
RESEARCH Open Access

A resilient data aggregation method based
on spatio-temporal correlation for wireless
sensor networks
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Abstract

In wireless sensor networks, the existing data aggregation algorithms usually cannot evaluate the extent of data
damage in presence of additive attacks. To resolve such problem, a resilient data aggregation method based on
spatio-temporal correlation for wireless sensor networks is presented in this paper. On the basis of the distributed
data convergence model, the algorithm combines the centroid distance and similarity to measure the attack
degree of each cluster node’s perceived data, and the weighted calculation can improve the convergence precision
of data recovery. In addition, this method can obtain the estimated value of data sample of all clusters according to
the temporal correlation characteristic of the nodes’ perceived data at different time. Using the chi-square fitting,
the extent of the data being tampered in each cluster can be measured effectively. Theoretical analysis and simulation
results show our method can improve the restoration convergence precision as the attack increment is small. Also, it
can enhance the robustness from noise interference.
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1 Introduction
In most applications of wireless sensor networks (WSNs),
data aggregation is critical for reducing the transmission
of redundant data effectively and prolonging the network
lifetime. Due to the impact of node’s deployment and
transmission channel, data aggregation is always facing a
severe challenge on security issues [1]. Especially as some
nodes in WSN being captured, the input values of
aggregation function will be modified involuntarily,
which will increase the output error of the result.
Therefore, the input values should be verified before
aggregating the data being collected by sensor nodes.
However, in traditional methods, once the malicious
attacks being monitored, the perceived data of the
sensor nodes will be discarded directly [2]. That will
cause a great waste of resources and reduce utilization
rate of sensor node’s energy.
At present, the important issue is that the perceptual

data is vulnerable to malicious tampering for data aggre-
gation. Broadly, there are two different categories about

those attacks. One is that the data is modified during
the transmission process, which mostly can be detected
by encryption technology. The other is that the data
will be tampered with before the aggregation, and this
kind of attack cannot be detected or blocked effectively
by encoding [3]. Therefore, the data aggregation algo-
rithms are proposed to solve this problem by validating
the perceived data before entering the aggregate function.
However, once the attack is detected, the traditional
method will discard the data being collected by monitoring
nodes directly [4]. This process mode can lead to a lot of
waste of resources and reduce the utilization of network
energy. In order to solve this problem, a variety of simple
method of restoration and aggregation is proposed by
using the samples that are not attacked [5], such as
truncation method and shear mechanism, which can
improve the energy utilization of the network. But
those methods have some limitations. In this paper, we
focus on spatio-temporal correlation of the perceptual
data in cluster-based WSNs. In particular, we cope with
the centroid distance and similarity to measure the
attack degree of each cluster node’s perceived data and* Correspondence: yl_cun@yeah.net
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present a resilient data aggregation method based on
spatio-temporal correlation (RDAS) for WSNs.
The rest of this paper is organized as follows: In

Section 2, we review the related work. We describe the
network model and assumptions and explain the details
of our method in Section 3. Section 4 presents a thorough
experimental evaluation and compares our solution with
the state-of-the-art. Finally, we conclude this paper in
Section 5.

2 Related works
Wireless sensor nodes are often deployed in a relatively
open environment with self-organized architecture [6].
Owing to lack of physical link or fixed special protection
equipment, a greater deal of security threat often con-
fronts more severely in WSNs than traditional network
[7]. From the perspective of secure routing, a special
monitoring node is set up in WSN network to imple-
ment target monitoring. In order to solve the problem of
high cost and difficulty to achieve, some security data
fusion method is proposed.
Lv et al. [8] proposed a secure routing algorithm for

WSNs based on credibility and gave a hierarchical
routing trust model to eliminate malicious nodes
through establishing secure routing. However, the main
disadvantage is that the data correlation is ignored in
spite of the trusted model being built from multiple
perspectives. Safa et al. [9] is a cluster-based trust-aware
routing protocol, which includes a hierarchical routing
algorithm based on node’s trust value. Each adjacent node
conducts mutual trust value evaluation and then clusters
in a self-organizing way. The intra-cluster nodes send the
data to the trusted cluster head by directional diffusion,
which can effectively guarantee the security of data trans-
mission. Hu et al. [10] proposed a creditability-based data
aggregation (CBDA) model based on trusted data fusion
to ensure the authenticity and reliability of the generated
aggregated data.
Zhang et al. [11] presented data fusion mechanisms

based on immune in WSN, which uses the hierarchical
distributed strategy to reduce the energy consumption of
the network to the maximum extent and improves the
reliability of the data fusion results by employing the
adaptive characteristics of the immune system. However,
the above mechanism cannot solve external malicious
attacks effectively. Liu et al. [12] proposed a high-efficient
and real-time data aggregation algorithm based on data
integrity. The algorithm employs redundant theorems on
sink node to verify the consistency of data to evaluate the
reliability of the result. Also, a homomorphic encryption
mechanism is conducted to provide security for data
forwarding.
To improve the accurate rate of the data fusion results,

Qiu et al. [13] presented a data aggregation in WSNs

based on a deep learning model. By designing the
stacked automatic encoders, the feature extraction
classification model is established for all clusters, and
the feature data is extracted and classified to aggregate
the characteristic information of the same kind. Cui et
al. [14] presented a malicious node detection algorithm
based on secure data fusion in WSNs, which combines
a false data filtering method for different geographic
locations. The node’s location is verified according to
the data sent by the node to identify the malicious
nodes that may exist in different regions according to
the forged data. Du et al. [15] proposed a dynamic data
fusion algorithm based on hierarchical routing queue.
By setting a dynamic queue in the filtering node, the
historical interactive data among the adjacent nodes
can be stored and the redundant data of the network
will be filtered, which can reduce the interference of
redundant data to final fusion results.
Wager [16] first introduced the concept of resilient

data aggregation and presented the specific issues that
need to be resolved. Some simple solutions have put
forward such as cutting method and truncated mechanism.
Based on the random sample consensus paradigm, Buttyan
et al. [17] proposed a resilient data aggregation mechanism
in WSNs. This method checks consistency between model
and sample by random sampling and constantly eliminates
abnormal node data. After some experiments repeatedly,
the remaining data set can be used as input of aggregate
function. However, since the centralized data processing is
conducted, the energy consumption of nodes is much
higher. Especially when the attack does not exist in the
network, still a large amount of data should be removed,
and it result in low convergence precision. Luo et al. [18]
presented a gray relationship degree and probability
density parallel distance-based resilient data aggregation,
which uses a distributed aggregation model to measure
the degree of attack in view of gray correlation and
probability density interval. The convergence precision
has been improved, but its anti-noise performance is
poor. Based on the above research, they proposed a
similarity-based resilient data aggregation for WSNs
[19]. The restoration precision of the method is high,
and the robustness to the noise interference of the
network is stronger. But when the amount of attack
imposed on the perceived data is smaller, the expectation
model cannot be selected accurately, and it results in the
convergence of the reconstruction precision being not
improved efficiently. To aim the problem of privacy
preservation in intermediate nodes, Parmar et al. [20]
proposed a data aggregation method with malleability
resilient concealment to avoid loss of packets under
active or passive attacks. The method can effectively
protect the network from internal and external opponents
and also implement conflicting objectives.
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3 A resilient data aggregation method based on
spatio-temporal correlation
3.1 Network model
By clustering method [21], the whole network can be
divided into several clusters, where each node only
belongs to one cluster and each cluster is assigned to
one cluster head. All the data being collected by member
nodes will be gathered by the cluster head, and then,
the results will be transmitted to the base station by a
multi-hop routing [22]. Considering that the attackers
actually only has limited energy, it can be assumed as
follows:

(1) Incremental attack, that is, the same value is added
to the readings of each captured node.

(2) Constant attacks that modify the readings of the
captured nodes to a certain constant.

(3) The attacker may not choose to capture the nodes
at any position instead of the ones in the range of
convenient operation nearby. Therefore, we can
assume that the distribution of captured nodes
located in the network is relatively concentrated.

3.2 Data similarity
Vuran et al. [23] have explicitly proposed the concept of
data time-spatial correlation in the field of WSNs. Due
to the dense deployment, the data collected by sensor
nodes have spatial correlation. If the sampling interval is
small enough, the sampling data between adjacent intervals
demonstrates time correlation simultaneously.
For simplicity, M represents the total number of nodes

in WSN and r represents the number of clusters. Besides,
Ci denotes the i-th cluster with mi member nodes and xij
indicates the reading of the node j in the cluster Ci, and Si
indicates the set of perceived data by all nodes in the
cluster Ci at a certain time, i.e., {xi1, xi2,⋯, xij,⋯}.
Suppose that if the sensor nodes not be attacked, xij
obeys independent co-distribution and the mathematical
expectation μ and variance δ2 are unknown. k represents
the proportion of the nodes being attacked to all nodes.
By adopting the method of distribution fitting test

[24], a cluster Cq by no attack or the weakest attack can
be selected as the reference by expected model. Then,
the data similarity in Cp and Cq will be measured to
evaluate the degree of attack for cluster Cp. Assume that

the monitoring data in cluster Cq is xðqÞij ð j ¼ 1; 2;⋯; nÞ ,
which represents the historical data of i-th member node
of cluster Cq at time j. Considering the discrete degree
of the comparison of two groups, the influence of data
units and measurement scales should be eliminated by
standard deviation as much as possible. Also, the time
variant property of the process should be highlighted.
Hence, we have

μi ¼
1
N

XN
j¼1

x qð Þ
ij

σ i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
j¼1

x qð Þ
ij −μij

� �2

vuut

8>>>>><
>>>>>:

ð1Þ

Further, the coefficient of variation can be obtained as:

Corri ¼ σ i
μi

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
XN
j¼1

x qð Þ
ij −μij

� �2

vuut

XN
j¼1

x qð Þ
ij

ð2Þ

Suppose that the mean values of the data in the cluster

Cp and Cq are X
ðpÞ

and X
ðqÞ

, respectively, the centroid
distance between Cp and Cq can be estimated as

dist cp; cqð Þ ¼ X
pð Þ
−X

qð Þ���
��� ð3Þ

In addition, the correlation coefficient of clusters Cp

and Cq can be obtained based on the perceived data of
nodes.

rel cp; cqð Þ ¼

XN
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� x qð Þ

ij −X
qð Þ� �vuut

ð4Þ
Finally, the data similarity between the clusters Cp and

Cq can be given as

ρ ¼ θ � dist p; qð Þ þ 1−θð Þ � rel cp; cqð Þ ð5Þ
where θ is a tune parameter to allocate the weight value
of correlation coefficient function and centroid distance.
Apparently, the data similarity can be used to represent

the degree of similarity between two samples. By formula 5,
it shows that the greater the correlation coefficient of the
two samples, the greater the similarity between the two
samples will be. In addition, if the greater the center of
gravity between the two samples, the smaller the similarity
is. In brief, the centroid distance reflects the difference
between the mean value between Cp and Cq, and the
correlation coefficient represents the degree of the
comparison of monitoring data in clusters Cp and Cq.
When the attack increment is small, the correlation
coefficient can reflect the difference of the data being
distorted and expectations in the reference model. Also,
while there is noise interference in the network, the
disturbance of each node’s perceptual data can also
accurately reflect the change of the correlation coefficient.
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However, as the attack increment is large, the centroid
distance can reflect the similarity between clusters Cp and
Cq more accurately than the correlation coefficient.

3.3 Chi-square fitting degree
When the amount of attack behaviors is small, the
chi-square statistic method can be conducted to evaluate
the measurement of convergence in each cluster. By
dividing the node’s data of cluster Ci into c groups with
equal interval, οj and Tj denote the theoretical and
actual frequency of the measured values for the interval j,
respectively. Then, the chi-square statistics of the cluster i
can be estimated as:

χ2i ¼
Xc

j¼1

ο j−T j
� �2

T j
ð6Þ

Hence, the chi-square fitting degree of cluster i can be
obtained.

Fi ¼ 1
1þ χ2i

ð7Þ

From the above equation, it can be seen that the effect
of fitting degree is similar to the utility estimation of
information quality. As the assailant increases the increment
of the attack on the captured nodes’ perceived data, the
discrepancy between the cluster and the reference model is
more obvious. In contrast, when the attack increment is
smaller, the parallel distance between the cluster’s mean
value and the probability density of mathematical expect-
ation is almost the same [25]. However, the utility estimation
of information quality should be obtained by means of the
integration of covariance and a priori probability. It will
result in long time for calculation and high energy con-
sumption. Comparatively, the operation of chi-square fitting
is much more oversimplified and the energy consumption
can be reduced.
Further, the weight value corresponding to the fitting

degree Fi of the cluster Ci chi-square can be obtained
according to Lagrange’s extreme value method.

ωi ¼ F2
iXr

j¼1

F2
i

ð8Þ

The chi-square value reflects the degree of coincidence
between the actual frequency and the theoretical value.
If it is assumed that the sample obeys the theoretical
distribution, the difference between the actual frequency
and the theoretical value will not be very large and vice
versa. Thus, the smaller the χi, the actual sample is close
to the theoretical value.

3.4 Resilient data aggregation method
When the amount of distort exerted by the attackers on
the captured node’s perceiving data is large, the difference
between the cluster under attack and the normal cluster is
more obvious. Therefore, the expected cluster Cq can be
selected to reflect the degree of attack on the node’s data in
the cluster by using the centroid distance between them.
Considering the case of the aggregated function as the

mean, X denotes the true value of the target variable to be
obtained by the aggregation function and X̂ represents the
estimated value of the target variable. Suppose X̂ i to be
the estimated value of the target variable of data sample in
each cluster, the estimated value of the cluster i can be
given as:

X̂i ¼
Xmi

i¼1

wj � xij ð9Þ

where mi is the number nodes in cluster Ci and wi is the
weight value of member node j in the cluster i.
The entropy theory has been widely applied in en-

gineering applications for probability inference based
on incomplete samples and deal with uncertainty in
intelligent systems [26]. If the entropy of a variable is
smaller, the greater the amount of information pro-
vided by the variable will be. Considering the effect
of the variable on the final result, a larger weight
should be given. Based on entropy method, the
weight value of the member node j in the cluster i
can be determined.

γ j ¼ −
1

lnmi

Xmi

i¼1

xij−X̂
t−1ð Þ
i

� �
� ln xij−X̂

t−1ð Þ
i

� �

wj ¼ −
1−γ j

Xmi

i¼1

1−γ j

� �

8>>>>>><
>>>>>>:

ð10Þ

where X̂
ðt−1Þ
i denotes the aggregated result at the previous

interval.
The estimated values of the cluster samples will be

calculated with weight value, then

bX 0 ¼
X

ρi
�ωi

�X̂i ð11Þ

Next, the final aggregation results can be obtained by
the cluster of the expected model and the value obtained
by above formula.

X̂ ¼ f bX 0; X̂q

� �
ð12Þ
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4 Simulation results
There are 400 sensor nodes randomly deployed in a
region with 100m× 100m square, and the whole network
will be evenly divided into nine clusters. If there is no at-
tack in WSNs, the data samples of the sensor nodes obey
the distribution N(0, δ2) and significance level α = 0.05. In
the following simulation experiments, the aggregation
function is defined as the mean value and the attack mode
is a constant attack, and 200 Monte Carlo experiments
will be conducted in evaluation process. The attacks
applied to the node are confined to additive attack, and
the specific method is about constant accumulation,
namely, the attackers will modify each of the reading of
the captured nodes to achieve the same constant d.
Figure 1 shows the comparison of performance in

aspect of absolute deviation when attack nodes are
distributed in different numbers of clusters. The horizontal
axis represents the value of the attack node ratio k, and the
longitudinal axis indicates the absolute deviation between
the result and the real value of different value of k. Besides,
δ2 = 4 and constant d is equal to 10. It can be observed
from the experimental results that when the malicious
nodes are restricted to fewer clusters, its influence is
relatively small and the final absolute deviation is lower. In
addition, when the density of the attack node increases,
the absolute deviation is also promoted fairly smoothly. It
indicates that our resilient data aggregation algorithm can
detect the extent of the data being tampered in time and
effectively correct the fusion results.
Next, we compare the cluster weights in the process of

data aggregation. Suppose the number of the clusters

not being attacked is 3 and the value of d is set to 0.5
and a cluster that is not attacked is selected as the
expected object. The weight assigned to other clusters in
RDAS and LARA (linear approaches resilient aggregation)
[27] is shown in Figs. 2 and 3, respectively. In LARA, there
is no obvious difference in terms of the similarity between
the attacked clusters and the expected one, and it shows
LARA cannot determine the degree of attack of each
cluster accurately. Comparatively, the clusters being
attacked can be allocated as low weight value in RDAS.
With the increase of the proportion of attack nodes, it
illustrates more obviously. It can reduce the effects of
the clusters being attacked on the final fusion results.
Figures 4 and 5 show the comparison in aspect of

convergence restoration between RDAS, LARA, and
ADDA (Attack Detectors Data Aggregation) [28]. When
the attack increment is 0.5 and 10, the performance of
RDAS is better than that of ADDA and LARA. In LARA,
the correlation coefficient is defined as the convergence of
weighted value for data aggregation. As can be seen from
the results, when the attack increment is high, the correl-
ation coefficient is not very suitable and the difference of
weight value of each cluster is too large to affect the final
result. With the use of gray relational degree, ADDA also
needs to select the expected cluster. When the node’s data
fluctuation is small, the determination of the desired
model will produce a great deal of error. RDAS makes use
of the perceived data of all nodes so that the attacked
nodes are concentrated in some clusters, and the more
concentrated the attack nodes are, the smaller the conver-
gence error is.

Fig. 1 Absolute error as attacks being occurred in different clusters
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As can be seen from Fig. 4, as d = 0.5, the error range
of data reconstruction is about 0.08~ 0.28 in ADDA and
0.07~ 0.22 in LARA. Comparatively, the absolute error
in RDAS can vary between 0.07 and 0.16. If d = 10, the
absolute error in ADDA maintains between 0.15 and
0.27 as the proportion of attack nodes is small. With the
increase of the number of attack nodes, it fluctuates at
the range of 0.2~ 0.25 sharply. In general, the absolute

error of LARA has the lower level of 0.13~ 0.31 than
that of ADDA. Compared with LARA and ADDA, RDAS
also shows better performance of different proportion
of the attacked nodes in aspect of the absolute error as
d = 10. The reason is that ADDA and LARA utilize the
mean to represent the estimated value of the target
variable of the cluster. However, the estimated value of
target variables of all clusters by RDAS is obtained by

Fig. 2 The weight value of all clusters in LARA

Fig. 3 The weight value of all clusters in RDAS
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using the time correlation of node’s data, which can be
aggregated in each cluster separately.
Figures 6 and 7 show the absolute error as a Gauss

white noise N applied to each node’s perceptual signal,
and the signal-to-noise ratio is 0 and − 5 dB. As the
signal-to-noise ratio is − 5 and 0 dB, RDAS can achieve
better performance in terms of anti-noise than LARA and
ADDA. It should be noted that the anti-noise performance

of RDAS is weakened with the increase of the value k.
That is because there is little difference between the data
of each cluster when the amount of attack is small, and it
is impossible to select the expected cluster correctly. In
general, the chi-square fitting can accurately represent the
weight during the phase of data aggregation, which can
avoid the error caused by the improper selection of
expectation model in LARA and ADDA.

Fig. 4 The absolute error (d = 0.5)

Fig. 5 The absolute error (d = 10)
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5 Conclusions
In this paper, we contributed with a resilient data aggrega-
tion algorithm based on spatio-temporal correlation for
WSNs. On the basis of the distributed data convergence
model, the algorithm combines the centroid distance and
similarity to measure the attack degree of each cluster
node’s perceived data, and the weighted calculation can
improve the convergence precision of data recovery. In

addition, this method can obtain the estimated value of
data sample of all clusters according to the temporal
correlation characteristic of the nodes’ perceived data
at different time. Using the chi-square fitting, the
extent of the data being tampered in each cluster can
be measured effectively. Both analysis and extensive
simulations support the quality and viability of our
proposal.

Fig. 6 Anti-noise performance (SNR = − 5 dB)

Fig. 7 Anti-noise performance (SNR = 0 dB)
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