nð Þ ¼ f n−1ð Þ þ step½ � mod n

ð1Þ

2 Periodic characteristics of Josephus ring
2.1 Experimental methods
The Josephus problem has been solved by the recur-
sion method, but the focus of this study is the peri-
odic characteristics of the Josephus ring. We propose
a new image scrambling algorithm with the following
characteristics:

m0 starting position step interval step

n length of the original sequence An original sequence

Josephus displacement: aout = f(m0, step, An). This
operation chooses an element from the original
sequence as output, represented as aout. In Eq. (2), An

'is
the state of the original sequence after a Josephus
replacement operation and m' is the starting position for
the next Josephus replacement:

aout ¼ am0þ step−1ð Þ
An

0 ¼ a1; a2; :…aout−1; aoutþ1;…an−1ð Þ
m

0 ¼ outþ 1
ð2Þ

Josephus cycle: First, set the length of the original
sequence as n. Then multiply n by the Josephus
displacement in the original sequence and place each
aout in order. The new sequence Bn emerges:

Bn ¼ aout1 ; aout2 ; aout3…aoutnð Þ ð3Þ

Bn j : A new sequence generated by j times the Josephus
cycle from the original sequence. It is commonly used in
the sections of this paper that discuss the periodicity of
the Josephus problem.
At first, the original sequence takes the Josephus

replacement (F), and every replacement generates an
element. Put each element in order until all the
elements are out. This obtains a new sequence. This
operation is called one Josephus cycle, denoted t.
Then determine the period of the Josephus cycle
when m0 and step are given. Also, determine the
change of t when m0 = 1 and step = 1, 2, 3,. .. .
Then, explore whether the change of t is periodic
with the change of step. If so, call it the “period
step,” or the period of the Josephus rule, denoted as
T. Finally, this paper discusses a scrambling
algorithm based on a ring structure, for which the
location of the starting point can be arbitrary. Here,
for the sake of narration and argumentation, the
starting point is m0 = 1. When m0 takes other
values, its nature and the general rules described in
the article do not change.
To facilitate the presentation, we define a new

operation as a Josephus cycle, which can also be
regarded as a kind of computation. Apparently, the
Josephus cycle is composed of N times the Josephus
displacement, so the Josephus ring in this problem
contains only one regular operation: Josephus
displacement f. Therefore, the problem belongs to
the category of abstract algebra group theory: in
group theory the analysis method is reasonable.
Meanwhile, to observe the periodic characteristics

of the Josephus ring, we use natural numbers 1, 2, 3,
... to represent the original sequence; these numbers
are only the element subscript number that shows
the position information. They do not represent the

Fig. 1 Overall structure of the encryption algorithm
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content of the element as do other new sequences
transformed from the original sequence.
Figure 1 is a schematic diagram of the entire

encryption system. As shown in the figure, the
Josephus scrambling algorithm is a pretreatment
element for entering the encryption algorithm system.

2.2 The period of the Josephus cycle
The period of the Josephus cycle is represented by t.
To determine the period of each Josephus cycle, we
need to multiply j by the Josephus cycle on the
original sequence (An).
If the following equation is established:

An ¼ Bn j ð4Þ

then we have

t ¼ j ð5Þ

The period of this Josephus cycle is the value of j.
Experiment 1: When n = 4, m0 = 1, and step = 2, the

Josephus cycle states are shown in Table 1.
For An ¼ Bn3 , the period of the Josephus cycle is 3.
In Table 1, element 1 corresponds to element 2,

element 2 corresponds to element 4, element 4
corresponds to element 1, and element 3 corresponds
to itself.
So under these n, m0, and step values, n is countable:

this Josephus cycle has two cycle sets,
{1,2,4} and {3}.
Experiment 2: When n = 20, m0 = 1, and step = 3, each

Josephus cycle state is shown in Table 2.
It can be found in Table 2 that An ¼ Bn30 , so the

period of this Josephus cycle is 30.
Table 2 shows that in the same way as experiment 1,

this Josephus cycle has six cycle sets:
{1,3,9,10,14,17,8,5,15,7}, {2,6,18}, {4,12}, {19,13,11},

{20}, and {16}.
By observing many results with different n, m0, and

step values, a calculation method for the Josephus cycle’s
period can be found. To use this method based on
experiment 2 (n = 20, m0 = 1, and step = 3):

{1,3,9,10,14,17,8,5,15,7}: total number of elements is
10; {2,6,18}: total number of elements is 3; {4,12}:
total number of elements is 2; {19,13,11}: total
number of elements is 3; {20}: total number of
elements is 1; {16}: total number of elements is 1.
Record each different total number of elements in

each cycle set: A = {10,3,2,1}. The minimum common
multiple of the elements in the A set is calculated, that
is, the period of the Josephus cycle under these
parameter values.
The least common multiple of 10,3,2,1 is 30, so t = 30.
This period calculation method is consistent with

some properties of the n-order symmetric group Sn
and its r-cycles in abstract algebra [19], so this
problem can be analyzed from the point of view of
abstract algebra, especially the part of the symmetric
group and its r-cycles.
This n degree symmetric group can be represented in

r-cycles formed as 10-cycles {1,3,9,10,14,17,8,5,15,7};
3-cycle, {2,6,18}; 2-cycle {4,12}; 3-cycle {19,13,11}; 1-cycle
{20}; and 1-cycle {16}.
With the three parameters n, m0, and step

determined, calculating the period of this Josephus
cycle is equivalent to determining the order of one
certain permutation group of this n-degree symmetric
group, which is equal to the order of the product of
all its disjoint r-cycles.
In experiment 2, all the r-cycles are disjoint.

Obviously, each r-cycle’s order equals r. Furthermore,
the r-cycles of Sn have this property: the order of the
product of disjoint r-cycles equals the minimum
common multiple of each factor’s order.
So in summary, the order of this certain permutation

group equals the order of {1,3,9,10,14,17,8,5,15,7}{2,6,18}
{4,12}{19,13,11}{20}{16}. Then, determining the lowest
common multiple of all the factor’s orders, the LCM of
10,3,2,3,1,1 is 30.
The results of this calculation coincide with the

calculated results obtained by the observation, and the
theorems and properties quoted in this analysis are well
proved mathematically. Therefore, when the parameter
values of n, m0, and step are fixed, the periodic problem
of the Josephus cycle is effectively a problem of solving
the order of a specific n permutation group of the
certain n order symmetric group Sn.

2.3 The period of the Josephus rule
Josephus rule: For each of the original sequences,
certain n, m0, and step values correspond to a certain
period of the Josephus cycle. For simplicity, we use
J(n,m0, step) to represent the Josephus rule. Figure 2
shows the structural levels among the Josephus
displacement, the Josephus cycle, the Josephus rule,
and the final scrambling algorithm.

Table 1 Josephus cycle states in experiment 1

New sequence generated
by j times the Josephus
cycle (Bnj)

Original sequence (An)

1 2 3 4

Bn1 2 4 3 1

Bn2 4 1 3 2

Bn3 1 2 3 4

... ... ... ... ...

Bnj ... ... ... ...
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2.3.1 Periodic analysis of the step parameter
We find that a change in step changes the Josephus
cycle. Does this change also show periodicity? That is to
say, whether there is a T to make Eq. (6):

J n;m0; stepð Þ ¼ J n;m0; stepþ Tð Þ ð6Þ

To analyze the effect of the step value in the
Josephus rule, keep parameter settings like m0

unchanged (the value of m0 can be any positive
integer); for example, m0 = 1, step = 1, 2, 3,..., and
then observe changes in the Josephus cycle and the
Josephus rule. We may pay more attention to the
Josephus rule’s periodic characteristics caused by
step’s change.
After the parameters n, m0, and step are determined,

according Eq. (2), the subscripts of aout (the value of
out) are determined after it. Also, the launch of the new
series Bn1 to Bn j is determined, so we use Bn1 obtained

by one Josephus cycle to represent all the states of that
Josephus cycle. Because for Bn1 to Bn j , they all
correspond to the same Josephus rule.
Experiment 3: m0 = 1, n = 4, and the original sequence

is An = (1, 2, 3, 4):
As the value of step increases from 1, Bn1 changes with

it. According to Table 3, a different Bn1 means a
different Josephus rule. Record the value of step when
J(n,m0, step) is consistent with J(n,m0, 1), and then we
obtain T = step − 1 (T is the period of step).
In experiment 3, when step = 13, Bn1 returns to the

original state, as the first line shows (step = 1). That
means the value of step has gone through a cycle, and it
is easy to see that the period of step’s cycle is 12:

J n;m0; 13ð Þ ¼ J n;m0; 1ð Þ
T ¼ 12

ð7Þ

Experiment 4: m0 = 1, n = 7, and the original sequence
is An = (1, 2, 3, 4, 5, 6, 7) (Table 4).

Fig. 2 Hierarchy diagram of the operations

Table 2 Each Josephus cycle state of experiment 2

j Original sequence (An)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 3 6 9 12 15 18 1 5 10 14 19 4 11 17 7 16 8 2 13 20

2 9 18 10 4 7 2 3 15 14 17 13 12 19 8 1 16 5 6 11 20

3 10 2 14 12 1 6 9 7 17 8 11 4 13 5 3 16 15 18 19 20

4 14 6 17 4 3 18 10 1 8 5 19 12 11 15 9 16 7 2 13 20

5 17 18 8 12 9 2 14 3 5 15 13 4 19 7 10 16 1 6 11 20

6 8 2 5 4 10 6 17 9 15 7 11 12 13 1 14 16 3 18 19 20

7 5 6 15 12 14 18 8 10 7 1 19 4 11 3 17 16 9 2 13 20

8 15 18 7 4 17 2 5 14 1 3 13 12 19 9 8 16 10 6 11 20

9 7 2 1 12 8 6 15 17 3 9 11 4 13 10 5 16 14 18 19 20

10 1 6 3 4 5 18 7 8 9 10 19 12 11 14 15 16 17 2 13 20

30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Experiments 3 and 4 show a change in the step value,
which leads to a periodic change of Bn1 , representing the
J(n,m0, step):

J n;m0; stepð Þ ¼ J n;m0; stepþ Tð Þ ð8Þ

When we explore the general method of computing
the value of T, we notice that there is some relation
between that value and the sequence length n.
Therefore, we set up a sequence of length N, redefine its
step’s cycle T as Tn, and then do the following analysis:
The T4 = 12 of experiment 3 and the T7 = 420 of

experiment 4 are solved by the programming method of
cyclic traversal. The periods of the step’s cycle T1 to
approximately T11 and of n = 1 to approximately n = 11’s
sequence are solved by the same method. The results
are as follows:

First, express each N’s factorial in the form of n ! =
n × (n − 1)! (n ≥ 1), and then change the form of every N
from an integer to the product of several certain prime
factors. The results are:

n ¼ 1
n ¼ 2
n ¼ 3
n ¼ 4
n ¼ 5
n ¼ 6
n ¼ 7
n ¼ 8
n ¼ 9
n ¼ 10
n ¼ 11

1! ¼ 1
2! ¼ 2� 1!
3! ¼ 3� 2!
4! ¼ 22 � 3!
5! ¼ 5� 4!
6! ¼ 3� 2� 5!
7! ¼ 7� 6!
8! ¼ 23 � 7!
9! ¼ 32 � 8!
10! ¼ 5� 2� 9!
11! ¼ 11� 10!

T 1 ¼ 1
T 2 ¼ 2
T 3 ¼ 6
T 4 ¼ 12
T 5 ¼ 60
T 6 ¼ 60
T 7 ¼ 420
T 8 ¼ 840
T 9 ¼ 2520
T 10 ¼ 2520
T 11 ¼ 27720

ð10Þ

Now observe the relation between Tn and Tn − 1:

T 1 ¼ 1
T 2 ¼ T 1 � 2
T 3 ¼ T 2 � 3
T 4 ¼ T 3 � 2
T 5 ¼ T 4 � 5
T 6 ¼ T 5 � 1

T 7 ¼ T 6 � 7
T 8 ¼ T 7 � 2
T 9 ¼ T 8 � 3
T 10 ¼ T 9 � 1
T 11 ¼ T 10 � 11

ð11Þ

As shown in Eq. (6), n is the sequence length. First, we
do the prime factor decomposition for n and obtain the

n ¼ 1
n ¼ 2
n ¼ 3
n ¼ 4
n ¼ 5
n ¼ 6
n ¼ 7
n ¼ 8
n ¼ 9
n ¼ 10
n ¼ 11

1! ¼ 1 T1 ¼ 1
2! ¼ 2� 1 T 2 ¼ 2
3! ¼ 3� 2� 1 T 3 ¼ 6
4! ¼ 4� 3� 2� 1 T 4 ¼ 12
5! ¼ 5� 4� 3� 2� 1 T 5 ¼ 60
6! ¼ 6� 5� 4� 3� 2� 1 T 6 ¼ 60
7! ¼ 7� 6� 5� 4� 3� 2� 1 T 7 ¼ 420
8! ¼ 8� 7� 6� 5� 4� 3� 2� 1 T 8 ¼ 840
9! ¼ 9� 8� 7� 6� 5� 4� 3� 2� 1 T 9 ¼ 2520
10! ¼ 10� 9� 8� 7� 6� 5� 4� 3� 2� 1 T 10 ¼ 2520
11! ¼ 11� 10� 9� 8� 7� 6� 5� 4� 3� 2� 1 T 11 ¼ 27720

ð9Þ

Table 3 Josephus cycle state of each step value in experiment 3

Value of step New sequence Bn1
generated after
one Josephus cycle
(t) from original sequence An

Period of Josephus
cycle (t)

1 1 2 3 4 1

2 2 4 3 1 3

3 3 2 4 1 3

4 4 1 3 2 3

5 1 3 4 2 3

6 2 1 4 3 2

7 3 4 1 2 2

8 4 2 1 3 3

9 1 4 2 3 3

10 2 3 1 4 3

11 3 1 2 4 3

12 4 3 2 1 2

13 1 2 3 4 1

... ... ... ... ... ...

Table 4 Josephus cycle state of each step value in experiment 4

Value of step New sequence Bn1
generated after one
Josephus cycle
(t) from the original
sequence An

Period of Josephus
cycle (t)

1 1 2 3 4 5 6 7 1

2 2 4 6 1 5 3 7 6

3 3 6 2 7 5 1 4 4

4 4 1 6 5 7 3 2 10

... ... ... ... ... ... ... ... ...

421 1 2 3 4 5 6 7 1
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prime factors xi, keeping xi ≤ n. In the equation, p is the
number of different qualitative factors and ai is the
exponent of xi:

n ¼
Yp
i¼1

xaii ð12Þ

The following inference is made from the above
experimental data:
When p = 1, that is to say, n can be represented only

as the power of a certain prime number, there are

Tn ¼ xiTn−1 ð13Þ

When p > 1, that is, n can be expressed as the product
of the power of several prime factors, there are

Tn ¼ Tn−1 ð14Þ

2.3.2 Formula generalization of step’s period
In Section 3.1, we researched the period of step (Tn),
and Tn was found to have a direct relation with the
sequence’s length. Step and m0 are two parallel
parameters of the Josephus cycle, so it could be asked
whether Tn is also the period of m0, or whether Tn is
related only to the sequence’s length.
It has been found that, for a sequence of length N,

step’s periodic characteristic is also suitable for m0. The
research method is the same as what Section 3.1 shows.
The difference is only that keeping the value of step
unchanged, we increase m0 from 1 to n.
Therefore, we get

J n;m0; stepð Þ ¼ J n;m0 þ Tn; stepð Þ ð15Þ

With the conclusion of Section 3.1, we can get the
following relation:

Fig. 4 a Gray histograms of Lena. b Gray histograms of cipher Lena image

Fig. 3 a Plain image (cameraman). b Directly CA-encrypted image (cameraman). c Scrambled image (cameraman). d The cipher image after scrambling
the plain image (cameraman)
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J n;m0; stepð Þ ¼ J n;m0 þ Tn; stepþ Tnð Þ ð16Þ

In conclusion, Tn is the period of both step and m0,
and it is related only to the sequence’s length.
Therefore, we propose that Tn is the period of the
Josephus rule.

2.3.3 Space of the Josephus rule
A different J(n,m0, step) means a different Josephus
cycle: each Josephus cycle corresponds to a certain
different Josephus rule. Now we discuss the question of
how many different rules exist; the scrambling algorithm
should have a very large space of rules. Because Tn is the
period of both step and m0 according to Section 3.2, we
can easily find that the space of the Josephus rule is the
square of Tn. So we get

Table 5 NPCR and UACI p values

Item NPCR(%) UACI (%) p-value Size

Test image

Cameraman 99.5620 31.1169 0.0261 256 × 256 × 1

Scrambled cameraman 99.6185 31.1317 0.0127 256 × 256 × 1

Lena 99.5788 33.8519 0.0452 256 × 256 × 1

Scrambled Lena 99.6093 34.0460 0.0440 256 × 256 × 1

Couple 99.6078 32.8495 0.0750 256 × 256 × 1

Scrambled couple 99.6643 33.0188 0.0279 256 × 256 × 1

Boat 99.5937 29.3294 0.0466 512 × 512 × 1

Scrambled boat 99.6154 29.3675 0.0218 512 × 512 × 1

Baboon 99.6063 27.7792 0.1011 512 × 512 × 1

Scrambled baboon 99.6234 27.8718 0.0366 512 × 512 × 1

Town 99.6055 29.1728 0.0770 512 × 512 × 1

Scrambled town 99.6174 29.2275 0.0478 512 × 512 × 1

Barbara 99.6189 28.8729 0.0832 512 × 512 × 1

Scrambled barbara 99.6310 28.8842 0.0470 512 × 512 × 1

Peppers 99.6143 30.9129 0.0658 512 × 512 × 1

Scrambled peppers 99.6325 30.9247 0.0412 512 × 512 × 1

Fig. 5 a Cameraman. b Lena. c Couple. d Boats. e Baboon. f Town. g Barb. h Peppers

Fig. 6 NPCR test
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space ¼ T 2
n ð17Þ

3 Results and discussion
3.1 Number of pixels change rate and unified averaged
changed intensity tests
Number of pixels change rate (NPCR) and the unified
averaged changed intensity (UACI) are two important
parameters for judging the strength of an encryption
algorithm [20]. The values of NPCR and UACI are
computed using the following equations:

NPCR ¼ 1
NM

XN
i¼1

XM
j¼1

D i; j½ �
 !

� 100% ð18Þ

UACI ¼ 1
NM

XN
i¼1

XM
j¼1

C1 i; j½ �−C2 i; j½ �j j
255

 !
� 100% ð19Þ

where N and M denote the image’s width and height
respectively. C1[i,j] is the obtained cipher image from
the original plain image, whereas C2[i,j] is obtained
after one bit of the plain image is modified. For each
(i,j) position, if C1[i,j] = C2[i,j], then D[i,j] = 0, else
D[i,j] = 1.
We incorporated the Josephus scrambling algorithm

into the encryption algorithm system, and then tested
the Josephus scrambling algorithm’s ability to enhance
the effect of the partial X cell automaton encryption
algorithm. We used the 256 × 256 cameraman as an
example. In Fig. 3, the pictures from left to right are
the plain image, the direct CA-encrypted image, the
scrambled image, and the cipher image after scram-
bling. Figure 4 are gray histograms of above images.
As we can see from Fig. 4, the cipher image’s pixel
distribution is more uniform than plain image, which
proves this encryption system can protect the infor-
mation of plain image.

To analyze the security of the entire encryption
algorithm intuitively [21–25], we took 1 × 104 pixel points
of each experimental image as samples. Next, we should
demonstrate that using the scrambling algorithm can
improve the security of the entire encryption algorithm.
Figure 5 shows several standard images used as

experimental materials. To prove the hypothesis
above, we did NPCR and UACI tests on pairs of
plain images, comparing each encrypted image before
scrambling, with the same encrypted image after
scrambling. We called them the sample image pairs.
At the same time, we used the hypothesis testing

method to calculate the p value of the NPCR test results.
If the proposed algorithm was able to encrypt images that
were indistinguishable from random images under the

Fig. 7 P values of NPCR tests

Table 7 Correlation detection results for the cameraman
picture

Correlation Vertical Horizontal Diagonal

Samples

Plain image 0.9565 0.9334 0.9564

Scrambled image 0.2663 0.1844 0.2720

Directly CA-encrypted images − 8.9832 × 10−4 − 0.0055 0.0036

Scrambled and
encrypted images

2.4281 × 10−4 0.0027 0.0031

Table 6 Confidence intervals

Samples Mean of NPCR(%) σ n CI

Scrambled images 99.6265 0.0172 8 [0.996265 ± 0.011918]

Fig. 8 UACI test
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NPCR and UACI measures, the p values simply
represented the possibility that our tested images were
indeed random-like. Take the significance level α =
0.05, and then judge the randomness and credibility
of the sample image pairs according to the sizes of
the p value and α. When the p value is less than α,
the sample image pair is strongly random-like, but
when the p value is greater than or equal to α, the
sample image pair has low randomness. Figure 6
shows the p value test results. Table 5 shows NPCR,
UACI, and p value testing results of standard images.
As shown in Fig. 7, in this encryption system, the
NPCR value of the scrambled images is generally
higher than that of the nonscrambled images. UACI
results for both of the two series are similar: as Fig. 8
shows, the red line is just slightly higher than the
blue line. It is a normal test result.

3.2 Confidence intervals
Due to the normal distribution of the cipher image
samples, we get X ~ N(μ,σ2), X is the average value of

NPCR, under significance level α = 0.05, and confidence
degree is 1−α = 0.95.
Confidence intervals:

X � σffiffiffi
n

p � Zα
2

� �
ð20Þ

Look-up the normal distribution table with the
confidence degree of 0.95, we get:

Zα
2
¼ 1:96 ð21Þ

So confidence intervals is [0.984347,1.008183]. Details are
displayed in the (Table 6).

3.3 Correlation detection
Correlation detection is a conventional detection
method for encrypted images [26, 27]. It is also used
to evaluate the performance of encryption or
scrambling algorithms. Table 7 shows the details, and
Figs. 9, 10, and 11 show the correlation detection
results of the cameraman picture.

Fig. 9 a Vertical correlations of original images. b Horizontal correlations of original images. c Diagonal correlations of original images

Fig. 10 a Vertical correlations of scrambled images. b Horizontal correlations of scrambled images. c Diagonal correlations of scrambled images
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4 Conclusions
In this study, starting from the classic Josephus
problem we used the Josephus loop algorithm to
generate scrambled sequences from the original
sequences. These new sequences were then applied to
the image scrambling of columns and rows. The
scrambling operation is the preprocessing part of the
entire encryption system, which has a great influence
on the security of the encryption algorithm. Then we
focused on the period of the Josephus cycle (t) and
the period of the Josephus rule (Tn), both of which
are the core of the Josephus scrambling algorithm
and guarantee the reversibility and rule space
complexity of that algorithm. Different selections of
m0 and step also have a direct impact. To obtain a
general conclusion, we encrypted experimental group
images with the Josephus scrambling treatment and a
control group of images without it. Both image
groups used the cameraman, Lena, and other
standard images. Then we did NPCR and UACI tests
and correlation detection for two sets of samples. The
experimental data show that compared with the
control group, the images encrypted with Josephus
scrambling had better randomness and higher NPCR
values; the lower p value also shows the reliability of
the experimental results. Therefore, we found that the
Josephus scrambling algorithm can improve the
randomness of image enciphering and the reliability
of an encryption system.
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